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ABSTRACT 

One of the major issues for drilling operations is achieving effective cuttings 

transport, particularly in extended-reach drillings (ERD) with horizontal and highly 

deviated sections. The main objective of the present study is to investigate and 

compare the application of different nanoparticles (NPs), such as nanosilica (SiO2), 

aluminium oxide (Al2O3), magnesium oxide (MgO), and copper oxide (CuO) for 

improvement in cuttings transport in a full wellbore section at both eccentric and 

concentric drill pipes. Water-based mud (WBM) was mixed with 0.13 and 0.26 wt.% 

of each of the NPs to create NP drilling fluids, which were then tested for rheological 

and filtration characteristics. The flow loop is 20 feet long, 2.4 inches wide (2.4-in. 

ID), and 1.4 inches thick (1.4-in OD). By circulating the tested fluid samples into the 

test section vertically to horizontally while controlling the flow rates (1.9, 2.15, 2.4 

L/s), cuttings sizes (1.10–1.4 mm; 1.5–1.7 mm; 1.8–2.0 mm), hole angles (0, 30, 60, 

and 90o), and drill pipe eccentricity (e = 0; e = 1.0), the cuttings transport experiments 

were carried out. Simulating actual field circumstances is the aim of such a change in 

the operating parameters. The parameter used to assess hole cleaning is known as the 

"cuttings transport ratio (CTR)," which is calculated as the weight of recovered 

cuttings divided by the weight of injected cuttings. According to the findings, 

conventional WBMs' rheological properties are successfully improved by NPs, which 

improves borehole cleaning and drilled cutting suspension. With a higher NP 

concentration, the WBM's filtration capabilities were enhanced. The ideal 

concentration of NPs for rheological characteristics is 0.13 wt.%, whereas the ideal 

concentration for filtration control properties is 0.26 wt.%. In contrast, MgO yielded 

the lowest CTR, followed by SiO2, Al2O3, and drilling muds containing CuO mud 

samples produced the highest CTR. Their unique morphologies and various 

interactions with bentonite in the fluid system were linked to these variations in CTR. 

The cuttings are best transported at 0°, then 30°, next 90°, with 60° being the least-

cleaning hole angle. Cutting behaviour is heavily influenced by the slope and geometry 

of the hole. At various flow rates, the concentric annulus provided a greater CTR than 

the eccentric drill pipe. However, flowrate is a major factor in eccentricity, and flow 

rates greater than 2.4 L/s may result in higher CTE pipe eccentricity. This research is 

the first effort to assess the use of various NP additions to improve the capacity of 

drilling fluids to circulate and move drilled cuttings out of the wellbore. With the help 

of NPs, the cuttings transport performance of WBM can be reasonably improved, and 

the project risks may thus be reduced. Thus, the study is expected to open new 

directions in developing NPs material as potential cuttings transport agents.    
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ABSTRAK 

Salah satu isu utama untuk operasi penggerudian ialah mencapai pengangkutan 

keratan yang berkesan, terutamanya dalam penggerudian jangkauan lanjutan (ERD) 

dengan bahagian mendatar dan sangat menyimpang. Objektif utama kajian ini adalah 

untuk menyiasat dan membandingkan penggunaan zarah nano (NPs) yang berbeza, 

seperti nanosilika (SiO2), aluminium oksida (Al2O3), magnesium oksida (MgO), dan 

kuprum oksida (CuO) untuk penambahbaikan dalam keratan. mengangkut dalam 

bahagian telaga penuh di kedua-dua paip gerudi sipi dan sepusat. Lumpur berasaskan 

air (WBM) dicampur dengan 0.13 dan 0.26 wt.% setiap NP untuk mencipta cecair 

penggerudian NP, yang kemudiannya diuji untuk ciri reologi dan penapisan. Gelung 

aliran adalah 20 kaki panjang, 2.4 inci lebar (2.4 inci ID) dan 1.4 inci tebal (1.4 inci 

OD). Dengan mengedarkan sampel bendalir yang diuji ke dalam bahagian ujian secara 

menegak ke mendatar sambil mengawal kadar aliran (1.9, 2.15, 2.4 L/s), saiz keratan 

(1.10–1.4 mm; 1.5–1.7 mm; 1.8–2.0 mm), sudut lubang (0, 30, 60, dan 90o), dan 

kesipian paip gerudi (e = 0; e = 1.0),eksperimen pengangkutan keratan telah 

dijalankan. Mensimulasikan keadaan medan sebenar adalah matlamat perubahan 

sedemikian dalam parameter operasi. Parameter yang digunakan untuk menilai 

pembersihan lubang dikenali sebagai "nisbah pengangkutan keratan (CTR)," yang 

dikira sebagai berat keratan pulih dibahagikan dengan berat keratan yang disuntik. 

