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ABSTRACT 

This study focuses on a comprehensive performance assessment of different 

types of Multi-Detector Computed Tomography scanners, with particular focus given 

to quality control (QC) performance tests based on data and dose mapping using an 

anthropomorphic phantom. The performance test of microStar InLight® reader 

recorded intrinsic precision within  2% of the manufacturer’s recommendation. The 

calibration of the thermoluminescence dosimeter (TLD-100™) and nanoDot™ 

optically stimulated luminescence dosimeter (OSLD) comprised of optical annealing 

(illumination), signal depletion, signal fading, the linearity of dose-response, 

sensitivity and energy dependence. The optical annealing procedure using five light 

sources showed that the compact fluorescent lamp (CFL) recorded the highest 

response, with an average signal loss of ~93% in 60 minutes illumination time 

compared to ultra-violet light (UV), light-emitting diode (LED), tungsten-halogen 

lamp (THL), and bright room office environment light (BRL). The screened 

nanoDot™ OSLDs recorded a low signal depletion loss, with an average decrease of 

1.0% depletion per reading. The recorded signal fading showed that screened 

nanoDot™ OSLDs displayed a small signal fading (becoming stabilised after 12 days), 

compared to unscreened nanoDot™ OSLDs and TLD-100™. The linearity dose-

response of TLD-100™ and nanoDot™ OSLDs for 0 to 500 mGy exposed dose 

recorded a linear regression of coefficient values of 0.99981 and 0.99868. The results 

were very close to the value of one; both dosimeters showed an excellent linear dose 

response for different absorbed doses. The computed tomography dose index (CTDIw) 

fulfils the manufacturer’s guidelines (< ±20%), thus revealing that the nanoDot™ 

OSLDs could be used as alternative to Unfors detector and indicating their similar dose 

detection potential for CT scan applications. By comparing the QC performance tests 

for overall locations and model names, all the recorded data for scan localisation, X-

ray generators, radiation dosimetry, image display, hard copy output, quantitative 

accuracy, image quality, as well as scattered radiation and radiation leakage, from the 

year 2015 to the year 2019, remained within the optimum achievable standard. Both 

lung and thyroid doses found in this study for CT chest-abdomen and head-neck 

protocol respectively, are particularly high since both thyroid and lung are situated 

along the main beam. This is in agreement with the fact that radiation doses from 

diagnostic radiology for similar examinations and modality differ, depending on 

several magnitudes such as tube voltage, exposure time, tube current, slice collimation 

and pitch factor. This study proves the importance of altering CT scan parameters 

accordingly, to initiate the optimisation process of current imaging practice.  
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ABSTRAK 

Kajian ini memfokus kepada penaksiran prestasi komprehensif pelbagai jenis 

pengimbas Tomografi Berkomputer Pengesan Berbilang, dengan fokus khusus 

diberikan kepada ujian prestasi kawalan kualiti (QC) berdasarkan data dan pemetaan 

dos menggunakan fantom antropomorfik. Ujian prestasi pembaca microStar InLight® 

mencatatkan kepersisan intrinsik dalam  2% daripada cadangan pengeluar. 

Penentukuran dosimeter perdarkilau terma (TLD-100™) dan dosimeter perdarkilau 

teransang secara optik nanoDot™ (OSLD) terdiri daripada penyepuhlindapan optik 

(pencahayaan), penyusutan isyarat, kepudaran isyarat, kelinearan sambutan-dos, 

kepekaan dan kebergantungan tenaga. Prosedur penyepuhlindapan optik 

menggunakan lima sumber cahaya menunjukkan bahawa lampu pendarfluor padat 

(CFL) mencatatkan sambutan tertinggi, dengan kehilangan isyarat purata ~ 93% dalam 

masa pencahayaan 60 minit berbanding dengan cahaya ultra-ungu (UV), diod 

pemancar cahaya (LED), lampu tungsten-halogen (THL), dan lampu persekitaran 

pejabat bilik terang (BRL). OSLD nanoDot™ yang disaring mencatatkan kehilangan 

penyusutan isyarat rendah, dengan penurunan purata 1.0% penyusutan setiap bacaan. 

