FLEXURAL BEHAVIOR OF LIGHTWEIGHT REINFORCED CONCRETE BEAM CONTAINING PALM OIL CLINKER AS AGGREGATES

MUHAMMAD SAZLLY NAZREEN BIN MAHMOOR

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Philosophy

> School of Civil Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > JUNE 2021

DEDICATION

I dedicated this thesis to my beloved wife, father and mother for

their supports and encouragement.

ACKNOWLEDGEMENT

Alhamdulillah, I thank Allah S.W.T., with His will and guidance I am managed to completed my master of philosophy. I'm blessed with the love and strength that He given me unconditionally.

I would like to express my gratitude to my respected supervisor Dr. Roslli Noor Mohamed for his guidance, advice, constructive feedback and critical review of this thesis. His support, time, and help are the motivation for me to strive harder in my academic journey. My appreciation also goes to Dr. Mariyana Aida Binti A.B. Kadir as my co-supervisor for her time and knowledge that has been contributed a lot in this research journey.

Grateful appreciation is also goes to all staff and my fellow postgraduate friends in the Structure and Materials Laboratory who have provided assistance at various occasion. Their views and tips are helpful indeed.

Last but not least, I dedicated my deepest gratitude to my beloved wife Siti A'idah and my whole family members for their supports in term of financial and emotion for me to complete my research in due time. I appreciate it very much and will cherish it forever.

ABSTRACT

Lightweight concrete (LWC) is an innovative technique for construction purposes. Lightweight concrete can be categorized into three different types which are no-fine concrete, lightweight aggregate concrete and aerated concrete. In this study, an investigation on lightweight concrete was carried out using palm oil clinker (POC) as lightweight aggregates. Two mixes of lightweight concrete were developed, named as POCC100 and POCC50 where each mix utilized 100% and 50% replacement of fine and coarse aggregates. The POC concrete mixture was used in order to cast the structural reinforced concrete beam. The physical and mechanical properties of fine and coarse POC aggregates were investigated in term of sieve analysis, bulk density, specific gravity, fineness modulus and ACV test to confirm the suitability to replace normal fine and coarse aggregates. The fresh and hardened POC concrete was tested and compared to the normal concrete (NC). The hardened state of the concrete was investigated through density test, water absorption, ultrasonic pulse velocity, cube compressive, splitting tensile, flexural tensile, modulus of elasticity and Poisson's ratio. From density test, POC concrete can be considered as a lightweight concrete since the density of the POC concrete obtained was 1990 kg/m³ which are below than usual normal weight concrete density. The concrete mechanical properties test results on POCC100 and POCC50 show that the concrete compressive strength was only 14.30% and 4% less than the NC, respectively. Flexural beam test were conducted on three different beam specimens, i.e. control beam (NC), POCC100 and POCC50 beams. The tested results of the POC reinforced concrete beam show that the ultimate load of the POCC100 and POCC50 beams was comparable to about 88% and 95% to NC beam, respectively. Finding in this study found out that replacement of POC showed lower value of compressive strength by 13% compared to NC. However, replacement of POC benefits in weight reduction by 15% compared to NC. As a conclusion, POC is considered suitable to replace fine and coarse aggregates in the concrete proportion. In terms of sustainability of solid waste management, the application of the POC in construction will reduce the redundant of by-products resulted from the palm oil industries.

ABSTRAK

Konkrit ringan merupakan teknik inovasi bagi tujuan kerja pembinaan. Konkrit ringan dapat dikategorikan kepada tiga jenis yang berbeza iaitu konkrit tanpa agregat halus, konkrit agregat ringan dan konkrit berudara. Dalam kajian ini, penyelidikan terhadap konkrit ringan menggunakan batu hangus kelapa sawit (POC) sebagai agregat ringan telah dijalankan. Dua campuran konkrit ringan dibangunkan dan dilabelkan sebagai POCC100 dan POCC50 mengikut kadar gantian agregat kasar dan halus sebanyak 100% dan 50%. Konkrit campuran POC kemudiannya digunakan untuk pembinaan stuktur rasuk konkrit bertetulang. Sifat-sifat fizikal dan mekanikal bagi batu hangus kelapa sawit halus dan kasar dikaji dari segi analisis ayakan, ketumpatan pukal, graviti tertentu, modulus kehalusan dan ujian ACV bagi memastikan tahap kesesuaian penggantian terhadap agregat halus dan kasar. Konkrit basah dan konkrit keras POC diuji dan perbandingan dibuat terhadap konkrit biasa (NC). Konkrit keras diuji melalui ujian ketumpatan, ujian kadar serapan, ujian halaju nadi ultrasonik, ujian mampatan kiub, ujian pecahan kekuatan tegangan, elastik modulus dan nisbah Poisson. Daripada ujian ketumpatan, konkrit POC dikategorikan sebagai konkrit ringan memandangkan ketumpatan yang diperolehi konkrit tersebut ialah 1990 kg/m³ iaitu lebih rendah berbanding nilai ketumpatan konkrit biasa. Ujian mampatan terhadap konkrit keras POCC100 dan POCC50 menunjukkan keputusan 14.30% dan 4% kurang daripada NC. Ujikaji lenturan terhadap rasuk telah dijalankan ke atas tiga spesimen rasuk iaitu rasuk konkrit biasa (NC), rasuk POCC100 dan POCC50. Hasil dapatan menujukkan beban muktamad rasuk konkrit bertetulang POCC100 dan POCC50 adalah sebanyak 88% dan 95% berbanding NC. Hasil dapatan daripada kajian ini menunjukkan penggantian POC memberikan kadar mampatan 13% lebih rendah berbanding NC. penggantian POC memberikan kelebihan Walaubagaimanapun, dari segi pengurangan berat sebanyak 15% berbanding NC. Kesimpulannya POC dikenalpasti sebagai bahan gantian yang sesuai digunakan untuk menghasilkan konkrit. Dari segi kelestarian pengurusan sisa pepejal, penggantian POC dalam pembinaan akan mengurangkan lebihan produk sampingan yang terhasil melalui industri minyak sawit.

