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ABSTRACT 

Energy harvesting has become pivotal for wearable electronics, which require 

a constant power supply. Recent research has paved the way for the development of a 

wide variety of self-powered devices that harvest energy from the human body. 

Thermoelectric generators (TEGs) facilitate maintenance-free sustainable energy 

transduction, making them an enticing and feasible option for harvesting energy. 

Notwithstanding, their energy conversion process suffers because of inadequate design 

and rigidity owing to the use of brittle and toxic inorganic material-based 

thermoelements, making them inappropriate for energy harvesting from the human 

body. To address the issues, flexible wearable TEGs have been developed by 

integrating flexible conducting polymer based thermoelements. Nonetheless, their 

performance suffered significantly due to the deficient TEG designs, where 

thermoelements were integrated into the lateral layout with cross-plane heat flow 

direction. The design and implementation of such lateral TEGs is challenging for 

harvesting energy from the human body, where the temperature gradient (ΔT) lies 

between the body heat and the ambient temperature. Thus, developing a vertical 

structured TEG with flexible thermoelements with high deformability is a requisite. In 

this thesis, novel wearable TEGs with vertically aligned architecture of 

thermoelements based on flexible organic poly(3,4-ethylenedioxythiophene): 

polystyrene sulfonate (PEDOT:PSS) and single-wall carbon nanotube (SWCNT) films 

were designed and fabricated. Finite element analysis was performed to analyze the 

heat dissipation through the thermoelements as well as to optimize their length for the 

highest ΔT and enhanced output performance. Thermoelements were prepared via 

solution-processing and drop-cast techniques, while the overall architectures of the 

TEGs were developed through low-cost 3D printing followed by a sacrificial molding 

technique. Flexible polydimethylsiloxane was used to develop TEG structures and 

encapsulation layers for all the thermoelements. The structures possess a high degree 

of flexibility and can sustain a maximum bending angle of 52 degrees without 

significantly changing their electrical parameters. In addition, this thesis examined the 

effects of acid-based post-treatments and polyethylenimine concentration on the 

performance of the thermoelectric properties of PEDOT:PSS and SWCNT films, 

respectively. As a proof of concept, a TEG was initially developed using five pairs of 

p-type PEDOT:PSS film and n-type aluminum wire-based thermoelements that 

produced an open-circuit voltage (Voc) and output power density (Pd) of 1.46 mV and 

1.5 nWcm-2, respectively, at a ΔT of 11.27 °C from the wrist. Likewise, another TEG 

was composed of five pairs of p-type PEDOT:PSS and n-type SWCNT film-based 

thermoelements that generated a Voc and Pd of 1.75 mV and 10.17 nWcm-2, 

respectively, at a ΔT of 11.24 °C from the wrist. The proposed design approaches 

represent a significant step toward developing next-generation flexible organic TEG 

that could pave the way for self-powered wearable electronics in a sustainable way by 

utilizing the body heat. 
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ABSTRAK 

Penjanaan tenaga telah menjadi element penting untuk peranti elektronik boleh 

pakai yang memerlukan bekalan kuasa yang berterusan. Penyelidikan baru-baru ini 

telah membuka jalan kepada pembangunan pelbagai jenis peranti berkuasa sendiri 

yang menjana tenaga daripada haba badan manusia. Penjana termoelektrik (TEGs) 

menyediakan transduksi tenaga mampan tanpa penyelenggaraan, menjadikannya 

pilihan yang menarik dan boleh laksana untuk menjana tenaga. Walau bagaimanapun, 

proses penukaran tenaga ini menghadapi masalah pada reka bentuk dan ketegaran yang 

terhad disebabkan penggunaan termoelemen berasaskan bahan tidak organik yang 

rapuh dan toksik, menjadikannya tidak sesuai untuk pengunaan penjanaan tenaga 

daripada tubuh manusia. Untuk mengatasi masalah ini, TEG dibangunkan dengan 

mengunakan polimer pengalir elektrik fleksibel. Namun begitu, prestasi TEG terjejas 