Menurut penemuan, sifat reologi WBM konvensional berjaya diperbaiki oleh NP, 

yang menambah baik pembersihan lubang gerudi dan penggantungan pemotongan 

gerudi. Dengan kepekatan NP yang lebih tinggi, keupayaan penapisan WBM telah 

dipertingkatkan. Kepekatan ideal NP untuk ciri reologi ialah 0.13 wt.%, manakala 

kepekatan ideal untuk sifat kawalan penapisan ialah 0.26 wt.%. Sebaliknya, MgO 

menghasilkan CTR terendah, diikuti oleh SiO2, Al2O3, dan lumpur penggerudian 

yang mengandungi sampel lumpur CuO menghasilkan CTR tertinggi. Morfologi unik 

mereka dan pelbagai interaksi dengan bentonit dalam sistem bendalir dikaitkan dengan 

variasi dalam CTR ini. Keratan paling baik diangkut pada 0°, kemudian 30°, 90° 

seterusnya, dengan 60° ialah sudut lubang paling kurang pembersihan. Tingkah laku 

pemotongan banyak dipengaruhi oleh cerun dan geometri lubang. Pada pelbagai kadar 

aliran, anulus sepusat memberikan CTR yang lebih besar daripada paip gerudi 

eksentrik. Walau bagaimanapun, kadar alir adalah faktor utama dalam kesipian, dan 

kadar aliran lebih daripada 2.4 L/s boleh mengakibatkan kesipian paip CTE yang lebih 

tinggi. Penyelidikan ini merupakan usaha pertama untuk menilai penggunaan pelbagai 

tambahan NP untuk meningkatkan kapasiti cecair penggerudian untuk mengedar dan 

memindahkan keratan gerudi keluar dari lubang telaga. Dengan bantuan NP, prestasi 

pengangkutan keratan WBM boleh dipertingkatkan dengan munasabah, dan risiko 

projek boleh dikurangkan. Justeru, kajian ini dijangka membuka hala tuju baharu 

dalam membangunkan bahan NP sebagai agen pengangkutan keratan yang berpotensi. 
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INTRODUCTION 

1.1 Background of the Study 

Due to rising energy needs and declining production, continuous work is 

needed to expand new technological frontiers in oilfield operations. It is not possible 

to extract the hydrocarbon reserves found lower than shale and close to the depletion 

stage using conventional techniques. As a result, unconventional hydrocarbon sources 

beneath must be drilled with creativity(Hassan, 2013). Because of the complicated 

behaviour related to the rheological characteristics of the drilling fluids under diverse 

drilling situations and environments, improved forming and engineering designing of 

the mud  systems are essential to achieve a target of deep hydrocarbons reserves 

(Hassan, 2013). Different well types, including horizontal and deviated wells, are 

drilled to the pay zone to profitably extract oil and gas from reservoirs. Highly deviated 

wells, according to (Helms, 2008), have an inclination greater than 60° for the bulk of 

their length. Although drilling processes would need to be changed, it is possible to 

improve directional drilling methods to increase the inclination to 60–90°(Boyou et 

al., 2019). To drill these high-angle wells effectively, modifications to standard drilling 

rig equipment could also be necessary. A horizontal well is one that is dug at a 90° 

inclination and kept there for a long time. Horizontal wells are substantially more 

costly than normal deviated wells because they require specialized equipment and 

longer drilling times (Boyou et al., 2019). 

The ineffectiveness of conventional muds for efficient drilling and hole-

cleaning operations has been highlighted as in recent times when drilling in 

challenging situations, such as deep-water drilling operations and extended reach. 

Therefore, there is a need for innovative drilling fluids that can be effective in such 

circumstances (Boyou et al., 2019). To drill and produce safely and profitably, oil and 

gas operating and service companies are searching for many practical methods to 
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handle challenging situations. Oil-based muds (OBMs) made by micronized barite, for 

instance, were studied in the North Sea (Kageson-Loe et al., 2007). 

OBMs have shown encouraging results in shale inhibition, bit lubrication, and 

torque reduction(Rafati et al., 2018). Although, the use of OBMs in drilling operations 

is constrained in most drilling procedures due to their high procurement costs and 

treatment of hazardous waste. Water-based muds (WBMs) are currently preferred 

OBMs since they are more affordable and accepted by the environment (Rafati et al., 

2018). 

Initial drilling lubricant utilized during the operations of drilling was water 

(Brantly & Carter, 1961). Oil wells can be dug using just water; however, under static 

conditions, drilled cuttings cannot be suspended. Additionally, Absolutely not thick 

enough to maintain formation pressure and is unable to build an acceptable low-

permeable layer on top of permeable formations (BOYOU, 2019). In recent years, 

WBMs have included a range of additives. Examples of these include barite and clay, 

as well as other insoluble weighing components including alkalis, salts, surfactants, 

organic polymers in colloidal solutions, and others. The type of formation to be drilled, 

the presence of dispersive minerals at the formation, so the cost all influence the choice 

of additives (BOYOU, 2019). Heavy muds were developed by addition of dense 

minerals to enhance mud weight for the control of pressure, leading to advancements 

in WBMs. The market for heavy mud was created by increased drilling activity. 