TABLE OF CONTENTS

TITLE

DEC	LARATION	iii
DED	ICATION	iv
ACK	NOWLEDGEMENT	v
ABS	ГКАСТ	vi
ABS	ГКАК	vii
TAB	LE OF CONTENTS	viii
LIST	OF TABLES	xiii
LIST	OF FIGURES	XV
LIST	OF ABBREVIATIONS	xix
LIST	OF SYMBOLS	xxi
LIST	OF APPENDICES	xxiii
CHAPTER 1	INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	2

1.3	Objectives of the Study	4
1.4	Scope of Study	4
1.5	Significance of Study	5
1.6	Thesis Outline	6

CHAPTER 2	LITERATURE REVIEW	7
2.1	Introduction	7
2.2	Lightweight Concrete	7
	2.2.1 Background of Lightweight Concrete	7
	2.2.2 Types of Lightweight Concrete	8
	2.2.2.1 Lightweight Aggregate Concrete	9
	2.2.3 Properties of Lightweight Concrete	10

	2.2.3.1 Properties of Fresh Lightweight Concrete	10
	2.2.3.2 Properties of Hardened Lightweight Concrete	11
	2.2.4 Advantages of Lightweight Concrete	12
2.3	Lightweight Aggregates	13
	2.3.1 Types of Lightweight Aggregates	14
	2.3.2 Advantages of Lightweight Aggregates on Concrete Mix	15
2.4	Palm Oil Clinker (POC)	17
	2.4.1 Production of POC	17
	2.4.2 Properties of POC	19
2.5	Palm Oil Clinker Concrete	21
	2.5.1 Mix Design of POC Concrete	21
	2.5.2 Previous Studies on POC Concrete Properties	22
2.6	Theoretical Concept of Reinforced Concrete Beam Design	26
	2.6.1 Flexure Design of Reinforced Concrete Beams	26
2.7	Critical Summary of Research Gap	29
CHAPTER 3	METHODOLOGY	31
3.1	Introduction	31
3.2	Materials	34
	3.2.1 Cement	34
	3.2.2 Aggregates	35
	3.2.3 Water	35
	3.2.4 Superplasticizer	36
3.3	Material Properties of POC	36
	3.3.1 Physical Properties of POC	36
	3.3.1.1 POC Aggregates Gradation	37
	3.3.1.2 Specific Gravity and Water Absorption	38
	3.3.1.3 Dry loose bulk density	40
	3.3.1.4 Moisture content	41

		3.3.1.5	Los Angeles Abrasion Test	42
	3.3.2	Mechani	cal Properties of POC	43
		3.3.2.1	Aggregates Crushing Value (ACV)	43
		3.3.2.2	Aggregates Impact Value (AIV)	45
	3.3.3	Chemica	ll Properties Test	46
		3.3.3.1	Identification of Sulphate Content	46
		3.3.3.2	Identification of Chloride Content	47
3.4	Concr	ete Mix D	Design	47
	3.4.1	Mix Des	ign of NC	48
	3.4.2	Mix Des	ign of POCC	48
3.5	Prepa	ration for	Concrete Test Specimens	49
3.6	Fresh	and Harde	ened Concrete Properties	50
	3.6.1	Fresh Co	oncrete Test (Slump Test)	50
	3.6.2	Hardene	d Concrete Test	51
		3.6.2.1	Density	51
		3.6.2.2	Water Absorption	52
		3.6.2.3	Ultrasonic Pulse Velocity (UPV)	53
		3.6.2.4	Compressive Strength Test	54
		3.6.2.5	Splitting Tensile Strength Test	55
		3.6.2.6	Flexural Strength Test	56
		3.6.2.7	Modulus of Elasticity and Poisson's Ratio Test	57
3.7	Struct	ural Beam	Test	59
	3.7.1		and Fabrication of Normal Concrete m Oil Clinker Reinforced Concrete	59
	3.7.2	Beam Sp	pecimens Test Set-Up	65
	3.7.3	Test Pro	cedures	67
3.8	Summ	nary		67
CHAPTER 4		ERIAL PERTIES	AND MECHANICAL OF THE CONCRETE	69
4.1	Introd	uction		69

4.2	Mater	ial Proper	ties	69
	4.2.1	Physical	Properties	70
		4.2.1.1	Gradation	70
		4.2.1.2	Specific Gravity	73
		4.2.1.3	Water Absorption and Moisture Content	74
		4.2.1.4	Bulk Density	74
		4.2.1.5	Los Angeles Abrasion Value	75
	4.2.2	Mechani	cal Properties of POC	76
4.3	Mix I	Design of I	POC Concrete (POCC)	76
4.4	Prope	rties of Co	oncrete	79
	4.4.1	Fresh Sta	ate of Concrete Properties	79
		4.4.1.1	Slump Test	79
	4.4.2	Hardene	d State of Concrete Properties	80
		4.4.2.1	Concrete Density	80
		4.4.2.2	Water Absorption	82
		4.4.2.3	Ultrasonic Pulse Velocity (UPV)	83
		4.4.2.4	Compressive Strength	84
		4.4.2.5	Splitting Tensile Strength	87
		4.4.2.6	Flexural Strength	90
		4.4.2.7	Modulus of Elasticity and Poisson's Ratio	92
4.5	Summ	nary		95
	4.5.1	Material	Properties of POC	95
	4.5.2	Propertie Aggrega	es of Concrete Containing POC tes	96
CHAPTER 5			BEHAVIOUR OF REINFORCED HT CONCRETE BEAMS	97
5.1	Introd	uction		97
5.2			vior of Reinforced Concrete Beams of nd POCC100	97
	5.2.1		loading capacity of NC, POCC50 and 00 Beam Specimen	98

	5.2.2		flection Profile of NC, POCC50 and 0 Beam Specimen	99
	5.2.3	Cracking	Behavior and Failure Mode	101
	5.2.4	Load-Str Beam Sp	ain profile of POCC50 and POCC100 ecimen	105
		5.2.4.1	Load-Strain Profile of Steel Reinforcement	106
		5.2.4.2	Load-Strain Profile of Concrete	107
5.3	POCO		xperimental Ultimate Moment of NC, POCC100 Beam Specimen with ation	111
5.4	Summ	nary		114
	5.4.1		1 Behavior of Reinforced Concrete f NC, POCC50 and POCC100	115
	5.4.2	of NC,	on of Experimental Ultimate Moment POCC50 and POCC100 Beam n with Theoretical Equation	116
CHAPTER 6	CON	CLUSION	AND RECOMMENDATIONS	117
6.1	Concl	usions		11 7
6.2	Recor	nmendatio	n	118
REFERENCES				119
APPENDIX				127

