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ABSTRACT 

The study of the overtopping flow associated with breaching embankments is an 

essential part of water management, particularly for emergency planning. One of the 

mechanisms that triggers embankment collapse is overtopping. Therefore, it is crucial to 

identify the zones at risk where the overtopping failure is likely to occur and where the 

breach might form. The nature of the failure would significantly impact the breach 

discharge, the variation of reservoir water levels, and the resulting water levels in the 

downstream valley or floodplain. This thesis presents the characteristics of flow due to an 

embankment breaching caused by flow overtopping. Laboratory works were carried out 

to observe the embankment failure, how the erosion is triggered, and factors contributing 

to the failure. A dimensional analysis was performed to identify the variables involved to 

analyse the mechanism of the embankment failure. The development of an embankment 

breach model using Computational Fluid Dynamics (CFD) was carried out to model the 

failure patterns of a breaching embankment. This required specification of the breach 

formation and breach widening, and prediction of the resulting breach hydrograph. In this 

study, the embankment was modelled as a porous medium governed by a generalised form 

of Darcy’s Law. The erosion is prescribed by systematically decreasing the porous 

embankment resistance in those areas where erosion is likely to occur linearly. Model 

validations were performed by comparing CFD simulations with measured data from 

experimental work in the laboratory for a 2D model. The Eroding models developed were 

conducted in 2D and 3D, using the Realizable  model and the Volume of Fluid 

(VOF) multiphase model to identify the free elevation surface. The 2D model results have 

shown good agreement with experimental data for free water surface and velocity profiles 

over a rigid embankment. For a porous embankment, the profiles displayed reasonable 

accuracy with that of a Rigid Model. The validations on the 2D porous embankment 

models gave reasonably good agreement on temporal breach patterns and free surface flow 

over the breached embankment. The results showed that the overflow volume predicted 

was close to the theoretical value. The percentage difference was around 13%. The study 

considered the mesh adaption technique using a grid refinement method. The results 

indicated that a 10% rule of refining and coarsening produced a difference of 6% (in peak 

flow of the hydrograph) compared to 10% rule of refining only technique. The 3D Eroding 

Models allow for the inclusion of lateral breach formation to predict flow features over a 

breached embankment and predict a breach discharge hydrograph. Three breach shape 

cases were simulated, namely the side-, trapezoidal, and triangle breach shapes. As a 

result, parameters such as velocity vectors at the breach area, free water surface profiles, 

and embankment volume lost during the breaching event were produced. The Eroding 

Model predicted that the initially triangular shaped beach produced 24% higher peak 

breach discharge compared with the trapezoidal shape. Comparisons of a maximum 

velocity at the breached area between the 3D Eroding Models and FLOW-3D simulation 

ranged from 11% to 52%. Meanwhile, the FLOW-3D simulation predicted more volume 

lost and peak discharge compared with observed data (Case Study E1) with a percentage 

difference of 42.7% and 30.2%, respectively.  
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ABSTRAK 

Kajian aliran limpahan berkaitan pemecahan benteng amat penting dalam pengurusan 

air, terutamanya dalam menyediakan plan tindakan kecemasan. Salah satu mekanisma yang 

menyebabkan pemecahan benteng adalah limpahan air melalui struktur banteng. Oleh itu, 

adalah penting untuk mengenalpasti zon-zon yang berisiko di mana pemecahan benteng 

mungkin berlaku disebabkan limpahan ini dan lokasi pembentukkan pemecahannya. Sifat 

perpecahan benteng ini akan memberi kesan yang signifikan ke atas aliran air limpahan yang 

dihasilkan, perubahan aras air takungan dan menyebabkan kenaikan paras air di bahagian hilir. 

