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ABSTRACT 

Adulteration of lard in foods raises concerns among Muslims and Jews. To 

address this issue, laser induced breakdown spectroscopy (LIBS) system is used in 

this work to differentiate various extracted animal fats in liquid form. However, 

laser-liquid interaction produces splashing due to the shockwave effect thus generate 

poor plasma plume in LIBS emission signals. LIBS difficulties in liquid form were 

overcome by freezing the samples and turned into solid form using freezer and liquid 

nitrogen. Then, the frozen samples were ablated using Nd:YAG laser of 1064 nm 

wavelength, 170 mJ pulsed energy and 6 ns pulse duration to produce plasma on 

sample’s surfaces. The plasma was captured using a spectrometer via optical fiber. 

The spectrometer was connected to a computer for displaying LIBS signals. The 

LIBS signals of the samples were then further evaluated using principal component 

analysis (PCA). PCA is a statistical analysis method for reducing the dimensionality 

of large data sets without any information loss. Experimental findings indicate that 

LIBS emission intensity of extracted chicken and lamb fats using liquid nitrogen 

method was 4 - 37 % and 4 - 19 % higher than freezer method, respectively. 

However, LIBS emission intensity of extracted beef fat and lard using freezer 

method was 12 - 41 % and 6 - 59 % higher than liquid nitrogen method, respectively. 

PCA demonstrated that the data points of extracted animal fats using liquid nitrogen 

method were more clustered than those frozen in the freezer. PCA also revealed that 

good discrimination achieved between extracted animal fats using liquid nitrogen 

method compared to the freezer freezing method. Therefore, LIBS system coupled 

with the PCA approach has high potential for detection of animal fats in food 

products.  
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ABSTRAK 

Pengadukan lemak khinzir dalam makanan meningkatkan kebimbangan 

dalam kalangan orang Islam dan Yahudi. Untuk menangani isu ini, sistem 

spektroskopi leraian aruhan laser (LIBS) digunakan dalam kajian ini untuk 

membezakan pelbagai ekstrak lemak haiwan dalam bentuk cecair. Walau 

bagaimanapun, interaksi laser-cecair menghasilkan percikan disebabkan oleh kesan 

gelombang kejutan sehingga menghasilkan kepulan plasma yang lemah dalam isyarat 

pancaran LIBS. Kesukaran LIBS dalam bentuk cecair diatasi dengan membekukan 

sampel dan diubah ke bentuk pepejal menggunakan penyejuk beku dan cecair 

nitrogen. Kemudian, sampel beku diablasikan menggunakan laser Nd:YAG dengan 

panjang gelombang 1064 nm, tenaga denyut 170 mJ dan tempoh denyut 6 ns untuk 

menghasilkan plasma di atas permukaan sampel. Plasma ditangkap menggunakan 

spektrometer melalui gentian optik. Spektrometer telah disambungkan kepada 

komputer untuk memaparkan isyarat LIBS. Isyarat LIBS sampel kemudian dinilai 

lebih lanjut menggunakan analisis komponen utama (PCA). PCA adalah kaedah 

analisis statistik untuk mengurangkan dimensi set data yang besar tanpa kehilangan 

maklumat. Penemuan eksperimen menunjukkan bahawa keamatan pancaran LIBS 

bagi ekstrak lemak ayam dan kambing menggunakan kaedah cecair nitrogen masing-

masing adalah 4 - 37 % dan 4 - 39 % lebih tinggi daripada kaedah penyejuk beku. 

Walau bagaimanapun, keamatan pancaran LIBS bagi ekstrak lemak lembu dan 

khinzir menggunakan kaedah penyejuk beku masing-masing adalah 12 - 41 % dan 6 

- 59 % lebih tinggi daripada kaedah cecair nitrogen. PCA menunjukkan bahawa titik 

data bagi ekstrak lemak haiwan menggunakan kaedah cecair nitrogen lebih 

berkelompok berbanding yang dibekukan di dalam penyejuk beku. PCA juga 

mendedahkan bahawa diskriminasi yang baik telah dicapai antara ekstrak lemak 

haiwan menggunakan kaedah cecair nitrogen berbanding kaedah pembekuan 

penyejuk beku. Oleh itu, sistem LIBS diganding dengan pendekatan PCA 

mempunyai potensi tinggi untuk pengesanan lemak haiwan dalam produk makanan. 
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CHAPTER 1   