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	POC Aggregates Physical Properties by Previous Researchers	20
Table 3.1	Concrete mix proportion (kg/m ³)	48
Table 3.2	Beam details	61
Table 4.1	Physical properties of fine and coarse POC, crushed granite and river sand	70
Table 4.2	Sieve analysis of coarse POC aggregate	71
Table 4.3	Sieve analysis of fine POC aggregate	71
Table 4.4	Mechanical properties of the coarse POC and crushed granite	76
Table 4.5	Trial mix proportion	78
Table 4.6	Trial mix concrete properties	78
Table 4.7	Mean, standard deviation and coefficient of variation of hardened concrete density	80
Table 4.8	Mean, standard deviation and coefficient of variation of water absorption of NC, POCC50 and POCC100	82
Table 4.9	Mean, standard deviation and coefficient of variation of UPV of NC, POCC50 and POCC100	84
Table 4.10	Mean, standard deviation and coefficient of variation of the compressive strength of the hardened state concrete	85
Table 4.11	Mean, standard deviation and coefficient of variation of splitting tensile strength of hardened state concrete	88
Table 4.12	Mean, standard deviation and coefficient of variation of flexural strength of the hardened state concrete	90
Table 4.13	Modulus of elasticity and Poisson's ratio of hardened state concrete	94
Table 4.14	The percentage of difference of compressive strength	95
Table 5.1	Beams compressive strength for cubic specimens, first crack loading and ultimate loading capacity	98

Table 5.2	Displacement ductility of NC, POCC50 and POCC100 beam specimens	100
Table 5.3	Type of failure of the beam specimen	106
	Comparison of experimental and theoretical ultimate moment of the beam specimens	113

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 2.1	Type of lightweight concrete; (a) No-fines, (b) Aerated, (c) Lightweight aggregate (Newman and Owens, 2003)	9
Figure 2.2	Type of lightweight aggregates commonly used in producing lightweight concrete (Chandra and Berntsson, 2002).	15
Figure 2.3	Fracture path between the normal and lightweight aggregate (Newman and Owens, 2003)	16
Figure 2.4	Physical shape of POC (a) flaky and irregular shape of POC (b) porous structure of POC	18
Figure 2.5	Production process of POC in palm oil mill (Aslam et al., 2016)	18
Figure 2.6	Experimental set-up and reinforcement detailing for POC reinforced concrete beam experiment under flexural (Mohammed et al., 2014)	25
Figure 2.7	Flexural failure in balanced section	27
Figure 2.8	Flexural failure in under-reinforced section	27
Figure 2.9	Flexural failure in over-reinforced section	27
Figure 2.10	Singly reinforced beam cross-section, strain distribution and stress block distribution	28
Figure 3.1	Flow Chart Research Activities	32
Figure 3.2	Research framework	33
Figure 3.3	Tasek Cement's Ordinary Portland Cement (OPC)	34
Figure 3.4	(a) Bulky size of POC collected from palm oil mill (b) Raw POC were crushed using the crushing machine (c) Smaller size obtained after grinding process.	35
Figure 3.5	Sieve shaker	37
Figure 3.6	Immersion of sample	40
Figure 3.7	(a) cylindrical container filled with POC's coarse aggregates(b) surface of cylinder levelled using rod(c) mass cylinder with the sample was determined	41
Figure 3.8	(a) Los Angeles Testing Machine (b) steel sphere	43

Figure 3.9	Plunger applied on the sample for ACV test	44
Figure 3.10	Test was conducted using AIV machine	45
Figure 3.11	Various type of mould used for concrete specimens	49
Figure 3.12	Measurement of collapsed concrete for slump test	51
Figure 3.13	UPV test of cylindrical specimen	53
Figure 3.14	Compressive strength using the compression machine	55
Figure 3.15	Splitting tensile strength test	56
Figure 3.16	Flexural strength test on prismatic specimen; (a) before and (b) after	57
Figure 3.17	Testing of the modulus of elasticity and Poisson's ratio (a) Preparation of the specimen (b) Setting up the compression machine (c) Specimen post-testing	58
Figure 3.18	Arrangement of the reinforcement of the beam specimens; (a) front layout and (b) side layout	60
Figure 3.19	Preparation of the beam samples (a) grinding process on the location of steel strain gauge; (b) Grind spot cleaned using the acetone; (c) Strain gauge was glued to the spot; (d) The glued strain gauge was coated with silicon; (e) 25 mm of concrete cover was tied to the beam reinforcement; (f) Formwork of the beam was cleaned and greased before the reinforcement bar was placed into it	62
Figure 3.20	Casting process from beginning to the end (a) All the concrete materials were mixed in the mixer drum ; (b) Slump test to identify the workability of the concrete ; (c) Concrete was poured into the beam's formwork and compacted using the concrete vibrator ; (d) Concrete was poured into the cubic mould and compacted using a tamping rod ; (e) The poured concrete was then skimmed for the smooth surface ; (f) Curing beam specimens	64
Figure 3.21	Instrumentation for the test set up; (a) illustration and (b) actual	66
Figure 3.22	View of the beam specimen; (a) front view and (b) plan view	67
Figure 4.1	POC fine and coarse aggregates sieve analysis grading curve	72
Figure 4.2	Fineness Modulus result	73
Figure 4.3	Density of the hardened concrete	81