Tesis ini mengkaji ciri-ciri aliran akibat pemecahan benteng tanah yang disebabkan oleh aliran 

limpahan air. Penyiasatan di makmal telah mengkaji ciri-ciri aliran yang menyebabkan 

perpecahan benteng; bagaimana hakisan berlaku dan faktor-faktor yang mempengaruhi 

pemecahan benteng. Analisis tidak berdimensi telah dilakukan untuk mengenal pasti 

pemboleh ubah yang berkaitan yang menyebabkan perpecahan benteng. Pembangunan model 

perpecahan benteng dibangunkan menggunakan kaedah ‘Computational Fluid Dynamics’ 

(CFD) untuk memodelkan corak perpecahan pembentukan punca pemecahan benteng. Kaedah 

ini memerlukan spesifikasi pembentukan punca pemecahan dan kelebaran kawasan 

pemecahan dan meramalkan hidrograf aliran limpahan yang dihasilkan. Dalam kajian ini, 

benteng dimodelkan sebagai media berongga (berliang) yang alirannya dianalisis 

menggunakan Hukum Darcy dalam bentuk umum. Hakisan dibentuk dengan mengurangkan 

daya rintangan di bahagian benteng yang berkemungkinan terhakis secara linear. Pengesahan 

model dilakukan dengan membuat perbandingan keputusan model simulasi CFD untuk 

pemodelan 2D dengan data yang dicerap di makmal. Benteng dimodelkan secara 2D dan 3D 

menggunakan model berbilang fasa, iaitu menggunakan kaedah ‘Volume of Fluid’ (VOF) dan 

model aliran gelora ‘Realizable Model’  untuk mengkaji ciri-ciri pembentukan air 

disebabkan pemecahan benteng. Hasil simulasi secara 2D bagi profil permukaan air dan 

kelajuan air bagi Model Benteng Tegar menunjukkan perbandingan yang baik dengan data 

yang dicerap di makmal. Bagi pemodelan benteng berliang, profil aliran menunjukkan 

persetujuan yang baik dengan Model Benteng Tegar yang tidak berlaku pemecahan. 

Pengesahan yang telah dilakukan bagi model 2D Benteng Berliang telah menunjukkan 

perbandingan yang baik, dari segi corak masa pemecahan dan aliran permukaan. Hasil kajian 

menunjukkan jumlah lebihan air menghampiri nilai teori dengan perbezaan peratusan sekitar 

13%. Kajian telah menggunakan teknik pembentukan grid dengan kaedah penghalusan grid. 

Teknik penghalusan dan pembesaran grid sebanyak 10% menghasilkan perbezaan peratusan 

aliran puncak hidrograf sebanyak 6% berbanding dengan kaedah 10% penghalusan grid 

sahaja. Model Hakisan 3D mengambilkira pembentukan perpecahan benteng bagi simulasi 

aliran melalui benteng yang pecah dan seterusnya menghasilkan hidrograf aliran limpah. Tiga 

jenis bentuk perpecahan yang disiasat adalah jenis perpecahan sisi, trapezoid dan segitiga. 

Parameter yang dihasilkan adalah vektor halaju, permukaan air bebas dan isipadu kehilangan 

semasa perpecahan benteng berlaku. Hasil simulasi model 3D menunjukkan bentuk 

perpecahan awal jenis segitiga menghasilkan aliran limpahan 24% lebih tinggi daripada 

bentuk trapezoid. Perbandingan halaju maksimum di kawasan perpecahan benteng bagi semua 

Model Hakisan 3D dibandingkan dengan FLOW-3D adalah di antara 11% - 52%. Manakala, 

simulasi FLOW-3D menghasilkan lebihan kehilangan isipadu benteng dan kadaralir puncak 

berbanding data cerapan (Kajian kes E1) dengan perbezaan peratusan 42.7% dan 30.2%. 

k
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background Study 

Earthen embankment is a type of hydraulic structures or effective 

infrastructures constructed to retain water. This structure is always related with the risk 

of its failure due to aging, lack maintenance and extreme hydrological events resulted 

in a disastrous flooding downstream. In general, the causes of fatal embankment 

failures are due to loss of embankment material stability (shearing failure in the dam 

body or sub-base), overtopping due to insufficient spillway capacity, internal erosion 

and surface erosion caused by an instability embankment structure during the intensive 

rainfall. In practice, the above-mentioned types of failures are interrelated and statistics 

have shown that failure due to overtopping represents approximately 40% for all 

embankment dam failures (Saluja et al., 2018).  