Kepudaran isyarat yang dirakam menunjukkan bahawa OSLD nanoDot™ yang 

disaring memaparkan kepudaran isyarat kecil (menjadi stabil selepas 12 hari), 

berbanding dengan OSLD nanoDot™ yang tidak disaring dan TLD-100™. Kelinearan 

sambutan-dos TLD-100™ dan nanoDot™ OSLD untuk dedahan dos 0 hingga 500 

mGy mencatatkan nilai-nilai pekali regresi linear pada 0.99981 dan 0.99868. Dapatan 

kajian hampir dengan nilai satu; kedua-dua dosimeter menunjukkan kelinearan 

sambutan-dos yang sangat baik untuk pelbagai dos yang diserap. Indeks dos tomografi 

berkomputer yang dikira (CTDIw) memenuhi garis panduan pengeluar ( ±20%), 

membuktikan bahawa OSLD nanoDot™ boleh digunakan sebagai alternatif kepada 

dosimeter Unfors dan menunjukkan potensi pengesanan dos yang serupa untuk 

penggunaan imbasan CT. Dengan membandingkan ujian prestasi QC untuk 

keseluruhan lokasi dan nama model, semua data yang direkodkan untuk 

penyetempatan imbasan, penjana sinar-X, dosimetri sinaran, paparan imej, output 

salinan keras, ketepatan kuantitatif, kualiti imej, serta sinaran terserak dan kebocoran 

sinaran, dari tahun 2015 hingga tahun 2019, kekal dalam piawaian yang boleh dicapai 

secara optimum. Kedua-dua dos paru-paru dan tiroid yang didapati dalam kajian ini 

untuk protokol CT abdomen-dada dan kepala-leher masing-masing, adalah sangat 

tinggi kerana kedua-dua tiroid dan paru-paru terletak di sepanjang alur utama. Ini 

adalah sesuai dengan fakta bahawa dos sinaran dari radiologi diagnostik bagi 

pemeriksaan yang sama dan modaliti yang berbeza, bergantung pada beberapa 

magnitud seperti voltan tiub, masa dedahan, arus tiub, pengkolimatan hirisan dan 

faktor pic. Kajian ini membuktikan pentingnya mengubah parameter imbasan CT 

dengan sewajarnya, untuk memulakan proses pengoptimuman amalan pengimejan 

semasa. 
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INTRODUCTION 

1.1 Background of the Study  

Since the introduction of X-ray computed tomography (CT) in the early 1970s, 

its innovation in medical imaging has been constantly studied and tremendously 

improved in terms of technology, performance and clinical applications (Mutic et al., 

2003; Nagel, 2007). Based on the historical evolution of CT and basic CT physics, this 

study describes the status quo of the technology and tries to anticipate the performance 

of CT scanners. Besides the description of key components of Quality Assurance 

Protocol (QAP) in CT systems, Quality Control (QC) is one of the elements of QAP 

that has to be carried out at an interval period as specified by the Ministry of Health 

(MOH). A special focus will be placed on application-related factors in terms of 

assessing the dose from selected conventional CT scanners and organ dose mapping 

using an anthropomorphic phantom. 

A CT scanner is an analytical system that utilises unique X-ray equipment to 

create cross-sectional images of the human body in high radiographic contrast. This 

characteristic is particularly important for diagnosis involving soft tissue (that is, 

organs not including lung or bone), as the contrast available from CT images is vastly 

superior to that gained from projection radiography. Therefore, this type of analytical 

and imaging system is medically beneficial and is increasingly the method of choice 

for a growing number of examinations. The complexity of two important factors in CT 

scanners (equipment-related factors and application-related factors) requires careful 

monitoring by the medical physicist in conjunction with the radiologist or radiographer 

to ensure that appropriate examination conditions exist and that procedures are 

optimised for diagnostic quality and patient dose. From a CT point of view, the dose 

to the patient may be significantly higher than with alternative imaging modalities. 