Figure 4.4	Water absorption of the hardened concrete	83
Figure 4.5	UPV values of NC, POCC50 and POCC100	84
Figure 4.6	Compressive strength of hardened state concrete of NC, POCC50 and POCC100	86
Figure 4.7	Failure mode of concrete cubic specimens (a) NC (b) POCC50 (c) POCC100	87
Figure 4.8	Splitting tensile strength of the hardened state concrete	88
Figure 4.9	(a) Failure mode on splitting tensile strength test of POCC specimen and (b) Closed up the view from the specimen.	89
Figure 4.10	(a) Failure mode on splitting tensile strength test of NC specimen ; (b) Closed up the view from the specimen	89
Figure 4.11	Flexural strength of the hardened state concrete	91
Figure 4.12	(a) POCC prism specimen after flexural strength testing; (b) NC prism specimen after flexural strength testing	92
Figure 4.13	Determination of modulus of elasticity and Poisson's ratio for NC from stress-strain curves	93
Figure 4.14	Determination of modulus of elasticity and Poisson's ratio for POCC50 from stress-strain curves	93
Figure 4.15	Determination of modulus of elasticity and Poisson's ratio for POCC100 from stress-strain curves	94
Figure 5.1	Load-deflection curves of NC, POCC50 and POCC100 beam specimens	101
Figure 5.2	Failure mode of NC beam	102
Figure 5.3	Failure mode of POCC50 beam	103
Figure 5.4	Failure mode of POCC100 beam	103
Figure 5.5	Crack pattern for (a) NC beam specimen, (b) POCC50 beam specimen and (c) POCC100 beam specimen	104
Figure 5.6	(a) Concrete crushed at the compression zone of the POCC100 beam specimen (b) Closed up view of concrete from the beam specimen (c) Spalled concrete crushed from the beam specimen	105
Figure 5.7	Load-Strain of steel reinforcement for NC, POCC50 and POCC100 specimens	107
Figure 5.8	Concrete strain gauge location (a) front view of the beam (b) a bottom view of the beam	108

Figure 5.9	Relationship between load and concrete strain at strain gauge 1	108
Figure 5.10	Relationship between load and concrete strain at strain gauge 2	109
Figure 5.11	Relationship between load and concrete strain at strain gauge 3	109
Figure 5.12	Relationship between load and concrete strain at strain gauge 4	109
Figure 5.13	Concrete strain distribution of beams specimen at (a) 0 load, (b) 50% load, and (c) ultimate load	111
Figure 5.14	Comparison of experimental and theoretical ultimate moment of the beam specimens	112

LIST OF ABBREVIATIONS

ACI	-	American Concrete Institute				
CEB	-	Euro-International Committee for Concrete				
LWAC	-	Lightweight aggregates concrete				
POC	-	Palm Oil Clinker				
LWA	-	Lightweight aggregates				
BS	-	British Standard Institution				
ASTM	-	American Society for Testing and Materials				
NC	-	Normal concrete				
POCC	-	Palm oil clinker concrete				
POCC50	-	Palm Oil Clinker Concrete with 50% fine and coarse				
		replacement				
POCC100	-	Palm Oil Clinker Concrete with 100% fine and coarse				
		replacement				
AIV	-	Aggregate impact value				
ACV	-	Aggregate crush value				
DOE	-	Department of Environment's Design Method				
UPV	-	Ultrasonic pulse velocity				
OPC	-	Ordinary Portland Cement				
OPS	-	Palm oil shell				
POFA	-	Palm oil fuel ash				
OPSC	-	Oil Palm Shell Concrete				
CSA	-	Canadian Standard				
FIP	-	Federation internationale de la precontrainte				
РР	-	Particle packing				
MOE	-	Modulus of elasticity				
NWC	-	Normal weight concrete beam				
LECA	-	Lightweight expanded clay aggregates				
CC	-	Control concrete				
CSAC	-	Coconut shell aggregates concrete				
DSSF	-	Discontinuous structural synthetic fibre				

PSCC	-	Palm oil clinker concrete
SSD	-	Saturated surface dry
OD	-	Oven-dried
LVDT	-	Linear Variable Displacement Transducer
SD	-	Standard Deviation
COV	-	Coefficient of Variation

LIST OF SYMBOLS

kg/m³	-	Kilogram per meter cube
mm	-	Milimeter
%	-	Percentage
MPa	-	Mega Pascal
N/mm ²	-	Newton per millimeter square
V_f	-	Volume of fiber
E _{st}	-	Ultimate strain of high steel bar is
E _{cc}	-	Ultimate strain for concrete
F _{cc}	-	Force in concrete compression
F _{st}	-	Force in tensile steel
A_s	-	Assumption of the area of tensile steel to be used in the
		design
М	-	Moment Resistance
E _{st}	-	Ultimate strain of high steel bar is
E _{cc}	-	Ultimate strain for concrete
E	-	"Modulus of elasticity"
σ	-	Stress from the slope
ε _a	-	Longitudinal strain at stress
μ	-	"Poisson's ration"
\mathbf{f}_{ct}	-	Splitting tensile strength
\mathbf{f}_{ef}	-	Flexural strength
μm	-	Micrometer
kN	-	Kilo Newton
SO ₃	-	Sulfate Oxide
Cl	-	Chloride
°C	-	Degree Celsius
km/s.	-	Kilometer per second
μs	-	Microsecond
A _c	-	Cross sectional area of specimen
mm ²	-	Milimeter square

m ³	-	Meter cube
GPa	-	GigaPascal
Δ_y	-	Deflection
$\mu \epsilon_S$	-	Ultimate Steel Strain
$\mu \varepsilon_c$	-	Ultimate Steel Concrete
M_{exp}	-	Experimental ultimate moment
M_{theo}	-	Theoretical ultimate moment
fy	-	Steel yield Strength
fcu	-	Concrete Compressive Strength

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Mix Design of NC (DOE)	127
Appendix B	Mix Design of POCC (ACI)	128
Appendix C	Design for Flexural Beam	129

CHAPTER 1

INTRODUCTION

1.1 Introduction

Reinforced concrete is an element that has been established for civil engineering purposes such as the construction of building, bridges, dams, railways or even highways for a long period of time. Reinforced concrete was invented in late 1800's by the French industrialist. Reinforced concrete is a combination of two composite materials, which are concrete and reinforcement steel bar embedded inside the concrete. Concrete and reinforcement steel bar have contradictory properties. Concrete has high compressive strength and low tensile strength, while reinforcement steel bar has high tensile strength but has low compression. By combining these two advantages, it is due to produce structural materials that are strong in both compression and tension.

Lightweight concrete is a concrete which by one means or another has been made lighter than conventional concrete. The most familiar product is made from sand and gravel or crushed rock and cement. It has been suggested that lightweight concrete can be defined as a concrete made from the lightweight aggregate. According to American Concrete Institute (ACI 318), the density of hardened concrete is between 1840 kg/m³ to 2000 kg/m³. Lightweight concrete is a concrete that is lighter than normal weight concrete which usually ranged between 2240 – 2400 kg/m³. Euro-International Committee for Concrete (CEB, 1977) classified lightweight concrete as having densities between 1200 – 2000 kg/m³.

