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ABSTRACT 

Recently, zinc oxide (ZnO) and zinc sulfide (ZnS) have drawn a resurgent 

attention in the research community due to their interesting properties with diverse 

potential applications. Wide bandgap, large exciton binding energy at room temperature, 

and small effective electron mass and piezoelectricity make ZnO a potential candidate 

for a variety of electronic and optoelectronic devices. ZnS possesses a direct bandgap of 

3.6 eV at room temperature and appears to be a promising candidate for a broad range of 

technological applications including transparent conductors, visual displays and high-

density optical memories. However, in order to realize the efficient utilization of ZnO 

and ZnS in blue, green and ultraviolet (UV) emitters with high efficiency, it is very 

important to modify these materials so that the full bandgap energy spectrum (from 

visible to UV) may be covered by the materials. Alloying of ZnO with sulfur (S) 

chalcogen reveals vivid changes in its electronic and optical properties due to the 

dramatic restructuring of electronic structure. In this thesis, the structural, electronic and 

optical properties of pure ZnO and ZnO1-xSx (x = 0, 0.25, 0.50, 0.75 and 1) alloys in 

wurtzite (WZ), sphalerite type, germanium phosphide (GeP) type, 5-5 type, nickel 

arsenide (NiAs) type, β-beryllium oxide (BeO) type, and cesium chloride (CsCl) type are 

studied by using full-potential linearized augmented plane wave plus local orbital 

(FPLAPW + lo) method within density functional theory (DFT). The structural 

properties of pure ZnO and S-doped ZnO in seven crystal structures were calculated by 

using Perdew-Burke-Ernzerhof – generalized gradient approximation (PBE – GGA) 

exchange correlation whereas the calculations for electronic and optical properties were 

carried out by adding the mBJ potential to the PBE-GGA exchange correlation. The 

structural properties of S-doped ZnO in seven polymorphs reveal a small deviation from 

Vegard’s law which is consistent with the findings from previous literature. It was found 

that the replacement of the oxygen (O) atom by S produces interesting effects on the 

band structures of ZnOS alloys. The electronic bandgaps of ZnOS alloys in WZ 

structure, sphalerite type and BeO type were enhanced from 2.65 eV to 3.68 eV, 2.50 eV 

to 3.60 eV and 2.85 eV to 3.75 eV, respectively. The bandgap of 5-5 type ZnOS alloys 

decreases from 3.12 eV to 2.63 eV and the band structures of GeP type and NiAs type 

ZnOS alloys show different variations with different concentrations. On the other hand, 

CsCl type ZnOS alloys exhibit a metallic nature. The static dielectric constants of the 

seven considered polymorphs reveal that the polarization of the S doped ZnO increases 

by increasing the S concentration. The CsCl type ZnOS alloys with metallic character 

were found to have the highest value of static dielectric constant. The results for optical 

properties show that the incorporation of S atoms moves the maximum absorption, 

reflectivity and conductivity peaks towards low photon energies which reveal the 

potential of S doped ZnO. The static refractive indices of all considered ZnOS alloys 

were found to be increased by increasing the S content. The analysis of the absorption 

spectra shows that WZ structure, sphalerite type and BeO type ZnOS alloys are the 

promising candidates for visible and UV photoelectronic devices. The 5-5 type and NiAs 

type ZnOS ZnOS alloys were found suitable for visible light regime applications. On the 

other hand, GeP type ZnOS alloys are best for the applications corresponding to infrared 

to visible region. 
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ABSTRAK 

Baru-baru ini, zink oksida (ZnO) dan zink sulfida (ZnS) telah menarik perhatian 

semula dalam komuniti penyelidik disebabkan sifatnya yang menarik dengan pelbagai 

potensi aplikasi. Jurang jalur yang lebar, tenaga pengikat eksiton yang tinggi pada suhu 

bilik, dan jisim elektron berkesan dan kepiezoelektrikan yang kecil menjadikan ZnO 