This particular fact is crucial if the examination involves a pregnant patient or a child. 
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An excessively high dose to a patient may be due to poor optimisation of scanner 

radiographic protocols or can also be due to poor equipment conditions. CT scanners 

are under continued technical development, resulting in a rising clinical application 

(Nagel, 2002; IAEA, 2012), which in turn emphasizes the need for continuous 

professional technical education to radiographers, as well as to radiologists, engineers, 

researchers, and students. Also, the use of well-designed equipment that is in proper 

operating condition, suitable examination protocols, and adequate viewing conditions 

for image interpretation should be promoted in a QA program. The involvement of a 

medical physicist is a key element in the QA and QC process. 

It should be noted that CT scanners are being increasingly utilised by 

radiotherapy departments for image acquisition for treatment planning purposes 

(Mutic et al., 2003), in addition to the traditional roles of patient diagnosis and cancer 

staging, placing further important demands on scanner performance requirements and 

benefit-to-risk of CT. The vast use of CT, even in developing countries, has increased 

queries regarding the possible risk to public health, especially in children (Ogbole, 

2010). There was increased concern in patients and parents, especially among 

paediatric patients undergoing CT procedure, as reported in AAPM Report No. 96. 

The importance of CT radiation dosage has been underlined recently by the attention 

given in previous studies to issues of doses and the associated risk (Brenner et al., 

2001; Donnelly et al., 2001; Pierce and Preston, 2000; Haaga, 2001; Nickoloff and 

Alderson, 2001; Feigal, 2002). Since CT increasingly contributes a significant portion 

of the total collective dose delivered to the public from clinical procedures, a 

compelling need for a rapid observation of CT radiation dose levels has been created. 

Fundamental explanations of CT dose parameters require perhaps reinterpretation and 

review. Hence, this study consists of the implementation of a standardised CT quality 

assurance program and the assessment of dose profiles in CT procedures using 

appropriate methods. 

Although the risk-benefit balance is still strongly tilted toward benefit, caution 

is still crucial (Ogbole, 2010). There currently exist established QA CT scanner testing 

protocols, including several on acceptance and QC testing for CT (IAEA, 2012). The 

implementation of available resources in this area to update the CT scanner's 
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performance, focusing on five different models in Malaysia, are addressed in this 

study. It has been developed with the philosophy that CT imaging needs to be of the 

best quality so that it will fulfil the diagnostic obligations required of it. Good imaging 

performance requires that image quality should be sufficient to meet the clinical 

demand for the examination. At the same time, the dose should be maintained to the 

lowest level reasonably practicable (Mansour et al., 2016). This study addresses topics 

with the concept of practical application in mind, such as the special requirements for 

scanners used for clinical treatment planning and how to ensure adequate performance 

in CT scanner utilisation. 

1.2 Problem Statement 

A CT scanner is a powerful tool that allows high-resolution three-dimensional 

images for better surgery, better diagnosis, accurate and useful medical treatment. As 

the number of CTs continues to increase globally, there are concerns about patient 

protection to track patient doses and the lifetime cumulative dose from medical 

sources. At low doses of below 100 mGy, it is a difficult task to evaluate cancer risk 

in humans. However, a comprehensive assessment of available biological data by the 

National Academies in BEIR VII report has demonstrated that risk would continue 

linearly at lower doses without any threshold, and the smallest dose has the potential 

to cause a slight increase of risk to individuals. The need for CT examinations has 

recently increased due to the tremendous demand for diagnostic procedures. Patient 

exposure in a CT procedure may be up to 10 -60 mGy (Smith-Bindman et al., 2009), 

which means requiring optimisation is worthwhile to achieve the lowest doses 

possible. Such doses might be of stochastic effect, since there is no threshold for the 

stochastic effect to occur. Hence, these effects might reduce by adopting quality 

assurance (QA), and quality control (QC) measures according to international 

standards and practices, as highlighted in the IAEA Human Health Series No. 19.  