There are many advantages obtained when the concrete density is low, such as reduction of dead load, faster building rates, lower haulage and handling costs. The weight of a building in terms of the loads transmitted by the foundations is an important factor in design, particularly in the case of high-rise buildings. In framed structures, a considerable saving in cost can be brought about by using lightweight concrete for the construction of the floors, partitions, and external cladding.

Basically, there is only one way to produce the lightweight concrete, which is by including air in the concrete composition. This, however, can be achieved by three different methods: First, by excluding the fine aggregates from aggregate grading. This method was named *as no-fines* concrete. The second method is known as lightweight aggregates concrete, by replacing the normal aggregates such as river sand and crushed granite with hollow and porous aggregates. The third method to produce the lightweight concrete is known as *aerated concrete* where the gas bubbles were created in the fresh concrete or other method using the foam materials to form a *foamed concrete*. The best alternative way to create the lightweight concrete to achieve sustainable concrete is by using waste by-product as a replacement to the conventional material in the mix (Pelisser et al., 2011). Hence in this study, a structural lightweight reinforced concrete beam using Palm Oil Clinker (POC) as coarse and fine aggregates was constructed to understand the potential of the lightweight aggregates.

1.2 Problem Statement

Construction industry has becomes the most important sector in many countries, especially to a developing country like Malaysia. Every year Malaysia government allocated some amount of money for the construction industry to ensure the development of the country continues moving forward and advanced in term of technology. Higher demand in construction sector has caused developers to finish the projects within short period of time. Using an innovative materials such as the application of lightweight concrete structures has turned out to be the answer to increase population and development.

Government has to step in to provide the solution for the locals by constructing affordable housing scheme that will not only offer a reasonable price but also promise in rapid construction time. Current construction using normal concrete always result in massive design structures. There is a need to reduce the dead load of the structures which automatically save the construction cost. Hence, the application of lightweight aggregates concrete is a crucial matter in order to advise a solution to reduce construction cost. Therefore, research on POC as one of the LWA material is important in order to study its application in structure buildings.

Source of fine and coarse aggregates has reached minimum level, yet the development demand keeps on increasing (Alengaram et al., 2013). Lacking natural sand and coarse aggregates as main materials to produce the concrete mixture could decrease the construction activities. By using of lightweight concrete the normal aggregates, natural sand and crushed granite are replaced with the porous aggregates which will include air in the mix and will make the concrete lighter.

Malaysia is one of the world's largest palm oil producer and manufacturer with 19.86 million tons of palm oil and exported 18.47 million tons annually (MPOB, 2019). This could cause the problem of deterioration of the environment since only 10% of fresh fruit and kernel were used in processing the palm oil, while another 90% remain in the form of waste (Dungani et al., 2018). Hence, it is suggested that a study be conducted on the possibility to reuse and recycle the POC to be utilized as coarse and fine aggregates to produce the lightweight aggregates concrete.

1.3 **Objectives of the Study**

The aim of this study is to investigate the possibility of using POC in concrete proportion to produce a lightweight concrete. There are three objectives listed in order to achieve the aim of this study,

- To investigate the physical and mechanical material properties of Palm Oil Clinker (POC) as fully and partially replacement of coarse and fine aggregates.
- ii. To investigate the fresh and hardened state properties of POC concrete as compared to NC.
- iii. To investigate the structural behaviour of reinforced POC lightweight concrete beams under flexural test.
- iv. To compare the experimental results of beam testing with current code of practices.

1.4 Scope of Study

All the testing methods used throughout this study complied with British Standard Institution (BS) and American Society for Testing and Materials (ASTM). In this study, POC was utilized as both coarse and fine aggregates for lightweight aggregates concrete beam samples. The size of coarse and fine aggregates used in this study was maximum 10mm and 4.75mm respectively. Three concrete mixes were developed in this study which is normal concrete (NC), POCC50 and POCC100 where the replacement of the fine and coarse aggregates is at 50% and 100% replacement respectively.

The physical properties of POC that were tested in this study including sieve analysis, specific gravity, moisture content, water absorption, loose bulk density and fineness modulus. For the mechanical properties of POC, two testing methods were performed which are aggregate impact value (AIV) and aggregate crush value (ACV). These test are to ensure that POC meets the requirement to be used as coarse and fine lightweight aggregates to produce the lightweight aggregates concrete. A mix design of POC lightweight aggregates concrete and normal weight concrete (NC) were developed using ACI and DOE methods respectively.

The second phase deals with mechanical properties testing of concrete, POC lightweight aggregates concrete were compared to normal weight concrete. Several tests were conducted to obtain the hardened state of concrete mechanical properties, which are water absorption test, ultrasonic pulse velocity (UPV) test, density test, water absorption test, compressive strength, splitting tensile strength, flexural strength and elastic modulus (E-value) test. Slump test was carried out for fresh state concrete to measure the workability of the concrete. The structural behaviour of normal and lightweight aggregates under-reinforced concrete beams were tested under flexural to investigate the ultimate load, load-deflection behaviour, crack pattern, mode of failure and load-strain behaviour between NC, POCC50 and POCC100 beams.

1.5 Significance of Study

This research is expected to give a better understanding of the use of POC as a possibility to replace the fine and coarse aggregates in structural concrete. As explained, the POC lightweight reinforced concrete beams will benefit the future construction industry with faster building rates, reduction of dead load of the structure and technically the construction cost could also be reduced due to reusage of waste by-product materials as both coarse and fine aggregates to replace the conventional aggregates in concrete mix. Moreover, the utilization of POC will lead to a cleaner and sustainable environment.

1.6 Thesis Outline

In this thesis, the compilation of varies literature data related to lightweight concrete, lightweight aggregates, POC, POC concrete and design of reinforced concrete beams are presented in Chapter 2. Chapter 3 deal with the details of research method in this study. In Chapter 4, material properties of POC and properties of fresh and hardened concrete of POC are discussed in detailed. The discussion on structural behaviour of reinforced concrete beam of POC and normal concrete are the subjects of Chapter 5. Chapter 6 deals with the conclusion and recommendation for future research.