According to The British Dam Society (2007), there are over 3,000 

embankment dams in the United Kingdom, some of which dated from the 9th Century. 

It is estimated that the average age of embankment dams in Britain is over 100 years. 

Meanwhile, in the United States, there are more than 90,000 regulated dams. 

According to the National Dam Inventory (USACE, 2016), about 85% are earthen 

dams and many of these dams have been built for the purposes of flood control, 

tourism, hydroelectric generation and irrigation (Sasanakul et al., 2019). These dams 

have an average age of more than 50 years, and some are older than 150 years 

(USACE, 2016). Aging and deterioration affect the stability and reliability of the dams 

to operate properly during extreme weather events, which may in turn endanger the 

health and safety of residents and property downstream. It has been reported that 

hundreds of them have suffered failures throughout history. The main purpose of an 

embankment dam is to retain water like other types of dam, but the structure relies on 

its compaction strength and weight to resist the flow of water, in the same way as a 
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concrete gravity dam. Because of its age and earthen-filled material, an embankment 

dam needs to have regular maintenance to ensure strength, stability and safety.  

Embankment breaching is a complex process affected by many factors such as 

the embankment height, slope, material, and flow. There is a strong coupling between 

flow hydraulics and the changing geometry of the breached structure (Hager and 

Unger, 2006; Hahn et al., 2000; Hanson et al., 2005; Hassan et al., 2004; Mohamed et 

al., 1999; Powledge et al., 1989). The process involves the sediment-deposition at the 

downstream due to water pressure behind the dam that causes the instability of the dam 

structure leading to collapse. The result of breach opening and sediment transport 

towards the downstream valley is a crucial aspect to consider when dealing with an 

embankment failure to prevent damages and deaths. An embankment erosion happens 

when shear stress by fluid flow on its surface is high and sufficient enough to overcome 

the force that holds the particles together. The rate of erosion, so-called erodibility 

differs from cohesive to non-cohesive soil. Factors such as grain size portion, density 

and grain shape influenced the erodibility for non-cohesive soil. Mechanism of erosion 

of the embankment failure is due to the flow of the water through the embankment 

material. For example, the failure due to overtopping is due to high stresses at the 

downstream embankment face near the toe, leading to high potential for erosion.  

Breach parameters are obtained from simple regression equations based on 

dam and reservoir properties for embankment dams that fail by progressive erosion in 

most cases. Because real erosion processes are not modelled, the uncertainty of breach 

predictions is high. Inherent variation in the erodibility of embankment materials as a 

function of soil type and compaction and moisture conditions, and the effects of 

variability of embankment design, configuration, and geometry are factors increasing 

the uncertainty for embankment dams. The significant uncertainties associated with 

the simulation of breaches make it difficult to prevent the effects of dam failure 

accurately and to prepare for dam break flooding emergencies effectively. 

Embankment breaches have been studied either using physical experiments, 

numerical model simulations, and field observations. Most publications focus on 

embankment breaching, but studies on the mechanism of overtopping failure are very 
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limited due to the complexity of the erosion process (Freed, 1991; Singh, 1996 and 

Wahl, 2004). This include the determination of basic parameters that characterise the 

progress of the embankment failure such as time to failure, shape and size of the 

breach, progress of the failure and maximum breach discharge. The data can be 

obtained either based on historical observation or from the laboratory works. Without 

understanding the breaching process, one may overestimate the breached flood 

discharges. In this study, a numerical model is developed to simulate embankment 

breaching to understand and predict the consequences of what will happen when 

breaching occurred. Considering the complexity of the breaching process to resulting 

flooding, an approach of porous embankment is introduced to model the hydrodynamic 

of breach discharge in  two-dimensional (2D)  and three-dimensional (3D) flow model. 

This approach allows for a reliable dam break process model that would have the 

potential for the best outcomes.  