dengan ketara akibat kelemahan reka bentuk TEG, di mana termoelemen telah 

diintegrasi ke dalam susun atur datar dengan arah aliran haba satah silang. Reka bentuk 

dan pelaksanaan TEG datar sangat mencabar, terutamanya untuk menjana tenaga 

daripada haba badan manusia, di mana perbezaan suhu (ΔT) terletak di antara suhu 

badan dan suhu persekitaran. Oleh itu, pembangunan peranti TEG menegak 

mengunakan termoelemen polimer pengalir yang fleksibel amat diperlukan. Dalam 

tesis ini, TEG boleh pakai novel yang dilengkapi dengan termoelemen dijajar menegak 

berdasarkan organik fleksibel poli(3,4-etilena-dioksitiofen):polistirena sulfonat 

(PEDOT:PSS) dan tiub nano karbon dinding tunggal (SWCNT) telah direka bentuk 

dan dihasilkan. Analisis unsur terhingga telah dilakukan untuk menganalisis pelesapan 

haba melalui termoelemen serta untuk mengoptimumkan panjang struktur 

termoelemen untuk mencapai ΔT dan prestasi keluaran yang baik. Termoelemen telah 

disediakan melalui pemprosesan larutan dan teknik drop-cast, manakala struktur 

keseluruhan TEGs dibangunkan melalui percetakan 3D kos rendah diikuti dengan 

teknik pengacuan sementara. Bahan polydimethylsiloxane yang fleksibel digunakan 

untuk membangunkan struktur TEG dan lapisan enkapsulasi untuk semua 

termoelemen. Struktur TEG mempunyai tahap fleksibiliti yang tinggi dan boleh 

mengekalkan sudut lentur maksimum 52 darjah tanpa mengubah parameter 

elektriknya dengan ketara. Di samping itu, tesis ini juga mengkaji kesan pasca rawatan 

berasaskan asid dan kepekatan bahan polietilenimin terhadap prestasi sifat filem 

termoelektrik PEDOT:PSS dan SWCNT. Sebagai bukti konsep, TEG pada mulanya 

dibangunkan menggunakan lima pasang filem PEDOT:PSS jenis-p dan termoelemen 

berasaskan wayar aluminium jenis-n yang menghasilkan voltan litar terbuka (Voc) dan 

ketumpatan kuasa keluaran (Pd) masing-masing sebanyak 1.46 mV dan 1.5 nWcm-2, 

pada ΔT 11.27 °C dari pergelangan tangan. Dengan cara yang sama, satu lagi TEG 

yang terdiri daripada lima pasang PEDOT:PSS jenis-p dan termoelemen berasaskan 

filem SWCNT jenis-n yang menghasilkan Voc dan Pd masing-masing 1.75 mV dan 

10.17 nWcm-2, pada ΔT 11.24 °C dari pergelangan tangan. Pendekatan reka bentuk 

yang dicadangkan ini merupakan langkah penting ke arah membangunkan TEG 

organik fleksibel generasi akan datang bagi peranti elektronik boleh pakai berkuasa 

sendiri dengan cara yang mampan dengan menggunakan haba badan.   
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Schematic representation of thermoelement to be measured 

and (b) actual setup of the measurement. (c) Dimensions of 

the PEDOT:PSS and SWCNT films 93 

Figure 5.5 Slope technique for determining the Seebeck coefficient 

values. (a) Thermoelectric voltage generated by a 

PEDOT:PSS film as a function of temperature gradient. (b) 

Thermoelectric voltage generated by SWCNT films as a 

function of temperature gradient 94 

Figure 5.6 Thermoelectric properties of the synthesized PEDOT:PSS 

and SWCNT films. (a) Electrical conductivity, (b) Seebeck 

coefficient, and (c) power factor of PEDOT:PSS films after 

DMSO, HNO3 and H2SO4 treatments. Effects of PEI 

concentration on (d) electrical conductivity, (e) Seebeck 

coefficient, and (f) power factor of SWCNT films 95 

Figure 5.7 Charecterization results of the fabricated flexible wearable 

TEG. (a) Voc as a function of ΔT and thermoelement pairs. 