REFERENCES

- A. Bouguerra, A. Ledhem, F. de Barquin, R.M. Dheilly, M. Queneudec, Effect of microstructure on the mechanical and thermal properties of lightweight concrete prepared from clay, cement, and wood Aggregate, *Cem. Concr. Res.* 28 (8) (1998) 1179–1190.
- Abutaha, F., Abdul Razak, H., and Kanadasan, J. (2016). Effect of palm oil clinker (POC) aggregates on fresh and hardened properties of concrete. *Construction and Building Materials*, 112, 416–423.
- Ahmad, H., Hilton, M., Noor, N.M., 2007. Physical properties of local palm oil clinker and fly ash. In: Proceedings of 1st Engineering Conference on Energy and Environment (EnCon2007), Sarawak, Malaysia, UTHM Repository.
- Ahmmad, R., Jumaat, M. Z., Alengaram, U.J., Bahri, S., Rehman, M.A., and Hashim, H. Bin. (2016). Performance evaluation of palm oil clinker as coarse aggregate in high strength lightweight concrete. *Journal of Cleaner Production*, 112, 566–574.
- Ali, A., Abdullah, A., Salam, A.S.K., Rahim, A.A., 1984. Basic strength properties of lightweight concrete using agricultural wastes as aggregates. In: *International Conference on Low Cost Housing for Developing Countries*, 12-17 Nov. 1984, Roorkee, India, pp. 143-146
- Alhashimi, M.N.H. (2014). Performance of Concrete By Using Palm Oil Fuel Ash (Pofa). Universiti Teknologi Malaysia.
- Alhassan, M., Al-rousan, R., and Ababneh, A. (2017). Case Studies in Construction Materials Flexural behavior of lightweight concrete beams encompassing various dosages of macro synthetic fibers and steel ratios. *Case Studies in Construction Materials*, 7(September), 280–293.
- Al-Khaiat, H., Haque, M., 1998. Effect of initial curing on early strength and physical properties of a lightweight concrete. *Cem. Concr. Res.* 28 (6), 859-866.
- Altun, F., and Aktas, B. (2013). Investigation of reinforced concrete beams behavior of steel fiber added lightweight concrete. *Construction and Building Materials*, 38, 575–581.

- Ariffin, N.F., Hussin, M.W., Mohd Sam, A.R., Bhutta, M.A.R., Nur, N.H., and Mirza, J. (2015). Strength properties and molecular composition of epoxymodified mortars. *Construction and Building Materials*, 94(May 2016), 315– 322.
- Aslam, M., Sha, P., Alizadeh, M., and Zamin, M. (2017). Manufacturing of highstrength lightweight aggregate concrete using blended coarse lightweight aggregates, 13(July), 53-62.
- Aslam, M., Shafigh, P., and Jumaat, M.Z. (2016). Drying shrinkage behaviour of structural lightweight aggregate concrete containing blended oil palm bioproducts. *Journal of Cleaner Production*, 1–12.
- Aslam, M., Shafigh, P., and Jumaat, M.Z. (2015b). Oil-Palm By-Products As Lightweight Aggregate In Concrete Mixture: A Review. *Journal of Cleaner Production*, 1–18.
- Aslam, M., Shafigh, P., Jumaat, M.Z., and Lachemi, M. (2015). Benefits of using blended waste coarse lightweight aggregates in structural lightweight aggregate concrete. *Journal of Cleaner Production*, 119, 108–117.
- Basri, H.B., Mannan, M.A., and Zain, M.F.M. (1999). Concrete using waste oil palm shells as aggregate, 29, 619–622.
- G.K. Baykal, A.G. Döven, Utilization of fly ash by pelletization process; theory, application areas and research results, *Resour. Conserv. Recycle.* 30 (2000) (2000) 59–77.
- Beams, R.C. (1987). Design of Reinforced Concrete Beams, 154-155.
- Beedholm, A., Fisker, J., and German, L. (2017). Cracking in flexural reinforced concrete members. *Procedia Engineering*, 172, 922–929.
- Boulekbache, B., Hamrat, M., Chemrouk, M., and Amziane, S. (2016). Flexural behaviour of steel fibre-reinforced concrete under cyclic loading. *Construction and Building Materials*, 126, 253–262.
- Bremner, T.W., 2001. Environmental aspects of concrete: problems and solutions.
 In: Proceedings of the First Russian *Conference on Concrete and Reinforced Concrete problems*, September 9-14, 2001, Moscow, Russia, pp. 232-246.
- Cenan, H., Baran, E., and Jibril, H. (2015). Flexural behavior of lightly and heavily reinforced steel fiber concrete beams. *Construction and Building Materials*, 98, 185–193.
- Chandra, S. and Berntsson, L. (2002). Lightweight Aggregate Concrete: Science,

Technology and Applications. New York: Noyes Publications.

- Chen, Y., Feng, R., and Xu, J. (2017). Flexural behaviour of CFRP strengthened concrete-filled aluminium alloy CHS tubes. *Construction and Building Materials*, 142, 295–319.
- Choi YW, Kim YJ, Shin HC, Moon HY. An experimental research on the fluidity and mechanical properties of high-strength lightweight self-compacting concrete. *Cem Concr Res 2006*;36:1595–602.
- Concrete, L.A., and Gard, P. (n.d.). Historical Background of Lightweight Aggregate Concrete (Vol. 82).
- Cui, H.Z., Yiu, T., Ali, S., and Xu, W. (2012). Effect of lightweight aggregates on the mechanical properties and brittleness of lightweight aggregate concrete. *Construction and Building Materials*, 35, 149–158.
- Delsye TCL, Mannan MA, John VKurian. Flexural behaviour of reinforced lightweight concrete beams made with oil palm shell (OPS). *Advance Concrete Technology* 2006;4(3):459–68.
- Djamaluddin, R. (2013). Flexural Behaviour of External Reinforced Concrete Beams. *Procedia Engineering*, 54, 252–260.
- Dondi, M., Cappelletti, P., Amore, M.D., Gennaro, R. De, Graziano, S.F., Langella, A.,Zanelli, C. (2016). Lightweight aggregates from waste materials: Reappraisal of expansion behavior and prediction schemes for bloating. *Construction and Building Materials*, 127, 394–409.
- Dungani, R., Aditiawati, P., Aprilia, S., Yuniarti, K., Karliati, T., Suwandhi, I., Sumardi, I. Biomaterial from Oil Palm Waste: Properties, Characterization and Applications. In Palm Oil, 1st ed.; Waisundara, V., Ed.; *IntechOpen: London*, UK, 2018; pp. 31–52.
- EN 13055-1, British standard, Lightweight aggregates Part 1: Lightweight aggregates for concrete, mortar and grout, 2002.
- Gunasekaran, K., Annadurai, R., and Kumar, P.S. (2013a). Study on reinforced lightweight coconut shell concrete beam behavior under flexure. *Materials and Design*, 46, 157–167.
- Gunasekaran, K., Annadurai, R., and Kumar, P.S. (2013b). Study on reinforced lightweight coconut shell concrete beam behavior under shear. *Materials and Design*, 50, 293–301.