sebagai calon yang berpotensi untuk pelbagai peranti elektronik dan optoelektronik. ZnS 

memiliki jurang jalur terus 3.6 eV pada suhu bilik dan muncul sebagai calon yang 

berpotensi untuk pelbagai aplikasi berteknologi termasuk pengkonduksi lutsinar, paparan 

visual dan memori optik berketumpatan tinggi. Walau bagaimanapun, bagi 

merealisasikan penggunaan ZnO dan ZnS secara cekap dalam pemancar biru, hijau dan 

ultraungu (UV) dengan kecekapan yang tinggi, adalah penting untuk mengubahsuai 

bahan ini supaya spektrum tenaga jurang jalur penuh (daripada cahaya nampak ke UV) 

dapat diliputi oleh bahan ini. Pengaloian ZnO dengan kalkogen sulfur (S) menunjukkan 

perubahan yang nyata pada sifat-sifat elektronik dan optiknya kerana penstrukturan 

semula struktur elektronik secara dramatik. Dalam tesis ini, sifat-sifat struktur, 

elektronik dan optik ZnO tulen dan aloi ZnO1-xSx (x = 0, 0.25, 0.50, 0.75 dan 1) dalam 

wurtzite (WZ), jenis sfalerit, jenis germanium fosfida (GeP), jenis 5-5, jenis nikel 

arsenida (NiAs), jenis β-berilium oksida (BeO) dan jenis sesium klorida (CsCl) telah 

dikaji dengan menggunakan kaedah keupayaan-penuh terlinear gelombang satah 

terimbuh ditambah orbitan tempatan (FPLAPW + lo) dalam teori kefungsian ketumpatan 

(DFT). Sifat struktur ZnO tulen dan ZnO terdop-S dalam tujuh struktur hablur dikira 

dengan menggunakan korelasi pertukaran Perdew-Burke-Ernzerhof – penghampiran 

kecerunan teritlak (PBE – GGA) manakala pengiraan untuk sifat-sifat elektronik dan 

optik dilakukan dengan menambahkan keupayaan mBJ kepada korelasi pertukaran PBE-

GGA. Sifat struktur ZnO terdop-S dalam tujuh polimorf menunjukkan penyimpangan 

kecil daripada hukum Vegard yang konsisten dengan dapatan daripada literatur sebelum 

ini. Didapati bahawa penggantian atom oksigen (O) oleh S menghasilkan kesan menarik 

terhadap struktur jalur aloi ZnOS. Jurang jalur elektronik aloi ZnOS dalam struktur WZ, 

jenis sfalerit dan jenis BeO didapati meningkat masing-masing daripada 2.65 eV kepada 

3.68 eV, 2.50 eV kepada 3.60 eV dan 2.85 eV kepada 3.75 eV. Jurang jalur aloi ZnOS 

jenis 5-5 menurun daripada 3.12 eV kepada 2. 63 eV dan struktur jalur aloi ZnOS jenis 

GeP dan NiAs menunjukkan variasi yang berbeza dengan kepekatan yang berbeza. 

Sebaliknya, aloi ZnOS jenis CsCl menunjukkan sifat logam. Pemalar dielektrik statik 

daripada tujuh polimorf yang dipertimbang menunjukkan bahawa pengutuban ZnO 

terdop-S meningkat dengan peningkatan kepekatan S. Aloi ZnOS jenis CsCl yang 

bercirikan logam didapati memiliki nilai pemalar dielektrik statik tertinggi. Hasil sifat 

optik menunjukkan bahawa penggabungan atom S menggerakkan puncak penyerapan, 

keterpantulan dan kekonduksian maksimum ke arah tenaga foton yang rendah yang 

mendedahkan potensi ZnO terdop-S. Indeks biasan statik semua aloi ZnOS yang 

dipertimbang didapati meningkat dengan peningkatan kandungan S. Analisis spektrum 

penyerapan menunjukkan bahawa aloi ZnOS dalam struktur WZ, jenis sfalerit dan jenis 

BeO adalah calon yang berpotensi untuk peranti fotoelektronik cahaya nampak dan UV. 