(b) Output power as a function of load and ΔT. (c) 
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Figure 5.8 Demonstration of energy harvesting using the developed 

TEG attached to the wrist. (a) Infrared thermal image of the 

TEG along with the wrist. (b) A photo showing the 

developed flexible TEG mounted on the wrist and voltage 
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TEG from the wrist. (e) Flexibility and (f) resistance 

deviation as a function of bending angle of the TEG 99 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Motivation 

Over the last few decades, major transitions in the microelectronic industry, 

including size reduction, low-power consumption, and intensifying functionality, have 

triggered the development of various electronic devices. In particular, wearable 

technologies and biomedical devices have attracted considerable interest in recent 

times owing to their broad applications in medical diagnostics, precision therapy, and 

real-time health tracking, such as heart rate and blood pressure monitoring [1-3]. In 

addition, the convergence of these devices with the Internet-of-Things has recently 

gained significant attention. The convergence allows the devices to be equipped with 

wireless connectivity that directly transmits data into a cloud-based diagnostic server 

for further analysis and clinical evaluation. In particular, these devices could monitor 

an activity continuously using real-time data, thus having the potential to greatly 

minimize travel costs and the time needed for long-term monitoring [4, 5]. As an 

example, a cardiovascular disorder called arrhythmia prevents the heart from pumping 

enough oxygenated blood into and deoxygenated blood away from peripheral tissues, 

resulting in permanent damage to brain cells, congestive heart failure, and stroke [6, 

7]. Continuous long-term monitoring of the heart is therefore essential for the 

prevention of this disease. 

Self-powered devices facilitate the continuous monitoring of real-time data 

over a longer period of time; thus, power consumption is a crucial aspect. Figure 1.1 

shows several vital sensors whose power consumption is within the range of nW to 

mW [8-12]. The power requirements of most of these devices are provided by 

conventional lithium-ion batteries due to their high Pd and longevity. In addition to 

these, the latest batteries, such as metal-sulfur [13], sodium [14], and environmental 
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friendly aqueous zinc batteries [15], which are flexible and wearable, have also been  

developed as power sources for various electronic devices. However, most of these 

batteries either need to be replaced or recharged periodically. Although the present-

day high-capacity batteries are compact and lightweight, and can provide sufficient 

energy to these devices, nonetheless, their versatility has been substantially reduced 

due to their restricted battery size and lifespan. Consequently, continuous power 

supply has become a major constraint for these devices.  

On the other hand, promising alternative approaches have been developed to 

transform small-scale ambient energies, such as heat, mechanical vibration, or 

movement, into electrical power by means of ubiquitous miniaturized renewable   

energy transducers, including piezoelectric generators (PEGs) [16-18], triboelectric 

 

Figure 1.1  A schematic illustration of various wearable sensors capable of 

measuring physiological signals in the human body along with their power 

requirements 
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nanogenerators (TENGs) [19-21], and thermoelectric generators (TEGs) [22-24]. 

These transducers can either be utilized as an extension to batteries to provide a long-

term power supply or as a sole power supply. Table 1.1 presents a summary and 

comparison of the performance of these energy harvesting techniques. All these 

techniques have offered numerous advantages features, and are thus employed in 

several applications. Despite this progress, the use of such energy harvesters in a 

variety of wearable technologies is still in its infancy, with numerous challenges ahead. 

For example, PEG is capable of transmitting power across a wide range of frequencies 

and amplitudes without generating heat during operation. However, the majority of 

high-performance piezoelectric materials (such as lead zirconate titanate and barium 

zirconate titanate) are brittle and toxic, limiting their use in wearable flexible devices. 

TENG, on the other hand, offers high output performance as well as great flexibility; 

however, integration with wearable devices necessitates device miniaturization. 

Moreover, the performance of TENG devices is limited by the scarcity of triboelectric 

materials used in their fabrication as well as by the high abrasion rate of the materials.  