 

 

INTRODUCTION 

1.1 Background of Study 

Adulteration of lard in food products is a religious sensitivity to Muslim and 

Jew societies (Kurniawati, Rohman and Triyana, 2014). This is because they are 

prohibited to consume foods contaminated with pig derivatives such as lard (Kwon 

and Tamang, 2015). The pig derivatives are not halal and not kosher in Islamic and 

Jews (Regenstein, Chaudry, and Regenstein, 2003) respectively. Usually, lard is used 

to increase the texture, taste and profit of certain food products such as virgin 

coconut oil (Xu et al., 2015), chocolate (Suparman et al., 2015) and cocoa butter 

(Azir et al., 2017). According to Che Man et al. (2014), pure lard is prepared through 

heating and filtering processes of raw lard before mix with palm oil. The 

contamination of lard in virgin coconut oil will reduce the quality and benefits of this 

expensive oil (Tengku Mansor, Che Man and Rohman, 2011). The contaminated of 

cheaper ingredient such as lard also will lead to false labelling of food ingredients 

(Kim, Kim & Park, 2015). To address all these issues, detection of lard in food 

products using promising approaches is highly needed.  

Numerous techniques have been developed for lard detection in food 

products. For instance, Gas Chromatography Mass Spectrometry (GCMS) (Nizar, 

Marikkar, and Hashim, 2013), dielectric spectroscopy (Amat Sairin et al., 2019) and 

Fourier Transform Infrared (FTIR) spectroscopy (Rohman and Che Man, 2010) are 

used to discriminate lard from beef, chicken and mutton fats. Nurrulhidayah et al. 

(2015) employed differential scanning calorimetry (DSC) for detection of lard in 

butter. Meanwhile, real-time polymerase chain reaction (PCR) is utilized to detect 

lard adulteration in chocolate (Rosman et al., 2016). However, these techniques are 

tedious, too laborious and costly. Therefore, Laser Induced Breakdown Spectroscopy 
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(LIBS) has been developed for discrimination of fat and nerve tissues in the pig 

heads (Mehari et al., 2016). 

LIBS is an atomic emission spectroscopy technique which utilises laser 

pulses to ablate small volume of the sample. In LIBS system, high energy of laser 

pulses is focused on the sample surface to create plasma, containing ionize elements 

of the sample. LIBS has been widely applied in various fields such as biological 

identification (Multari et al., 2013), space exploration (Knight et al., 2000), 

environmental monitoring (Kumar et al., 2013) and material analysis (Hussain and 

Gondal, 2013) because of its versatility for analysing materials either in solid, liquid 

or gas phase.  

In scientific research, most of LIBS applications are focused on solid rather 

than liquid analysis. LIBS on liquid often face difficulties to ablate or poorly ablate 

subsequently yield low signal intensity. This is due to high absorption of laser energy 

during liquid vaporisation process thus leaving only a small amount of energy for 

plasma formation (Lazic and Ciaffi, 2017). The interaction between laser and liquid 

also produced liquid splashing impacts from strong shock wave thus affecting the 

quality of emission signals (Markiewicz-Keszycka et al., 2017).  

There are two types of common LIBS system which are non-gated and gated 

LIBS systems. The uses of non-gated LIBS system give arises to strong continuum 

emission in the spectrum of the sample due to Bremsstrahlung effect (Se, Goshal and 

Wahab, 2019). From the literature, the researchers preferred to use gated LIBS 

systems to reduce the Bremsstrahlung effect (Bilge et al., 2016; Wang et al., 2019). 

In gated LIBS system, continuum emission in signal is reduced with the optimization 

of delay time between laser pulse and detection of plasma. However, the 

instrumentation of gated LIBS system is expensive and complicated. Alternatively, 

the non-gated LIBS system which relatively cheaper and simpler system coupled 

with partial least square regression (PLSR) has been used for prediction of calcium, 

sodium and magnesium in honey (Se et al., 2019). Different types of skin, fat, 

muscle and nerve tissues in pig heads were distinguished using the non-gated LIBS 
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system in combination with principal component analysis (PCA) (Kanawade et al., 

2013). 