- Han, M., Han, D., and Shin, J. (2015). Use of bottom ash and stone dust to make lightweight aggregate. *Construction and Building Materials*, 99, 192–199.
- Huda, N., Zamin, M., Jumat, B., and Islam, A.B.M.S. (2016). Flexural performance of reinforced oil palm shell & palm oil clinker concrete (PSCC) beam. *Construction and Building Materials*, 127, 18–25.
- Hung, K., Visintin, P., Alengaram, U.J., and Zamin, M. (2016). Prediction of the structural behaviour of oil palm shell lightweight concrete beams, 102, 722– 732.
- Hussein, A., I., and Hashim, A., R. (2016). Effect of palm oil clinker (POC) aggregates on fresh and hardened properties of concrete. *Construction and Building Materials*, 416-423.
- Hossain, A., Khandaker, M.A., 2004. Properties of volcanic pumice based cement and lightweight concrete. *Cem. Concr. Res.* 34 (2), 283-291.
- Ibrahim, H.A., and Abdul Razak, H. (2016). Effect of palm oil clinker incorporation on properties of pervious concrete. *Construction and Building Materials*, 115, 70–77.
- Islam, M.M.U., Mo, K.H., Alengaram, U.J., and Jumaat, M.Z. (2015). Mechanical and fresh properties of sustainable oil palm shell lightweight concrete incorporating palm oil fuel ash. *Journal of Cleaner Production*, 115, 307– 314.
- Johari, M.A.M., Zeyad, A.M., Bunnori, N.M., Ariffin, K.S., 2012. Engineering and transport properties of high-strength green concrete containing high volume of ultrafine palm oil fuel ash. *Construction. Building*. *Material* 30, 281-288.
- Juradin, S., Baloević, G. and Harapin, A. (2012). Experimental Testing of the Effects of Fine Particles on the Properties of the Self-Compacting Lightweight Concrete. Advances in *Materials Science and Engineering*. 2012, 1–8.
- Juimo, W.H., Larbi, M., and Pereira-de-oliveira, L.A. (2018). Mechanical properties of lightweight aggregates concrete made with cameroonian volcanic scoria : Destructive and non-destructive characterization, 16(November 2017), 134– 145.
- Jumaat, M.Z., Alengaram, U.J., Ahmmad, R., Bahri, S., and Islam, A.B.M.S. (2015). Characteristics of palm oil clinker as replacement for oil palm shell in lightweight concrete subjected to elevated temperature. *Construction and Building Materials*, 101(May), 942–951.

- Kanadasan, J., and Razak, H.A. (2014). Mix design for self-compacting palm oil clinker concrete based on particle packing. *Journal of Material and Design*, 56, 9–19.
- Kim Hung Mo, Ting Seng Chin, U. Johnson Alengaram, Mohd Zamin Jumaat, Material and structural properties of waste-oil palm shell concrete incorporating ground granulated blast-furnace slag reinforced with lowvolume steel fibres, J. Clean. Prod. 133 (1) (2016) 414–426.
- Lam, M.K.; Jamalluddin, N.A.; Lee, K.T. Chapter 23-Production of biodiesel using palm oil. In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, 2nd ed.; Pandey, A., Larroche, C., Dussap, C.-G., Gnansounou, E., Khanal, S.K., Ricke, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 539–574.
- Lau, P.C., Teo, D.C.L., and Mannan, M.A. (2017). Characteristics of lightweight aggregate produced from lime-treated sewage sludge and palm oil fuel ash. *Construction and Building Materials*, 152, 558–567.
- Liu, M.Y.J., Alengaram, U.J., Jumaat, M.Z., Mo, K.H., 2014. Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. *Energy Build*. 72, 238-245.
- Liu, X., Du, H., and Zhang, M.H. (2015). A model to estimate the durability performance of both normal and light-weight concrete. *Construction and Building Materials*, 80, 255–261.
- Mahmoor, M.S.N., Khalid, H.A., Aida, M., Kadir, A., Azillah, N., Shukri, A., and Mansor, S. (2017). Mechanical Properties of Lightweight Concrete using Palm Oil Clinker: An Overview, 264(2), 254–264.

Malaysian Palm Oil Board. Monthly Production of Oil Palm Products Summary for the Month of December. Available online: http://bepi.mpob.gov.my/index.php/en/production/production-2019/production-of-oilpalm-products-2019.html (accessed on 10 January 2020).

- Mannan, M., Neglo, K., 2010.Mix design for oil-palm-boiler clinker (OPBC) concrete. J. Sci. Technol. (Ghana) 30 (1).
- Mannan, M.A., and Ganapathy, C. (2004). Concrete from an agricultural waste-oil palm shell (OPS), 39, 441–448.