Alternatively, among the energy transducers, TEGs are envisaged as a type of 

heat energy transducer with unique traits that make them attractive for a variety of 

applications. More precisely, since heat is one of the most widely accessible sources 

of energy that is also produced by the human body, TEGs hold advantages for 

harvesting energy and powering wearable technologies and biomedical devices 

without requiring any maintenance. Moreover, a wide range of non-poisonous highly 

flexible thermoelectric materials is also available. The efforts to reduce or eliminate 

the reliance on batteries through the use of body-worn TEG may thus intensify in 

tandem with the advancement of technologies to improve the continuous functionality 

of such devices. 

1.2 Problem Statements and Research Gaps 

Harvesting energy from the human body with TEGs has encountered several 

difficulties, as their ttemperature gradient (ΔT) is low due to the low human body heat.  



4 

 

 

T
ab

le
 1

.1
 

M
in

ia
tu

ri
ze

d
 e

n
er

g
y
 h

ar
v

es
ti

n
g
 t

ec
h
n
iq

u
es

 a
n

d
 t

h
ei

r 
ch

ar
ac

te
ri

st
ic

s 

E
n

er
g
y
 

H
a
rv

es
ti

n
g
 

T
ec

h
n

iq
u

es
 

W
o
rk

in
g
 

M
ec

h
a
n

is
m

 

 

E
n

er
g
y
 s

o
u

rc
es

 

 

A
d

v
a
n

ta
g
eo

u
s 

 

D
is

a
d

v
a
n

ta
g
eo

u
s 

P
E

G
 

[2
5
-2

9
] 

P
ie

zo
el

ec
tr

ic
 

ef
fe

ct
 

C
ar

d
ia

c 
m

o
ti

o
n

, 
sa

li
v
a 

sw
al

lo
w

in
g

, 
ca

ro
ti

d
 a

rt
er

y
 

p
u
ls

e,
 a

n
d

 v
ib

ra
ti

o
n

 o
f 

th
e 

p
ac

em
ak

er
  

N
o

 h
ea

ti
n
g

 i
m

p
ac

t 
w

h
en

 t
h

e 
d

ev
ic

e 
is

 i
n
 

u
se

, 
fa

st
 r

es
p

o
n

se
, 

ti
n

ie
r 

si
ze

, 
co

m
p
ac

t 

st
ru

ct
u

re
, 

h
ig

h
ly

 
se

n
si

ti
v

e 
to

 
ap

p
li

ed
 

st
ra

in
, 

p
ro

v
id

es
 r

ea
so

n
ab

le
 P

d
, 

an
d

 h
as

 

g
re

at
er

 l
if

e 
cy

cl
e 

H
ig

h
ly

 
ef

fi
ci

en
t 

p
ie

zo
el

ec
tr

ic
 

m
at

er
ia

ls
 a

re
 p

o
is

o
n
o
u
s,

 b
ri

tt
le

, 
an

d
 

ex
p

en
si

v
e;

 
n

ee
d

 
h
ig

h
-t

h
er

m
al

 

p
ro

ce
ss

in
g

 
fo

r 
th

e 
in

te
g
ra

ti
o

n
 

o
f 

p
ie

zo
 m

at
er

ia
ls

 a
n

d
 l

es
s 

ef
fi

ci
en

t 
at

 

lo
w

-f
re

q
u
en

cy
 

T
E

N
G

 

[3
0
-3

3
] 

E
le

ct
ro

st
at

ic
 

in
d
u
ct

io
n
 a

n
d
 

co
n
ta

ct
 

el
ec

tr
if

ic
at

io
n
 

C
ar

d
ia

c 
m

o
ti

o
n

, 
b
lo

o
d

 

fl
o
w

, 
h

u
m

an
 b

o
d
y

 m
o

ti
o

n
, 

fi
n
g

er
 

fr
ic

ti
o

n
, 

an
d
 

w
in

d
 

b
lo

w
s 

It
 

ca
n
 

b
e 

u
ti

li
ze

d
 

at
 

h
ig

h
 

fr
eq

u
en

cy
, 

p
ro

v
id

es
 
d
ec

en
t 

P
d
, 

h
as

 
a 

h
ig

h
 
en

er
g

y
 

co
n

v
er

si
o

n
 
ra

te
, 

ea
si

ly
 
sc

al
ab

le
, 

h
ig

h
ly

 

b
en

d
ab

le
, 

li
g

h
tw

ei
g

h
t,

 a
n

d
 m

ai
n

te
n

an
ce

-

fr
ee

 