Aloi ZnOS jenis 5-5 dan jenis NiAs didapati sesuai untuk aplikasi dalam rejim cahaya 

nampak. Sebaliknya, aloi ZnOS jenis GeP adalah terbaik untuk aplikasi berpadanan 

dengan rantau inframerah hingga kepada cahaya nampak. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

The quest of finding the wide bandgap semiconductors with enhanced and 

modified properties for various optoelectronic applications are never ending. Wide 

bandgap semiconductors from the group II-VI family are the most appealing 

members for their great potential to be used in electronic and optoelectronic devices, 

chemical sensors, catalysts, light-emitting diodes, and so forth [1].  

ZnO is one of the most demanding compounds from the above-mentioned 

family and it has gained considerable attention in the research community due to its 

wide bandgap (3.44 eV), large exciton binding energy (60 meV) at room 

temperature, small effective electron mass and piezoelectricity [2]. Therefore, ZnO 

has remarkable potential applications for a variety of electronic and optoelectronic 

devices. It is used in heat mirrors, bioimaging and an additive material in the 

ultraviolet absorber, pigment, gas sensor, and rubber production, etc. ZnO is also a 

promising candidate for transparent ohmic contacts, optical devices, transducers, 

light-emitting diodes, and transparent thin-film transistors. ZnO powder is used in 

different materials such as ceramics, glasses, and food, etc. [3]. 

Another well-known wide bandgap semiconductor from the II-VI family is 

ZnS. ZnS possesses a direct bandgap of 3.6 eV at room temperature and appears to 

be a promising candidate for a broad range of technological applications including 

transparent conductors, visual displays and high-density optical memories, etc. ZnS 

is widely used in electronic, optical, and photonic devices  as well [4]. 

Due to the remarkable features of ZnO and ZnS, they are extensively used in 

various optoelectronic devices. However, in order to produce ZnO and ZnS based 
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sensors and blue, green and UV emitters with high efficiency, it is very important to 

modify these materials so that the full bandgap energy spectrum (from visible to UV) 

may be covered by the materials [5]. It is reported that this type of spectrum can be 

established by the substitution of the isoelectronic cations or anions in ZnO. As 

compared to the anion-substituted ZnO alloys, a numerous work on the theoretical 

and experimental study of the ZnO alloys with cations substitution is presented by 

different researchers, for instance, CdxZn1-xO, BexZn1-xO and MgxZn1-xO [6-8]. Due 

to the large difference in the electronegativities and the size of O and S, the 

incorporation of S atoms in ZnO can produce a remarkable change in the physical 

properties of ZnOS alloys [9]. 

As it is well known that in nature, ZnO possesses the wurtzite structure which 

is stable at room temperature; however, it is reported that different modified 

(metastable) structures of ZnO are also possible. One of them is known as sphalerite 

type ZnO which can be obtained by growing the ZnO on cubic substrates. It is also 

reported that during the global optimization at different negative pressures, various 

metastable modifications of ZnO compound can be achieved such as 5-5 type, 

germanium phosphide (GeP) type, nickel arsenide (NiAs) type, cesium chloride 

(CsCl) type and β-beryllium oxide (BeO) type [10].  

Presently, a few studies on the new structures of pure ZnO are available 

which are mostly related to their structure stability and the band structures 

calculations. Due to this fact, this research was conducted to perform the detailed 

discussions on the structural, electronic and optical properties of pure ZnO and the 

anion-substituted S doped ZnO alloys in the newly discovered polymorphs of ZnO 

along with the stable (WZ) structure. Furthermore, the selection of the suitable 

method and the proper exchange correlation functional to obtain the accurate energy 

bandgaps especially for the strong correlated systems is always a challenging task. 

