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ABSTRACT 

This thesis presents the design and development a flexible surface acoustic 

wave (SAW) gas sensor. Fabrication and characterization of SAW device, 

nanostructure material, and the gas sensing performance were examined. The 

flexibility of the SAW substrate is highly essential due to the uneven and curved 

surface. The investigated structure was based on three basic conditions of the device, 

which are flat, bend in, and bend out. Based on the conditions, the devices were tested 

for the electrical and gas sensing performances to hydrogen (H2) gas. The design of 

the flexible SAW gas sensor was completed using a simulation process prior to 

fabrication. The SAW propagation and properties were investigated using finite 

element method (FEM) simulation. It was observed that at bending inward radius of 

1.5 μm, the total displacement and frequency shift increased by 24.5% and 89%, 

respectively. The simulated nanostructure sensing elements have improved the 

sensitivity of the gas sensor by 85.5%. For the sensing element, simulation was 

conducted to investigate the graphene oxide effect on bending (warping) surface 

towards gas. From this study, a further increase of warping angle from 180° to 270° 

has enhanced the binding energy. The sensor was fabricated by depositing a 

piezoelectric layer, interdigitated electrodes, and nanostructured material. Zinc oxide 

(ZnO) was deposited as the piezoelectric layer using radio frequency (RF) magnetron 

sputtering with different parameters and characterised using atomic force microscopic 

(AFM), field emission scanning electron microscopy (FESEM), and x-ray diffraction 

(XRD). Based on the investigation of material characteristics and surface morphology 

of ZnO sputtered on polyimide (PI), higher RF power increased the deposition rate at 

38% from 150 to 200 W, meanwhile at 300 W, the deposition rate spiked to 67%. The 

S21 measurement provided insertion loss (IL) and frequency response of the SAW 

device. The thickness of piezoelectric thin film significantly affected the frequency 

response and phase velocity of the acoustic wave. The measured response of graphene 

nanosheet flexible SAW sensor at room temperature was taken. The radii of curvature 

were defined as 10 mm for bend in and bend out. The frequency shift increased in the 

bend in condition compared to bend out and flat conditions. The graphene oxide 

nanosheet sensitive element conductivity increased when electron was injected into 

the device surface since H2 is a reducing gas. Therefore, the centre frequency of the 

acoustic wave velocity decreases significantly when the sensor exposed to the H2 gas. 

The SAW gas sensing performance of the investigated nanostructure materials 

provides a way for further investigation to future commercialisation of these types of 

sensors for different types of flexible substrates 
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ABSTRAK 

Dalam tesis ini, kajian adalah berkisar tentang penderia gas gelombang 

permukaan akustik (SAW) yang fleksibel. Pembikinan dan pencirian peranti SAW, 

bahan struktur nano serta prestasi tindak balas gas telah diperiksa. Kebolehlenturan 

substrat SAW sangat penting kerana permukaan yang tidak rata dan melengkung. 

Struktur yang dikaji adalah berdasarkan tiga keadaan asas peranti iaitu rata, 

membengkok masuk, dan membengkok keluar. Berdasarkan keadaan tersebut, prestasi 

elektrik dan tindak balas gas penderia diuji terhadap gas hydrogen (H2). Reka bentuk 

penderia SAW gas yang fleksibel dilengkapkan menggunakan proses simulasi 

sebelum pembikinan. Perambatan dan sifat gelombang penderia kemudian dikaji 

dengan menggunakan simulasi FEM. Didapati bahawa pada radius membengkok 

masuk sebanyak 1.5 μm, jumlah anjakan dan perbezaan frekuensi masing-masing 

meningkat sebanyak 24.5% dan 89%. Elemen tindak balas struktur nano telah 

meningkatkan kepekaan penderia gas sebanyak 85.5%. Untuk unsur deria, simulasi 

dilakukan untuk menyiasat kesan grafena oksida pada lengkungan (lenturan) 

permukaan terhadap gas. Dari kajian ini, peningkatan lebih lanjut dalam sudut 

melengkung dari 180° hingga 270° telah meningkatkan tenaga pengikat. Penderia 

dibikin dengan mendeposit lapisan piezoelektrik, elektrod terpadu dan bahan 

berstruktur nano. Zink oksida (ZnO) didepositkan sebagai lapisan piezoelektrik 

menggunakan percikan magnetron frekuensi radio (RF) dengan parameter yang 

berbeza dan dicirikan menggunakan mikroskopik daya atom (AFM), mikroskop 

elektron pengimbas pancaran medan (FESEM) dan pembelauan sinar-x (XRD). 