It
s 

p
o

la
ri

ty
 a

n
d

 i
n

d
u
ce

d
 c

h
ar

g
e 

ar
e 

h
ig

h
ly

 d
ep

en
d
en

t 
o

n
 t

h
e 

m
at

er
ia

ls
, 

an
d

 
tr

ib
o

el
ec

tr
ic

 
m

at
er

ia
ls

 
h

av
e 

a 

h
ig

h
 a

b
ra

si
o

n
 r

at
e 

T
E

G
 

[3
4
-3

6
] 

S
ee

b
ec

k
 

ef
fe

ct
 

H
u
m

an
 b

o
d

y
 h

ea
t 
an

d
 s

o
la

r 

ra
d
ia

ti
o

n
 

It
 h

as
 n

o
 m

o
v

in
g
 p

ar
ts

, 
li

g
h

tw
ei

g
h
t,

 h
ig

h
 

re
li

ab
il

it
y

, 
ea

si
ly

 
sc

al
ab

le
, 

ea
sy

 
to

 

in
te

g
ra

te
 w

it
h

 o
th

er
 d

ev
ic

es
, 
an

d
 r

eq
u

ir
es

 

lo
w

-c
o

st
 f

ab
ri

ca
ti

o
n

 t
ec

h
n
iq

u
es

 

It
 r

eq
u
ir

es
 a

 t
h

er
m

al
 g

ra
d
ie

n
t 

an
d

 i
s 

le
ss

 e
ff

ic
ie

n
t 

at
 c

o
n

v
er

ti
n

g
 e

n
er

g
y

 

  



5 

 

To overcome this challenge, simultaneous advances in the design of thermoelement, 

heat flow direction, as well as thermoelectric materials are required [37, 38]. For 

harvesting energy from the human  body, both vertical and lateral-structured wearable 

TEGs have been widely used. Thermoelements are positioned perpendicularly to the 

substrate in vertically structured TEGs, and the heat flows in a cross-plane direction. 

In contrast, thermoelements in lateral structures are placed parallel to the substrate with 

a lateral heat flow direction [37]. A limited number of papers have been reported on 

vertically structured TEGs with all inorganic thermoelectric materials, notably with 

bismuth telluride (Bi2Te3) [38, 39] and antimony-telluride [40, 41] for energy 

harvesting from the human body because of their high performance at near-room 

temperatures. Regrettably, the practical applications of these flexible TEGs with such 

thermoelements for harvesting energy from the human body have been impeded on 

account of the toxicity and hazardous nature of the materials used. Moreover, inorganic 

materials are very expensive and require a dedicated fabrication process to achieve the 

desired thermoelement shape for incorporation into a flexible structure, which is a vital 

requirement for wearable devices. 

To address these issues, a viable contemporary approach is to incorporate 

organic materials as thermoelements into TEGs, which could alleviate these problems 

for low-temperature thermoelectric applications. Organic materials exhibit high 

flexibility and an imponderous nature, and they require easy solutions and fabrication 

processes to make them into a versatile form. Among various organic materials, 

conducting polymers, notably poly(3,4-ethylenedioxythiophene):polystyrene 

sulfonate (PEDOT:PSS), and carbon nanomaterial composites, notably, single-wall 

carbon nanotube (SWCNT), have shown great potential for thermoelectric 

applications due to their high tenable electrical conductivity (σ) and Seebeck 

coefficient (S) values, and stable chemical properties [42]. Moreover, the simple 

doping process enables them to tune the properties of the material to n- and p-type 

with a high thermoelectric property value. Realizing these benefits, a limited number 

of studies have synthesized and utilized PEDOT:PSS film as a p-type thermoelement 

and fabricated flexible TEGs for harvesting energy from the human body, which is 

typically laterally structured with an in-plan heat flow [43]. 
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Even though the preceding studies showed significant flexibility in terms of 

the TEG structure and appreciable output performance with organic materials, such as 