The conventional exchange correlation functional such as LDA and GGA cannot 

provide the accurate bandgaps. Therefore, in this thesis, the calculations of the 

electronic band structures are carried out by using the mBJ potential which has the 

ability to provide the bandgaps close to the experimental results.    
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1.2 Problem Statement 

Group II-VI semiconductors presenting the wide bandgaps are considered to 

have great potential for a broad range of optoelectronic applications. Two most 

demanding materials from the above mentioned group are ZnO and ZnS which are 

suitable for many technological applications. However, pure ZnO and ZnS cannot 

achieve the various wavelength ranges (from visible to ultraviolet) which is the 

disadvantage for the devices such as sensors and blue, green and ultraviolet emitters. 

Modifying the band structures of pure ZnO and ZnS to achieve the various ranges of 

wavelengths is the key issue.  

Consequently, the idea for the incorporation of S atoms in ZnO or O atoms in 

ZnS is introduced in which the energy bandgaps cover the desired wavelength ranges 

[5]. The effect of the S atoms on the structural properties of ZnO in the newly 

discovered polymorphs (sphalerite type, GeP type, 5-5 type, NiAs type, BeO type, 

and CsCl type) is not studied yet. Detail studies on the electronic structures of S 

doped ZnO alloys are still lacking. The small energy bandgaps by using the LDA and 

GGA being the main limitation for the strong correlated systems must be overcome.  

The evolution in the different optical parameters such as real and imaginary 

part of dielectric function, absorption coefficient, reflectivity, conductivity and 

refractive index of S doped ZnO alloys in the considered metastable structures is not 

reported yet. Therefore, the main focus of the current study is to examine the 

influence of S atoms on the structural, electronic and optical properties of ZnO in 

wurtzite, sphalerite type, GeP type, 5-5 type, NiAs type, BeO type, and CsCl type. 

The aim is to relate the significant enhancement of the electronic bandgaps with the 

most suitable exchange correlation potential (mBJ) used in the present study.    
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1.3 Objectives of the Study 

The main goal of this research is to design cheap and non-toxic zinc oxide 

and zinc sulfide based binary and ternary compounds in seven polymorphs for 

optoelectronic devices. The objectives of this research can be summarized as follow:  

1. To determine the structure and morphology  of pure ZnO and ZnO1-xSx  alloys 

with the various S doping concentrations (x = 0, 0.25, 0.50, 0.75 and 1) in 

seven polymorphs including wurtzite, sphalerite type, GeP type, 5-5 type, 

NiAs type, BeO type and CsCl type within the framework of DFT. 

2. To analyze the electronic band structures of pure ZnO and ZnO1-xSx alloys 

with the various S doping concentrations (x = 0, 0.25, 0.50, 0.75, and 1) in 

seven structural geometries. 

3. To determine the optical properties such as real and imaginary part of 

dielectric function, conductivity, reflectivity, absorption coefficient and 

refractive index of the seven polymorphs of pure ZnO and ZnO1-xSx alloys 

with various S doping concentrations (x = 0, 0.25, 0.50, 0.75, and 1) for 

applications in photovoltaic and other optoelectronic devices.  

1.4 Scope of the Study 

Using the DFT-based full potential linearized augmented plane wave (FP-

L(APW+lo) method with different exchange correlations and potential; the 

structural, electronic and optical properties of seven polymorphs (wurtzite, sphalerite 

type, GeP type, 5-5 type, NiAs type, BeO type, and CsCl type) of ZnO are carried 

out. The incorporation of the S atoms in seven polymorphs of ZnO with various S 

doping concentrations such as 0, 0.25, 0.50, 0.75, and 1 were taken into account by 

using the supercell approach.  

The structural properties (lattice constants and bulk modulus) of pure ZnO in 

seven structures were calculated by using the PBE-GGA exchange correlation. The 
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effect of sulfur on the structural properties of the considered seven polymorphs of 

ZnO was investigated by the replacement of oxygen atoms with sulfur atoms.  