Despite the potential risk associated with an individual patient during CT 

examinations being relatively small, the gradual increase in the number of people 

exposed and the increase in exposure per examination may translate into numerous 
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cancer cases that are attributed to radiation exposure from CT. As such, this creates 

the need for a quality assurance technique to obtain the clinical information associated 

with the acceptable dose levels in CT (IAEA, 2012). The acceptable dose levels can 

be achieved by either standardising the existing QC protocol as established by a 

relevant organization such as IAEA, or developing a new method. Thus, to identify the 

level of potential risk in CT examinations, one must recognise the estimated radiation 

exposure to the patient, which requires the use of dosimeters in patients or phantoms. 

QC in CT scanner systems has to be carried out at an interval period as 

specified by the Ministry of Health (MOH). Since the development of the CT scanner 

in the early 1970s, CT scanner technology has continuously developed through 

technical advancement, faster computer processing, superior detectors, and helical and 

multi-detector scanning modes. Radiologists have given the significant concern of 

radiation risk from CT examinations and CT radiation dose optimisation a great deal 

of attention. The significant interest in this study lies between assessing the risk of 

cancer from CT examinations by measuring the organ dose specifically for an 

individual, and finding a way to optimise the radiation dose. The implementation from 

the key components of QC in CT scanner systems may promote the effective use of 

radiation for diagnostic outcomes through monitoring and reducing the dose to the 

patient, as well as maintaining appropriate image quality. There is no work had been 

done in Malaysia regarding the equipment-related factors based on the QC 

performance test comprised of the QC data. Therefore, regular updates of this issue 

are necessary, particularly for radiologists who play a decisive role in this activity. In 

some areas, resources, both technological and human, are limited, and therefore this 

has incited us to establish and introduce the concept of practical application 

knowledge. A particular focus is placed on the detailed and precise information based 

on data on equipment-related factors and the application-related factors (in terms of 

CT Dose Index; CTDI and organ dose mapping). This study is an attempt to focus on 

the performance assessment of different Multi-Detector Computed Tomography 

(MDCT) scanners. It will provide an update on how we can optimise the CT dose to 

maximize the benefit-to-risk of this clinically useful diagnostic imaging technique. 

Figure 1.1 illustrates the schematic diagram of the problem statement of this study. 

Hence, at the end of this study hope to answer the fundamental questions below: 
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(a) What are the CT parameters that influence the CT dose and CT quality image? 

(b) How do CT scanner protocols affect the radiation dose and CT image quality? 

(c) What are the testing protocols that must be included in QC of CT scanners to 

balance the benefit to risk of CT? 

(d) How does the organ dose relate to CT scanners’ protocols? 

(e) What are the best CT scanner parameter settings that will give an acceptable, 

safe and optimum absorbed dose to the patient’s organs? 
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Figure 1.1 Schematic diagram of the problem statement and the current study. 
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1.3 Objective of the study 

The objectives of the project are as following: 

(a) To utilize the thermoluminescence dosimeter (TLD-100™) and nanoDot™ 

optically stimulated luminescence dosimeter (OSLD) for use in dose mapping 

measurement. 

(b) To obtain the optimum CT parameters considering the benefit-to-risk of CT 

procedures. 

(c) To determine the organ dose profile using nanoDot™ OSLDs and standard 

anthropomorphic phantom (Alderson Radiation Therapy phantom). 