This study is to analyse flow characteristics of a porous embankment breaching 

due to overtopping. Several studies on porous media to characterise flow in open 

channels have been carried out, particularly on the behaviour of flow through the 

porous region, an application widely used in groundwater research. However, only a 

few of them comprehensively studied flow characteristics above the porous region, 

which is of interest. In other words, relevant literature on rigid porous regions was very 

difficult to obtain. This study therefore takes one step further to investigate 

quantitatively the characterisation of overtopping flow by the presence of porous 

media, as one of the new methods in modelling breaching embankments. The 

numerical approach undertaken is to model porous eroding embankment using 

ANSYS-FLUENT (hereafter FLUENT). In doing so, the embankment is assumed to 

be filled with porous material to allow sinks of momentum and turbulence to be 

specified. This study is also made to validate the capability of FLUENT in tackling the 

behaviour of overtopping flow over porous structures, particularly flow interaction at 

the interface of the fluid/porous region, which needs further investigation.  

Indeed, modelling a breaching dam due to overtopping using a porous medium 

approach leads to a new approach in dam break analysis. A physical-based numerical 

simulation of breach model was replicated to propose a dynamic simulation of 
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breached embankments using a porous medium approach. Therefore, the 2D and 3D 

Eroding Models are developed to model the patterns of breach embankment by 

lowering the embankment based on observation made from the experiments. The 

failure mode resulted exclusively from overtopping and it was governed by predefined 

lines and planes acting as surfaces of the embankment. Moreover, the porous eroding 

model has the capability to react instantly to the embankment surface failure to 

produce breach discharge. 

1.2 Problem Statement 

In practice, any dam or embankment that was designed and built to prevent 

flood, is in fact, acting as a boundary for an inundation area. When water has reached 

the embankment boundary, up to a maximum limit, the surplus capacity of water from 

the reservoir that spills over its banks may cause a collapse of the embankment. This 

is known as a breached embankment. The embankment is breached when part of it 

actually breaks away, creates a brink, and then allows a large opening for water to pass 

through it to flood the downstream valleys. The failure mode, whether sudden or 

gradual depends on the mechanism of the breach i.e. surface erosion or subsurface 

failure. For overtopping failure, the embankment surface has a potential to be eroded 

first rather than sudden breach i.e. due to piping, resulting the stored water washing 

out to downstream, thus causing catastrophic flooding. Indeed, with the urban and the 

increased frequency of extreme flood events, the behaviour of flood defences under 

these extreme conditions need to be investigated.  

The historical local event of embankment breach happened in Malaysia was in 

1883. The failure of the Kuala Kubu Dam destroyed the Kuala Kubu city in Selangor. 

The original Kuala Kubu Dam was established in 1780s to reduce the depth of the river 

for tin mining activities. The dam was about 1.6 kilometres long and over 91.4 meters 

wide. In 29 August 1883, a heavy downpour caused the dam to burst, which resulted 

in massive amounts of water flooding into Sungai Kubu. The embankment failed and 

as a result, the water flooded onto Kuala Kubu town and its surrounding area. The 

event killed 33 people and destroyed 38 houses. After 1883 event, there is no 

http://www2.arkib.gov.my/hids/print.php?type=A&item_id=8385
http://www2.arkib.gov.my/hids/print.php?type=A&item_id=8385
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embankment or dam failure occurred but there are some incidents happened. The latest 

dam breach happened in October 2013 where 4 people deaths due to excess water 

released from the Sultan Abu Bakar Dam in Pahang during the Monsoon (DID, 2017). 

Meanwhile, the most dramatic examples of embankment breach were happened in 

South Fork Dam (1889) in Pennsylvania (USA), the breaching of Nanak sagar Dam 

(1967) in India and the worst failure in history was the breaching of Banqiao Dam 

(1975) in China (Zhu, 2006). The failure caused enormous losses to both human lives 

and economic properties. Figure 1.1 shows the images of the dramatic historical 

embankment failures due to overtopping flow. 

    

(a) Banqiao Dam (1975)   (b) South Fork Dam (1889) 

 
(c) Nanak Sagar Dam (1967) 

Figure 1.1 Dramatic historical embankment failures due to overtopping flow 

 

 

Since the 1980s, computational methods have been in widespread use for 

routing floods caused by dam failure, and advanced 2D modelling capabilities are now 

popular. Most of these instruments are still focused on basic parametric representations 

of the flood wave-initiating breach occurrence. A user specifies the ultimate distance, 

depth and shape of the breach and the time needed for the development of the breach, 
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and the model simulates the flow at the defined rate through the breach as it enlarges. 