Investigations of the electronic properties (band structure and density of 

states) of pure ZnO in seven polymorphs were carried out by using TB-mBJ potential 

in which PBE-GGA was used as exchange correlation. The effect of S atoms with 

various doping concentrations on the nature of the electronic band structures of 

considered polymorphs of ZnO was also observed. 

Calculations of the optical properties (real and imaginary parts of the 

dielectric function, reflectivity, conductivity, absorption coefficient, and refractive 

indices) of pure ZnO in the seven considered structures were carried out by using 

TB-mBJ potential along with PBE-GGA as exchange correlation. Moreover, the 

change in the absorption spectra, conductivity, dielectric constant, reflectivity and the 

refractive index of S doped ZnO in wurtzite, sphalerite type, GeP type, 5-5 type, 

NiAs type, BeO type, and CsCl type is also examined.  

 

1.5 Significance of the Study  

The quest for finding the non-toxic wide bandgap materials with large energy 

ranges for optoelectronic devices is never-ending. The study concerning the wide 

bandgap materials with broad ranges of applications is crucial due to the increasing 

demands of the advanced optical and electronic devices. The remarkable potential 

exhibited by ZnO and ZnS as wide bandgap semiconductors need to explore the 

different features such as electronic, structural and optical properties to be used in the 

future. In this study, the S doped ZnO alloys in the newly discovered polymorphs 

along with the stable WZ structure of ZnO are appeared as the promising candidates 

for various optical devices in the different ranges of wavelengths. The understanding 

of the electronic structures of ZnO doped with five concentrations of the S atoms 

provided better control to achieve the desirable energy ranges. Moreover, new 

structures of the ZnO are found to have the interesting features which can be used for 

the future optical devices. In the current study, the detailed discussion on the 
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structural, electronic and optical properties of seven structures of ZnO and ZnOS 

alloys will lead to extent of knowledge in the exploration of the materials with 

superior optical properties for diverse applications in the optoelectronic devices.  

1.6 Thesis Organisation 

This thesis describes the detail discussion on the different physical properties 

of pure ZnO as well as S doped ZnO alloys in WZ, sphalerite type, GeP type, 5-5 

type, NiAs type, BeO type and CsCl type. PBE-GGA exchange correlation is applied 

to optimize the structures. In addition, mBJ potential is used to improve the energy 

bandgaps.  

Chapter 1 offers a brief discussion on the background of the current problem, 

the problem statement is underscored to find the research gap to fill, objectives, 

scope of the study, the significance of the study and thesis organisation are also 

highlighted in this chapter.   

Chapter 2 describes the literature review which is based on the brief 

discussion on the wide bandgap semiconductors. This chapter further provides the 

detailed discussion on the different physical properties of the materials studied in this 

thesis. Moreover, many fundamental aspects such as DFT used for the present study 

and knowledge of different exchange correlation functional are also discussed in this 

chapter.  

Chapter 3 explains the methodology with a brief introduction to the WIEN2k 

code which is used for the simulation in the present study and the steps to perform 

the calculations in WIEN2k code. This chapter further explains the computational 

details.  

In Chapter 4, a comparative study of the structural, electronic, and optical 

properties of seven polymorphs including WZ, sphalerite type, GeP type, 5-5 type, 

NiAs type, BeO type, and CsCl type of pure ZnO are carried out. Chapter 4 further 
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explains the structural, electronic, and optical properties of S doped ZnO alloys in the 

above discussed seven polymorphs. The different concentrations (x) such as 0%, 

25%, 50%, 75%, and 100% of S atom are used to perform the structural, electronic, 

and optical properties of ZnOS alloys in above discussed polymorphs of ZnO.  

Chapter 5 concludes the entire research that was carried out to fulfil the stated 

objectives. Many other areas in this emerging field are regarded as the future directions. 

At the end, references and the list of publications are given. The effect of O and S 

occupancy on the structural properties of ZnOS alloys in sphalerite type, graphs on 

the linear fitting of the absorption coefficient and the explanation about the high 

dielectric constant of CsCl type with metallic nature are affixed in the appendices.  
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