PEDOT:PSS and SWCNT, their performance suffered significantly due to the low ΔT 

because of the laterally placed thermoelements in the TEGs. In addition, the TEGs 

were designed in such a way that they were not flexible enough and arduous to 

incorporate into the human body. Furthermore, none of the studies optimized the 

length of the PEDOT:PSS and SWCNT thin film thermoelements, which was required 

to achieve a high Po, Pmax, and an elevated Pd. As a result, it is desirable to fabricate a 

flexible wearable TEG with optimized vertically aligned thermoelements to ensure 

better heat transfer capability that can fit well with the human body. 

1.3 Research Objectives 

Wearable TEGs combined with thermoelements made of flexible organic 

materials have the potential to harvest energy from the human body. They have 

numerous advantages, including instantaneous energy conversion without having any 

moving parts, high reliability and stability, and inexpensive fabrication costs. Herein, 

the purpose of this research is to develop TEGs with vertically aligned organic 

thermoelements based on PEDOT:PSS and SWCNT thin films and characterize their 

performances. This design concept intends to maximize heat dissipation through 

thermoelements, enhance ΔT and output performance, while also alleviating the issue 

of wearability. To be more specific, the following are the research objectives to be 

achieved through this study: 

(a) To design and synthesize PEDOT: PSS and SWCNT thin films to achieve 

optimal length with highest ΔT for thermoelectric energy harvesting from the 

human body.  

(b) To design and fabricate a novel flexible wearable TEG comprised of vertically 

aligned architecture of PEDOT:PSS thin film thermoelements. 
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(c) To design and fabricate a novel flexible wearable TEG comprised of vertically 

aligned architecture of PEDOT:PSS and SWCNT thin film thermoelements. 

(d) To experimentally characterize the performance of synthesized PEDOT:PSS 

and SWCNT thin films and the fabricated flexible wearable TEGs, as well as 

validate them for thermoelectric energy harvesting from the human body.  

1.4 Research Scopes 

The purpose of this research is to design and fabricate flexible wearable TEGs 

integrated with vertically aligned PEDOT:PSS and SWCNT film thermoelements. In 

this study, COMSOL Multiphysics® was used to perform finite element analysis 

(FEA) on the PEDOT:PSS and SWCNT thin films in order to determine their optimal 

length in order to attain the maximum ΔT for thermoelectric energy harvesting from 

the human body. Throughout the simulation, the electrical properties of the 

PEDOT:PSS and SWCNT films were assumed to be constant with increasing 

temperature. Moreover, no convection or heat radiation losses to the environment were 

accounted for on all surfaces of the PEDOT:PSS and SWCNT films. In terms of the 

synthesis of the PEDOT:PSS and SWCNT thin films, this study followed standard 

techniques, including solution-processing and drop-cast techniques. Meanwhile, 

SolidWorks®, 3D printing and sacrificial molding techniques were utilized to design 

and develop the TEG structures with the desired dimensions based on 

polydimethylsiloxane (PDMS). 

To characterize the morphological properties of the PEDOT:PSS film, a 

scanning electron microscope (SEM) was utilized. On the other hand, a field-emission 

scanning electron microscope (FESEM) was used to characterize the morphological 

properties of the SWCNT film, inspect their homogeneity, and determine the diameter 

of specific nanotube branches or bundle networks. A laboratory-built measurement 

setup was used for characterization of the synthesized PEDOT:PSS and SWCNT thin 

films, as well as the fabricated TEGs, and to validate the performance of TEGs for 

thermoelectric energy harvesting from the human body. The measurement setup 
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includes an infrared thermal camera, a hot plate, an aluminum heatsink, a computer, 

and a digital multimeter. The infrared images of the temperature distribution profile 

over the TEGs were captured to determine their ∆T to ease the characterization 

process.  