- Mehta, P.K., Monteiro, P.J.M., 2006. Concrete: Microstructure, Properties and Materials, third ed. McGraw-Hill, USA, New York.
- Miller, N.M., and Tehrani, F.M. (2017). Mechanical properties of rubberized lightweight aggregate concrete. *Construction and Building Materials*, 147, 264–271.
- Mo, K.H., Alengaram, U.J., and Jumaat, M.Z. (2015a). Compressive behaviour of lightweight oil palm shell concrete incorporating slag. *Construction and Building Materials*, 94, 263–269.
- Mo, K.H., Alengaram, U.J., and Jumaat, M.Z. (2015b). Experimental investigation on the properties of lightweight concrete containing waste oil palm shell aggregate. *Procedia Engineering*, 125, 587–593.
- Mo, K.H., Alengaram, U.J., and Jumaat, M.Z. (2016). Bond properties of lightweight concrete A review. *Construction and Building Materials*, 112, 478–496.
- Mohammed, B.S., Al-ganad, M.A., and Abdullahi, M. (2011). Analytical and experimental studies on composite slabs utilising palm oil clinker concrete. *Construction and Building Materials*, 25(8), 3550–3560.
- Mohammed, B.S., Foo, W.L., and Abdullahi, M. (2013). Shear strength of palm oil clinker concrete beams. *Materials and Design*, 53, 325–331.
- Mohammed, B.S., Foo, W.L., and Abdullahi, M. (2014). Flexural strength of palm oil clinker concrete beams. *Materials and Design*, 53(16), 325–331.
- Monem, A., Soltan, M., Kahl, W., El-raoof, F.A., El-kaliouby, B.A., Serry, M.A., and Abdel-kader, N.A. (2016). Lightweight aggregates from mixtures of granite wastes with clay. *Journal of Cleaner Production*, 117, 139–149.
- Mosley, W.H., and Bungey, J.H. Reinforced Concrete Design. 3rd ed. The Camelot Press plc, Southhampton. 1987.
- Mueller, A., Schnell, A., and Ruebner, K. (2015). The manufacture of lightweight aggregates from recycled masonry rubble. *Construction and Building Materials*, 98, 376–387.
- Muthusamy, K., Zamri, N., Zubir, M.A., Kusbiantoro, A., and Ahmad, S.W. (2015). Effect of mixing ingredient on compressive strength of oil palm shell lightweight aggregate concrete containing palm oil fuel ash. *Procedia Engineering*, 125, 804–810.

Nazry Azillah (2018) Performance of Lightweight Concrete Using Palm Oil Clinker Aggregates for Precast Application. Master Research Thesis, Universiti Teknologi Malaysia, Skudai.

Neville AM. Properties of concrete. 4th ed. Pitman Book Limited; 1995.

- J. Newman, P. Owens, Properties of Lightweight Concrete, Advanced Concrete Technology Set, Butterworth-Heinemann, Oxford, 2003, pp. 3–29.
- J.B. Newman, Properties of structural lightweight aggregate concrete, in: J.L. Clarke (Ed.), Structural Lightweight Aggregate Concrete, Chapman Hall, Glasgow, 1993, pp. 20–33.
- Newman, J., and Owens, P. (2000). Properties of lightweight concrete. *Advanced Concrete Technology*. Woodhead Publishing Limited.
- Omar, W., and Mohamed, R.N. (2002). The performance of pretensioned prestressed concrete beams made with lightweight concrete. *Jurnal Kejuruteraan Awam*, 14(1), 60–70.
- Polat, R., Demirboga, R., Karakoc, M.B., 2010. The influence of lightweight aggregate on the physico-mechanical properties of concrete exposed to freezeethaw cy- cles. Cold Regions Sci. Technol. 60 (1), 51-56.
- R. Rivera-Villarreal, J.G. Cabrera, Microstructure of two-thousand-year old lightweight concrete, Acids SP-186-11 186 (1999) 186–200.
- Shafigh, P., Jin, L., Bin, H., and Nomeli, M.A. (2018). A comparison study of the fresh and hardened properties of normal weight and lightweight aggregate concretes, 15(December 2017), 252–260.
- Shafigh, P., Mahmud, H. Bin, Jumaat, M.Z. Bin, Ahmmad, R., and Bahri, S. (2014). Structural lightweight aggregate concrete using two types of waste from the palm oil industry as aggregate. *Journal of Cleaner Production*, 80, 187–196.
- Singh, M., Sheikh, A.H., Ali, M.S.M., Visintin, P., and Griffith, M.C. (2017). Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams. *Construction and Building Materials*, 138, 12–25.
- Thcamdjou, W.H.J., Cherrad, T., Abidi, M.L., Pereira-de-Oliveira, L.A., Mechanical properties of lightweight aggregates concrete made with cameroonian volcanic scoria: Destructive and non-destructive characterization. *Journal of Building Engineering*, 16, 134-145.

- Teo, D.C.L., Mannan, M.A., Kurian, V.J., 2006. Structural concrete using oil palm shell (OPS) as lightweight aggregate. *Turk. J. Eng. Environment. Science*. 30 (4), 251-257
- Topçu, I. I. B., 1997. Semi lightweight concretes produced by volcanic slags. Cem. Concr. Res. 27 (1), 15-21.
- Volland, S., and Brötz, J. (2015). Lightweight aggregates produced from sand sludge and zeolitic rocks. Construction and Building Materials, 85, 22–29.
- Xing, G., and Ozbulut, O.E. (2016). Flexural performance of concrete beams reinforced with aluminum alloy bars. *Engineering Structures*, 126, 53–65.
- Yang, Y., Xue, Y., Yu, Y., Ma, N., and Shao, Y. (2017). Experimental study on fl exural performance of partially precast steel reinforced concrete beams. *Journal of Constructional Steel Research*, 133, 192–201.
- Yasar, E., Atis, C.D., Kilic, A., Gulsen, H., 2003. Strength properties of light- weight concrete made with basaltic pumice and fly ash. Mater. Lett. 57, 2267-2270.
- Yoo, S., Ryu, G., and Choo, J.F. (2015). Evaluation of the effects of high-volume fly ash on the flexural behavior of reinforced concrete beams. *Construction and Building Materials*, 93, 1132–1144.
- Youm, K., Moon, J., Cho, J., and Kim, J.J. (2016). Experimental study on strength and durability of lightweight aggregate concrete containing silica fume. *Construction and Building Materials*, 114, 517–527.
- Zhang, X., Wang, L., Zhang, J., Ma, Y., and Liu, Y. (2017). Flexural behavior of bonded post-tensioned concrete beams under strand corrosion. *Nuclear Engineering and Design*, 313, 414–424.
- Zhang MH. Microstructure and properties of high strength lightweight concrete. Trondheim (Norway): Norwegian Institute of Technology. Division of Building Materials; 1989.