For examples in BREACH, DAMBRK, BEED, etc. (Singh, 1996). The BEED model 

has been developed for earthfill dams to simulate the breach erosion. It incorporates 

the processes of surface erosion and slope sloughing to simulate breach enlargement 

(Singh et al., 1988). Moreover, efforts have been carried out by USDA and HR 

Wallingford in the United Kingdom, leading to advances in the field via two large 

projects: CADAM and IMPACT. Even though the projects were started years ago 

there is still poor understanding of erosion mechanism and a need for re-evaluation 

(Wahl, 2009). 

The use of numerical modelling of free surface flows associated with breaching 

phenomenon is a fairly recent development in the field of river engineering. An 

analysis that includes fluid mechanics and embankment erosion is a complex problem, 

especially when defining boundary conditions to be coupled between flow and soil for 

hydrodynamic interaction. Aware of this concern, researchers have developed models 

to study breach problems and to produce the breach discharge hydrographs, leading to 

an extensive study of characteristics of breach models up to date. However, the 

available data on the numerous historical earth dam failures from the literature were 

limited and uncertainties, and sometimes contradictory to the source data of the same 

dam failure cases due to unreliable eye-witness reports (Wahl, 2004; 2009).  

The knowledge of breaching processes in embankments is still in need of 

exploration, even though many scholars have come out with analytical, mathematical 

and experimental works. It is still uncertain which method could provide the best 

solution to describe the breaching process experimentally and numerically, in 

particular to predict breach discharge hydrographs, in view of the complex breach 

processes involved. The first version of the sandy embankment breach model studied 

by Visser (1998) gave a reasonable agreement with field data at the first stage of the 

breaching process, but it overestimated the breach growth at the end of the process. 

The results, however, provide improvement of breach models such as SIMBA, 

WinDAM and many other commercial models that have been developed by European 

and United State consortia (Hanson et al., 2005; Hassan et al., 2004; Temple et al., 
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2006). None of the models developed were able to model the breach hydrodynamics 

of the breach progression.  

Thus, in 3D breach models, the headcut is constructed as an initiation to the 

breach so that the breach widening can be simulated laterally. As it was subject to 

flow, the headcut advances upstream along the embankment crest and at the same time 

vertically erodes the embankment. The growth process is modelled exclusively to 

investigate a process of surface erosion through a combination of vertical, lateral and 

headcut advance. This is not well understood at present because of the dynamic flow 

of the breach that triggers the erosion. 

1.3 Aim and Objective of the Study  

This study is aimed at understanding and analysing the flow characteristics 

associated with breach formation of a porous medium. The porous breach model to 

known later as an Eroding Model is developed to evaluate the ability of a CFD code, 

FLUENT, to model breach embankments and predict the breach discharge hydrograph 

and volume lost during the failure. To achieve the aim, several objectives are outlined 

as follows: 

1) To investigate the processes involved in earth embankment breach through 

laboratory experiments including the effects of embankment slope, inflow rate, 

sediment gran sizes and breach widening. The experimental result is compared 

with FLOW-3D model. 

2) To analyse and validate flow characteristics of overtopped embankments 

described by a Rigid Model compared to Intact Model to get a relationship of 

velocity profile, pressure distribution and shear stress profile at the interface of 

a porous and a rigid embankment.  

3) To develop a two-dimensional computational model of an eroding 

embankment with specific feature of analysing free surface flow, breach 

patterns and breached outflow hydrograph during embankment drawdown.   
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4) To develop a three-dimensional computational model to simulate and study the 

breach characteristics from various type of headcuts.  

 

1.4 Scopes of Study 

Computational methods have been in widespread use for routing floods 

triggered by embankment failure. In the present study, the terminology used for each 

model development may refer to Section 1.8. The scopes of the study are: 

 

(a) The physical model is conducted using a straight channel with a dimension 

of 12 m length, 0.5 m deep and 0.6 m width at the Hydraulics and 

Hydrology Laboratory, School of Civil Engineering, Faculty of 

Engineering, Universiti Teknologi Malaysia. 