1.5 Research Significances 

Wearable electronics, which include electronic skins, smart band-aids, and 

health monitoring sensors, have emerged as a prevalent category of devices in today's 

technological landscape. These devices are widely utilized to monitor human 

physiological conditions non-invasively, allowing for early detection of health 

complications and the provision of tailored medical treatment. Regrettably, the 

absence of a stable, compact power supply is a major concern for most of the devices. 

While renewable energy sources have the potential to be used as a way to solve the 

issue, nonetheless, on-board sustainable energy harvester-based electronic devices are 

exceedingly rare due to their complex operating mechanisms, size, and high cost. To 

address this issue of constant power, TEG has been considered as a promising 

sustainable option that has the potential to replace a battery entirely or work in 

conjunction with conventional batteries to power a variety of wearable devices. This 

research predominantly discusses the detailed TEG working mechanism to generate 

useable power and its optimization factors, which include both device configurations 

and novel breakthrough thermoelectric materials that are pertinent to various 

applications. In addition, this research delves into the details of promising inorganic 

and organic materials with thermoelectric properties, including S, σ, κt, and ZT. More 

precisely, this research investigated ways to increase power generation via 

architectural solutions and thermoelement length optimizations. The proposed flexible 

wearable TEG with vertically aligned PEDOT:PSS and SWCNT thin film 

thermoelements overcomes the limitation of continuous power generation. Since the 

thermoelements were constructed using inexpensive fabrication techniques, the overall 

cost of the TEGs was also reduced. Eventually, the low-cost TEGs could contribute 

significantly to the development of sustainable energy harvesting for wearable 

electronics via body heat, resulting in self-powered devices.  
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1.6 Thesis Outlines 

This thesis is comprised of six chapters, each of which makes a significant 

contribution to the overall thesis. Chapter 1 outlines the background of the study, 

including the need for self-powered wearable and biomedical devices, as well as the 

potential for energy harvesters, particularly TEG, to power such devices. In addition, 

the problem statements are presented, followed by the objectives, scopes, and potential 

impacts of the research. 

 Chapter 2 begins with an overview of the energy harvesters, followed by the 

fundamental working mechanism of the TEG and its associated equations. This chapter 

included a comprehensive and in-depth review of the literature regarding the 

classification of TEGs based on the heat flow and layout of thermoelement pairs. 

Moreover, the previous work on both high-performance inorganic and organic 

thermoelectric materials is also reviewed. The chapter concludes with a discussion of 

the challenges associated with the concurrent TEG and research plans for this study.  

Chapter 3 delves into the research methodology used to accomplish the 

objectives of the study. It details the design of the TEGs and FEA studies for the 

PEDOT:PSS and SWCNT thin films. Moreover, the experimental setup and 

characterization details for the study are included at the end of the chapter.  

Chapter 4 presents a novel vertically aligned PEDOT:PSS thin film 

thermoelement integrated wearable TEG. Starting with the FEA to optimize and 

determine of the heat distribution through the PEDOT:PSS thermoelement, the design 

of the novel TEG structure is presented. The synthesis of the PEDOT:PSS material 

and TEG fabrication processes is also discussed. An experimental setup is built to 

characterize the thermoelectric properties, mainly σ and S values, of the PEDOT:PSS 

film and to evaluate the TEG characterization results. Eventually, energy harvesting 

from the wrist via the fabricated TEG is demonstrated.  

Likewise, in Chapter 5, vertically aligned PEDOT:PSS and SWCNT thin film 

thermoelements are integrated into a novel wearable TEG. It also covers the FEA for 
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optimizing and determining heat transfer through PEDOT:PSS and SWCNT thin film 

thermoelements, TEG structural design, as well as synthesis of the thermoelectric 

materials and TEG fabrication processes. The experimental setup is described, as are 

the results of materials characterization and device fabrication. Finally, energy 

harvesting from the wrist using the TEG is demonstrated.  

The key findings of this research and the research contributions to this study 

are summarized in Chapter 6. Recommendations for future work are made to assist 

others in developing this technology and enhance the quality of this work. 
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