Current studies indicate PCA is suitable for overcoming difficulties in 

analysing large measurements of LIBS data which have similar spectra for all 

samples (Porizka et al., 2018). PCA is the multivariate analysis used to recognize the 

hidden pattern and to highlight main similarities and differences found in similar 

LIBS signals of different samples. Samples are grouped or clustered in PCA result 

based on their similarities. For instance, LIBS coupled with PCA has been used to 

discriminate different tissues in pig heads (Kanawade et al., 2013) and various types 

of milks (Alfarraj et al., 2018). 

Since LIBS produced weak signals on liquid samples, this study aims to 

improve the LIBS emission intensity of extracted animal fats in liquid form using 

freezing methods. The samples used in the experiments are extracted chicken fat, 

beef fat, lamb fat and lard freeze using both freezer and liquid nitrogen methods to 

transform them into solid form. The LIBS signals emission intensity of the samples 

from LIBS system was compared between both freezing methods. The performance 

of LIBS emission intensity of frozen extracted animal fats was further evaluated 

using PCA in the score plot. Then, LIBS system in combination with PCA was 

employed to differentiate various kinds of frozen extracted animal fats from both 

freezing methods. This coupled system also was used to discriminate the pure and 

adulterated frozen extracted animal fats using liquid nitrogen method. 

1.2 Problem Statement 

Recent techniques used for detection of lard in food products are costly, has 

complex procedures, tedious, require chemical reagents and high amount of samples. 

Therefore, LIBS is developed in order to overcome these problems. However, laser-

liquid interaction in LIBS technique has several challenges due to most of the laser 

energy lost in vaporization of the liquid and conversion into mechanical effects such 

as the generation of shock wave and cavitation bubbles. These results in low LIBS 
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emission intensity or no LIBS signal being emitted. Besides, the shock wave effect 

also leads to liquid splashing on optical components of the LIBS system thus prevent 

the emitted signal received by optical detector. Furthermore, LIBS signals generated 

from non-gated LIBS system has continuum background in the signals which is 

caused by radiative recombination and Bremsstrahlung effect. This continuum 

background can interfere with the important emission lines in the signals of the 

samples. 

Herein, this work uses two different freezing methods to solidify extracted 

animal fat in liquid form using freezer and liquid nitrogen methods. Through the 

freezing process, the liquid phase extracted animal fats is transformed into solid-

phase samples to overcome liquid splashing due to the shockwave effect, thus 

improve the interaction between the laser beam and the samples. Then, PCA is used 

to further analyse signals without removing the continuum background in LIBS 

signals of frozen extracted animal fats. PCA also is utilized to evaluate the 

performance of LIBS signals of frozen extracted animal fats from both freezing 

methods in the score plot as the temperature of frozen samples is increased during 

LIBS measurements. 

1.3 Objectives of Study 

 This study aims to achieve the following objectives: 

1. To optimize LIBS parameters for laser-liquid interaction of frozen extracted 

animal fats. 

2. To evaluate the performance of LIBS signals of frozen extracted animal fats 

using freezer and liquid nitrogen methods based on LIBS emission intensity 

comparison and PCA approach. 

3. To evaluate the effect of temperature on LIBS signals of frozen extracted 

animal fats using PCA approach. 
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4. To discriminate various frozen extracted animal fats and subsequently 

discriminate the pure and adulterated frozen extracted animal fats using LIBS 

system coupled with PCA approach. 

1.4 Scope of Study 

Extracted chicken fat, beef fat, lamb fat and lard were prepared via heating 

and filtering processes of raw animal fats. The purity of extracted animal fats was 

determined using FTIR spectroscopy. The adulterated extracted animal fats were 

prepared by mixing the pure animal fats with 1 - 50 % of other extracted animal fats. 