(b) The Eroding Model is developed to model a breach of a homogenous 

embankment dam. In the proposed model, it has been assumed that the 

embankment is not covered with grass on the downstream surface to allow 

water to flow freely at the embankment crest. 

(c) The storage capacity of the reservoir is determined by input velocity at the 

inlet where the water is pumped from that point. This setup will keep the 

velocity rate at the inlet the same, resulting in a reduction of the reservoir 

water level as breaching takes place. This approach, however, is useful to 

predict the breach discharge hydrograph, especially with data of reservoir 

water surface which sometimes is inconsistent with the reported outflow 

hydrograph.  

(d) ANSYS-FLUENT is used to model the eroding porous embankment and 

validated with FLOW-3D software. 

(e) The initial width, depth and shape of the breach and the time required for 

breach development are defined by the user. 
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1.5 Research Questions 

In dealing with a fluid-structure interface, there is still a gap to model the 

breach embankment using a porous media approach accurately due to shearing stress 

and flow infiltration effect between the interface layer of porous medium and water. 

There are a few research questions need to be addressed;  

(a) What are the parameters that influence the breaching embankment? 

(b) What is the method to be adapted to model an Eroding Porous 

Embankment to analyse the breach flow characteristics? 

(c) What is the correlation factor to model the erosion using a porous 

embankment due to slip boundary at water-soil interface? 

(d) What are the outputs of different types of headcuts to initial breach for 

Eroding Model developed? 

(e) Does the Eroding Model able to visualise breach patterns, breach flow 

characteristics and quantify the amount of breach discharges in 2D and 3D 

applications?  

 

1.6 Significance of Study 

Many scholars understand the important mechanisms that may trigger the 

collapse of an embankment dam. Dynamic interaction between the soil properties and 

the hydraulic behaviour of overtopping that causes instability of the soil is one of the 

main factor that warrants great attention to avoid the embankment collapses. One has 

to keep in mind that the failure of high-water defences has been an immediate cause 

of many inundations. The rate of inundation is theoretically governed by the discharge 

rate through the breach, which depends on the process of breach erosion. The breach 

discharge rate is the most important parameter for any modellers and policy makers 

when investigating the failure of an embankment. In any failure observations, it is 

crucial to be able to produce observed breach discharge hydrographs, not only to 

investigate the mechanisms that trigger the breach, but also to identify detailed breach 

patterns and predict the breach discharge. 
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Since the 1980s, models that simulate real erosion processes have also been 

available to predict breach growth in embankment dams, but have not seen widespread 

use. Most of these models were focused on primitive simplifications of erosion and 

breaching processes that, in case studies and experimental experiments, have proven 

to be inconsistent with subsequent findings of breach mechanics. A lack of ability to 

calculate the erodibility of embankment materials and a deficiency of models that 

efficiently integrate accurate erodibility measures has limited the implementation of 

the models. The need for enhanced modelling of embankment dam erosion and breach 

procedures is now motivated by many factors. Risk populations in areas directly below 

large dams continue to grow, the significant effect of warning time on flood 

effectiveness has been recognised. Also, the procedures for risk assessment are 

increasingly being used to cost of preventing in dam protection. Therefore, breaching 

process and breach phase modelling helps to address both of these needs by enhancing 

ability to predict the breach discharge hydrograph and timing of the dam breach 

discharge. 

Thus, fundamental studies on breach discharge characteristics using a porous 

medium approach is an alternative to investigate how overflow may affect the 

embankment structure leading to lowering of the embankment and then visualise them 

in 3D applications. The proposed approach is a new method to analyse breaching 

embankments, particularly in analysing hydrodynamic flow over the breaching area 

and producing breach discharge hydrographs. It benefits to policy makers and 

government authorities in hazard mapping planning guidance for emergency 

evacuation. 

1.7 Model Limitations  

The present study consists of laboratory works and a numerical model 

development. The physical model is tested based on the erosion mechanism that causes 

the embankment to fail. However, due to the large complexity in driving the erosion 

process into the model development, the Eroding Porous Model only focuses on 

constant erosion rate for each time of breaching specified. In order to develop a linear 
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erosion model of a lowering embankment, understanding the possible effects of using 

a variable erosion rate and time to breach are tested. 