Berdasarkan penyiasatan ciri-ciri bahan dan morfologi permukaan ZnO terhadap 

poliimida (PI), daya RF yang lebih tinggi meningkatkan kadar pemendapan pada 38% 

dari 150 hingga 200 W, manakala pada 300 W kadar pemendapan melonjak menjadi 

67%. Pengukuran S21 memberikan kehilangan sisipan (IL) dan tindak balas frekuensi 

terhadap peranti SAW. Ketebalan filem piezoelektrik memberi kesan terhadap tindak 

balas frekuensi dan halaju fasa gelombang akustik. Tindak balas yang diukur pada 

suhu bilik penderia SAW fleksibel kepingan nano diambil. Jejari kelengkungan 

didefinisikan sebagai 10 mm untuk membengkok masuk dan membengkok keluar. 

Peralihan frekuensi meningkat dalam keadaan membengkok masuk berbanding 

keadaan membengkok keluar dan rata. Kekonduksian elemen sensitif grafena oksida 

meningkat apabila elektron disuntik ke permukaan peranti kerana H2 adalah gas 

pengurang. Oleh itu, frekuensi pusat halaju gelombang akustik menurun dengan ketara 

apabila penderia didedahkan dengan gas H2. Prestasi penderia gas SAW berkaitan 

bahan struktur nano yang dikaji membuka ruang untuk kajian lanjut untuk 

pengkomersialan jenis penderia berbeza terhadap substrat kebolehlenturan berbeza.. 
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1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction  

The purpose of this chapter is to provide a general overview and 

introduction for the research presented in this PhD thesis. This chapter addresses 

the research motivations, problem statement, objectives, scopes and the 

significance to knowledge. 

 

1.2 Problem Background 

One of the most significant sources of air pollution is electricity generation, 

which is caused by the fossil fuels used by power plants. Since hydrogen (H2) is 

renewable, plentiful, and reliable, as well as having zero emissions, interest in using it 

as a clean energy source or a fuel gas has risen dramatically in order to reduce fossil 

fuel usage. H2 is also widely used in a variety of industries for instance industries to 

make ammonia, methanol and rocket fuel and also as a replacement for natural gas in 

warming homes and powering hot water heaters. 

 

 However, the explosive nature of H2 gas above 4% concentration makes it 

highly dangerous to store, transport and use [1]. Further, the small size gas molecules 

of H2 are prone to leak through the smallest possible holes and cracks. Hence, the 

detection of H2 gas becomes essential even at trace levels. 

 

Gas sensors are applied for facilitating the safe use of H2 in, for example, fuel 

cell and H2 fueled vehicles. New sensor developments, aimed at meeting the 

increasingly stringent performance requirements in emerging applications are 

presented. 

 



 

2 

Flexible and wearable sensor application potential has been great field of 

interest for the past several decades. The development of flexible gas sensing systems 

is raising a high interest among the scientific community due to their potential 

applications in wear-able and portable electronic products, in RFID tags. Moreover, 

the techniques used in the flexible gas sensing industry, such as screen and inkjet 

printing, enable the large-scale fabrication of low-cost effective systems [2]. Many 

reports have been published regarding the growth of gas sensor market.  

 

 

1.3 Problem Statement 

There are various methods of gas detection types can be found in several 

papers.  In the past 20 years, there was vast development of Surface Acoustic Wave 

(SAW) as a sensor with numerous applications ranging from very basic home 

appliances, advanced medical devices, automotive industry to space vehicles [3]–[5]. 

 

H2 gas is used as reducing agent and as a carrier gas in the process of 

manufacturing semiconductors. It has been increasingly known as a clean source of 

energy or a fuel gas. Based on [6] leaking of hydrogen gas must be avoided as it will 

lead to explosion if mixed with air in ratio of 4.65-93.9 vol.%. Therefore, fast response 

and accurate hydrogen detector before the explosive concentration and room 

temperature still a great problem. 

 

SAW gas sensors are very attractive based on their excellent sensitivity due to 

changes of boundary conditions for propagating acoustic Rayleigh waves. Change in 

physical and chemical properties can be easily detected as long as the thickness of 

sensitive layer is less than the wavelength of the surface wave.  

 

Most of the SAW sensor are made on rigid substrates are not suitable for curved 

surface which are essential for flexible sensing devices. In 2005, before the flexible 

SAW sensors were proven to be utilized as temperature and humidity sensor, 

Preethichandra et. al [7], [8] have shown that flexible SAW sensor has an ability to 

measure bending curvature. Preethichandra et. al have fabricated SAW sensor on a 

flexible Polyvinylidine Diflouride (PVDF) substrate in order to obtain bending 
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curvature which will be use in a high-accuracy tele-operational robotic hand. They 

found that the output voltage of the SAW sensor is proportional to the curvature.  