For example, extracted chicken fat was adulterated with 1 %, 5 %, 10 %, 30 % and 

50 % of extracted lard to produce the adulterated extracted chicken fats. These 

adulterated extracted animal fats were prepared and tested in this study to check the 

purity of animal fat using non-gated LIBS system. Freezer and liquid nitrogen 

methods were used to transform extracted animal fats in liquid form into solid phase 

prior to ablation process. LIBS parameters such as laser pulse energy (LPE), distance 

between lens and sample surface (DLS), integration time of spectrometer and angle 

of optical fiber to collect plasma (θ) were optimized for LIBS measurements of 

frozen extracted animal fats.  Initial and final temperature of frozen extracted animal 

fats also was recorded.  

The emission lines presence in LIBS spectra of frozen extracted animal fat 

were identified accordingly to NIST atomic spectra database (Kramida et al., 2019). 

LIBS emission intensity of each frozen extracted animal fat was compared between 

both freezer and liquid nitrogen methods as the temperature of frozen samples was 

increased. 30 LIBS spectra of each sample were then divided into three groups 

represented LIBS spectra collected at the early, middle and final parts of ablation 

process. LIBS spectra of frozen sample at each group were averaging and compared 

between both freezing methods. 30 LIBS spectra of each frozen extracted animal fat 

were then evaluated using PCA. The distribution of data points in all three groups of 

each frozen extracted animal fat using freezer method were compared to liquid 

nitrogen method.  
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The effect of temperature increased in frozen sample on LIBS signals was 

studied using PCA approach. Extracted lard was chosen and ablated with 50 laser 

pulses to produce 50 LIBS spectra. These 50 LIBS spectra were also divided into 

three groups represent first 17, second 17 and remaining 16 LIBS spectra of frozen 

extracted lard. These 50 LIBS spectra also were further evaluated using PCA as the 

temperature of frozen extracted lard was increased from 1
st
 to 50

th
 shots. Distribution 

of data points in the 1
st
, 2

nd
 and 3

rd
 groups were compared between freezer and liquid 

nitrogen methods. 

Finally, LIBS system coupled with PCA was employed to discriminate 

different kinds of extracted animal fats froze using both freezing methods. The 

combination of LIBS system, liquid nitrogen freezing method and PCA approach 

also used to discriminate the pure and adulterated frozen extracted animal fats in 2D 

and 3D score plots. Liquid nitrogen was chosen due to easier handling and is a rapid 

method to freeze the extracted animal fat compared to freezer method. In this study, 

it is not recommended to freeze extracted animal fat using liquid nitrogen for longer 

time because the frozen sample will turn into brittle surface. The brittle surface of 

frozen sample easily crack after ablated with laser pulses thus produce poor signals. 

1.5 Significance of Study 

The findings from this study beneficial to the application of lard detection in 

food products. The application of LIBS system coupled with PCA is rapid, has lower 

cost and easy procedures of measurements, free of chemical substance and produce 

promising data for detection of contamination of lard in food products. This 

application is important in the Halal food industry to verify the contents of food 

products before distribute to Muslim consumers. Furthermore, this application also 

can be used to identify the concentration of animal fat in food products and will 

benefits to the food industry in Muslim country. 
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In addition, this study will beneficial to other researchers in enhancing LIBS 

emission intensity of liquid sample using freezing method such as freezer and liquid 

nitrogen method. The importance of using multivariate analysis such as PCA in 

evaluating similar LIBS signal is revealed. The stability of LIBS signal is 

successfully explored using PCA approach. The enhancement of LIBS signal 

especially in liquid sample is important to increase the sensitivity of LIBS detection 

thus will improve the classification of the samples. 

1.6 Outlines of Study 

The thesis consists of five chapters. The introduction, problem statement, 

objectives of the study, scope of the study and significance of the study are included 

in Chapter 1. Chapter 2 includes the literature review related to this study including 

characteristics and processing of animal fat, authentication techniques used for 

detection of animal fat, basic principle and application of LIBS system and 

application of PCA in analyzing LIBS spectra. The research methodology in Chapter 

3 describes flowchart of this study, sample preparation, experimental works and data 

analysis for the frozen extracted animal fats. The comparison of LIBS emission 

intensity and PCA results of frozen extracted animal fats using freezer and liquid 

nitrogen freezing methods are presented in Chapter 4. The conclusion and 

recommendations for future studies are written in Chapter 5. 
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