1.8 Terminology 

The following terminology is to be used throughout the text. 

(a) Zone – is a grouping of nodes, faces and cells, for examples the wall 

boundary zone and fluid cell zone. 

(b) Domain – is a grouping of cell zones. 

(c) Rigid Model – where the embankment is modelled using walls boundary 

condition without the embankment (the shape of the embankment is 

defined as rigid walls). 

(d) Intact Model – where the embankment is modelled using a porous 

embankment. The model can be modelled either using a sub-domain or 1-

domain approach. 

(e) Porous embankment – where the embankment is present as a porous media, 

which has a porosity and resistance. 

(f) Sub-domain approach – where the embankment domain is fixed and 

modelled using a porous medium. Breach patterns does not allow for the 

deposition process. 

(g) 1-domain approach – where the embankment domain can be placed 

everywhere in the domain. Breach patterns does allow for the deposition 

effect. 

(h) Eroding Model – where the embankment is modelled using a porous 

embankment, the extent of which is defined by a number of lines or planes. 

The line or planes can be moved with time. 

(i) Non-deposited Eroding Model – where the breached embankment does not 

consider the sediment deposited. The model uses the sub-domain approach. 

(j) Deposited Eroding Model – where the breaching embankment considers 

the sediment deposited downstream using 1-domain approach. 
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1.9 Thesis Outline 

This chapter provides an overview of the study, consisting of the aims and 

objectives to be achieved. These include the importance of the study, the problems 

underlined throughout the study to be addressed and improved, and the methodology 

used to model a breaching embankment using the new porous medium approach. 

Chapter 2 presents a general theory of flow over hydraulic structures in open channels 

and reviews some studies of breaching embankments due to overtopping both in 

experimental work and numerical modelling. Most of the breaching embankment 

literature identify erosion as the main mechanism of collapse and a few papers discuss 

breach patterns. Reviews on the evolution of breach progression are less widely 

discussed. Also, it describes the numerical modelling techniques using the CFD 

package, FLUENT. The choice of mesh resolution, initial and boundary conditions, 

turbulence models, and multiphase models are discussed. 

Chapter 3 explains the methodology to model an eroding porous embankment 

using a delimiter line approach in lowering the embankment in 2D model. A 

description of delimiter lines (predefined lines) and their movement via translation and 

rotation are presented step-by-step. A similar approach is used to determine a lateral 

breaching for a 3D Eroding Model. In contrast to the 2D model which uses lines to 

define the extent of the embankment, the 3D model uses planes to describe the 

embankment surfaces.  

Chapter 4 discusses the results of breaching mechanisms in a laboratory. 

Parameters such as the effects of embankment geometries, hydraulic characteristics 

and soil grain sizes leading to the breaching are analysed. Breaching outputs such as 

embankment volume lost, breached patterns, breached hydrograph and breached 

velocity are also analysed and compared with FLOW-3D. Sensitivity analysis on CFD 

techniques to simulate a Rigid Model and Intact Models (sub-domain and 1-domain 

approach) are carried out. These are: using walls to model the embankment and using 

a porous region by predefined three delimiter lines to model the porous embankment. 

The results such as free surface profiles, velocity, pressure and wall shear stress are 
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discussed and compared with Fritz and Hager (1998), that investigated flow over a 

rigid embankment.  

Chapter 5 presents the results of Eroding Models using the delimiter line 

method to model eroding embankments in 2D. The results of eroding models including 

breached outflow hydrographs are then discussed and model validations are made 

against data of two series of experimental work: non-deposited and deposited models 

of Lüthi (2005) to replicate a pattern of breached embankments. In the 3D Eroding 

Model results, breach flow characteristics in terms of free surface, velocity profile at 

breach, embankment volume lost, breach discharge hydrographs and breach shape are 

presented and validated with FLOW-3D.  

Chapter 6 presents a conclusion of the study and highlights a few 

recommendations of model improvement for future research.  
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