Based on this ability, they suggests the possibility of devising a dynamic surface 

profile sensor in which has a lot of scope in biomedical applications.  

 

Moreover, studies investigated by Tseng et al. and Ad Park et al.  [9], [10] show 

the effect of bending on the electrical and optical characteristics of ZnO thin film. The 

result shows the durability of the thin film on flexible polymer produces good electrical 

stability and resistivity changes gradually depends on bending radius. However, there 

are not many research found for flexible SAW gas sensor due to difficulties in 

achieving high quality of piezoelectric thin film.  

 

This is due dimension of a flexible substrate with various surface adhesion 

which possess low surface energies, this will cause difficulties in achieving the growth 

of high quality piezoelectric thin film. Most critical part is when the fabricate of 

flexible SAW devices are it is challenging to obtain high c-axis oriented, low surface 

roughness piezoelectric films with a good piezoelectric constant and this may cause 

by several factors. An effective approach of manufacture flexible SAW is lack causes 

complications in exploitation of flexible devices. Therefore, the main goal of this 

research is to fabricate sensor with improved quality of piezoelectric thin film. 

 

 

1.4 Research Objectives 

The objectives of this research are:  

1. To study the propagation and analyse the properties of SAW gas sensor with 

graphene thin film and nano-structure sensing element via simulation using 

Finite Element Method. 

2. To investigate the material characteristics and surface morphology of ZnO thin 

film that sputtered on polyimide with different sputtering parameters. 

3. To investigate in detail the basic behaviour (such as electrical performance, 

reflection (S11) and transmission (S21) of SAW device on flexible substrate. 

4. To examine the effect of bending towards the performance of SAW gas sensor. 
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1.5 Research Scopes  

In this project, a flexible Surface Acoustic Wave hydrogen gas sensor is fabricated. 

The design of flexible SAW gas sensor completed using simulation process prior to 

fabrication via COMSOL Multiphysics. Based on simulation, there are several 

analyses which include eigenfrequency analysis, total displacement velocity and 

frequency shift. The analysis is important to relate performance with the fabricated 

sensor. Next, the fabrication of the sensor realized by depositing piezoelectric layer 

using RF sputtering. Interdigitated electrodes for the sensor were deposited using print 

screen technique. While sensing material realized by drop casting method. All of the 

fabricated materials have been characterized the morphology, crystallography, 

orientation and film thickness using based on XRD, AFM and FESEM to observe the 

quality and performance. The nanostructured material deposited onto the active area 

of SAW device to increase the volume to surface ratio, subsequently will improve the 

sensor’s sensitivity. The flexibility of the SAW substrate is highly essential due to the 

uneven and curved surface. Experimental investigation and data evaluation will be 

carried out to proof the ability a flexible SAW sensor for hydrogen gas sensing 

performance.  

 

1.6 Significance and Original Contribution of This Study 

This study significantly contributes to the optimizing the growth of zinc oxide 

(ZnO) and its role as a piezoelectric on the flexible substrate. It also to study about the 

deposition morphology, crystallography, orientation and film thickness of ZnO effect 

on the SAW transmission characteristics. Furthermore, implementing the print screen 

method for IDT and effect of bending the SAW gas sensor.   

 

1.7 Thesis Structure and Organization 

The thesis is primarily devoted to this topic and is divided as follow: 

 
 

• Chapter 2 presents the literature review on flexible SAW gas sensor, 

operating principles and mechanisms. This chapter also includes the 



 

5 

past studies on rigid and flexible sensors. 

• Chapter 3 discusses in detail the simulation of flexible SAW gas 

sensor using COMSOL Multiphysics to provide the preliminary 

results on the sensor functionality. 

• Chapter 4 explains the fabrication steps for flexible SAW gas 

sensor which involving the deposition of piezoelectric thin film, the 

metallization layer deposition and the implementation of the 

sensing element. 

• Chapter 5 characterizes the flexible SAW gas sensor piezoelectric 

thin film, metallization and sensing element by employing X-Ray 

Diffraction (XRD), Field Emission Scanning Electron Microscopy 

(FESEM). 

• Chapter 6 focuses on the experimental gas sensing system design 

which presents the testing of the flexible SAW gas sensor on 

bending position and measuring the response of the sensor toward 

the gas. 

• Chapter 7 concludes the project work based on the results drawn 

and future works that may be applied.
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