 

1.4 Scope of the study 

In this study, the calibration of the dosimeters included the dosimetric 

parameters characterisation (optical annealing process, signal depletion, signal fading, 

dose-response, linearity, sensitivity and energy dependence), were carried out by using 

TLD-100™ and nanoDot™ OSLDs with exposure to a Constant Potential Industrial 

X-ray located in Nuclear Malaysia, Kajang, Selangor. CT QC test parameters for 

standardization and optimisation based on various selection types of MDCT scanners 

were conducted to obtain the performance of unit assembly evaluation and 

performance testing of: X-ray generators, CT dosimetry, scan localisation, sensitivity, 

leakage radiation and as well as scattered radiation. The evaluation of quantitative 

accuracy in QC testing also resulted in equipment-related factors: accuracy of distance 

measurement, CT number calibration, CT number constancy and as well as CT number 

dependence (scan thickness, reconstruction algorithm, phantom size, and phantom 

position). The test parameters from CT scanners will selectively affect image quality 

and CT scanner performance. The organ dose profile data set using nanoDot™ OSLDs 

and will be compared with Monte Carlo (MC) simulation results in the future.  
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1.5 Significance of the study 

OSLDs offer a potential technique for accurate and fast point-based patient-

specific CT dosimetry at the patient’s surface by using air kerma. The precision and 

accuracy of dose measurement details from the dosimeters should be enough to permit 

the work to be interpreted and repeated for validation. Since this study included the 

characterisation and calibration of the (TLD-100™) and nanoDot™ OSLDs, the 

results may prompt validation of the dosimeters to be used for dose profile assessment 

throughout the study. 

This study may lead to provide precise information data based on equipment-

related factors, using the implementation of the QC protocol during CT procedures. 

This implementation is significant to ensure that the CT clinical diagnostic information 

is given at the lowest possible cost and with the least possible exposure of the patient 

to radiation. This study is designed to ensure that CT clinical diagnosis or treatment 

does more good than harm to the patient. 

Organ dose mapping profiles using a standard anthropomorphic phantom 

(Alderson Radiation Therapy phantom) can be a method to obtain a point dose 

measurement along the z-axis that motivates the determination of densely sampled 

organ dose profiles for CT applications. This practical option, using nanoDot™ 

OSLDs, provides long-term stability that can place the dosimeters within the small 

cavities in the anthropomorphic phantom as well as the CTDI phantom. This method 

displays the reference level for the dose distribution inside different organs in a 

realistic CT clinical scan.   

The information that is derived in this study will be beneficial to future work 

involving performance CT scanners and OSLDs in the medical radiation therapy area.  
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1.6 Research hypothesis 

It is expected that a CT scanner's performance and the absorbed dose by the 

patient will be influenced by the present studies of the CT parameters such as voltage, 

current-time product and exposure time, which includes information from the QC 

testing parameters. Therefore, the precise data based on equipment-related factors and 

application-related factors in terms of CT dose mapping profiles are desired to identify 

a safe, minimum absorbed dose that is as low as possible. The prominent intention of 

this study can also lead to dose estimation and minimising of risk to Malaysia’s 

patients that are undergoing CT examinations, since concern on the inaccuracy of 

standard CT dosimetry has been raised. 

1.7 Thesis outline 

Chapter 1 gives a brief introduction to the study. It consists of the background 

of the study, problem statement, objectives of the study, scope of the study, the 

significance of the study, research hypothesis and thesis outline. A literature review 

has been written in Chapter 2, which describes the background and recent studies about 

CT scans. It offers a brief and basic explanation of X-ray and CT, CT timeline 

historical studies, different types of CT generation, CT parameters included CT dose 

descriptors as well as CT equipment-related factors. Information about CT technical 

details, theoretical practice and Optically Stimulated Luminescence (OSL) dosimetry 

is also discussed in this chapter. Chapter 3 explains the experimental methods adopted 

in this study, including the method preparation and identification of the CT scanner, 

dosimeter, dosimeter reader, dosimeter annealer and the phantom. Also, dosimeter 

characterisations, such as the optical annealing process, signal depletion, signal fading, 

dose-response, linearity, sensitivity and energy dependence are described in this 

chapter. In addition, the methodology to acquire the measurement for QC testing 

protocols and dose mapping profiles are also discussed in this chapter. Chapter 4 

presents and discusses the results of the study. Last but not least, Chapter 5 provides 

the conclusion of the study and gives some recommendations for possible future 

works.  
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