WBMs, however, have problems of low stability and drilled cuttings lifting capability 

limitation (Islam & Hossain, 2020). When drilling in shale formation, the clay can 

easily disperse and swell in WBMs (Islam & Hossain, 2020). 

According to (Hall et al., 1950),removing cutting and sloughs is one of the 

drilling fluids' most crucial features. Drilled cuttings must be removed, especially in 

horizontal wells. Inadequate hole cleaning raises the potential for  drilled pipe to be 

trapped in addition to limiting penetration rates because of accumulation of drilling 

cuttings in the pore hole. Wellbore cleaning is significantly impacted by mud rheology 

(Hakim et al., 2018). However, prior studies' findings on mud rheological properties 

and its effectiveness in the cleaning of the hole process have been contradictory. High 
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viscosity values, according to (Peden et al., 1990), improve cuttings circulation 

capabilities in the deviated wells. However,  (Kelessidis et al., 2007) found whether it 

improves drilling mud viscosity in horizontal wells reduced hole cleaning 

effectiveness. This paradox may be brought on by the viscosity-induced transition 

from turbulent to laminar flow, which lessens the drilling fluid's capacity to clean the 

wellbore. Given that the flow regime is turbulent, (Walker & Li, 2000) stated that the 

results of (Kageson-Loe et al., 2007) in another study. They discovered that this 

condition works best in wellbore configurations that are horizontal or slightly inclined. 

They suggested that vertical or slightly inclined wellbores be drilled with a high 

viscosity drilling fluids that has a laminar flow regime. 

For the next following drilling fluid slurries, the cuttings' dynamic behaviour 

is influenced by their size and structure. Cuttings' size and properties in drilling fluids 

affect how quickly they are removed from the hole and brought to the surface. The 

effect of different size of cuttings  to efficiently clean the hole process has been the 

subject of several studies. Although earlier investigations (Peden et al., 1990) and  

(Walker & Li, 2000) found as the cuttings smaller in size so it is more difficult to 

transport, (Martins et al., 1996) discovered that larger cuttings are more difficult to 

circulate to the top. However, smaller cuttings can be transported to the surface more 

effectively if the drilling fluid's viscosity and rotation speed are high (Sanchez et al., 

1997). (Shadizadeh & Zoveidavianpoor, 2012) discovered that as the size of the 

cuttings increases, the lowest transit speed needed for rolling and circulation of 

cuttings decreases. Accordingly, less size of cuttings are therefore easier to transport 

in terms of minimum transit velocity. 

When drilling, particularly in inclined areas of a hole, gravity forces the drill 

string to rest on the low side of the borehole. Because of the extremely low fluid 

velocity, this introduces an eccentrically tight gap in the annulus the lower part of the 

drill pipe  (Pang et al., 2019).The drilling fluids' capability to circulate cuttings to the 

surface in this area of the annulus will be constrained. The particle and fluid velocities 

of the small gap decrease as eccentricity increases, especially with high-viscosity 

fluids (Boyou et al., 2019). But given that well trajectories during drilling operations 

affect pipe eccentricity, such detrimental influnces on the hole-cleaning operations 
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could be preventable. As a result, the effectiveness of cuttings removal decreases as 

pipes become less concentrically spaced (Boyou et al., 2019).  

Rotating velocity is more efficient in slanted wells than in vertical 

wells(Sanchez et al., 1997). This means that rotating drill pipes can improve cuttings 

conveyance on the constrained side of an eccentric wellbore. According to (Busch & 

Johansen, 2020), the best conditions for effectively executing pipe rotation are low 

penetration rates and small cuttings for severely deviated wellbores. Beyond a certain 

spinning speed, Taylor vortices can also aid in increasing the effectiveness of lifting 

horizontal sections (Sanchez et al., 1997). As a result, when removing microscopic 

drilled cuttings, the drill pipe rotation factor is critical to consider(Cayeux et al., 

2014).  

Fluid efficiency in drilling in carrying cuttings may be impacted by pipe 

eccentricity. The conveyance of cuttings is significantly impacted by the pipe's 

location within the annulus. The average velocity of the mud slurry in the annulus is 

influenced by drilling pipe eccentricity. Some of the variables that are altered are the 

carrying capacity index, cut-off concentration, transport velocity, and equivalent 

circulating density (ECD). When diverging from a concentric annulus with 0% 

eccentricity to partial eccentric annulus with 50% eccentricity and to a fully eccentric 

of 100%, cuttings transport is thought to be less effective. Furthermore, when the gap 

among the fracture pressure and the pressure of the formation is very small, excessive 

eccentricity can lead to significant fluid loss after formation breaking (Ozbayoglu et 

al., 2010). According to (Epelle & Gerogiorgis, 2017), greater cuttings conveyance 

results from decreased cuttings concentration once the pipe of drilling is concentric 

with the borehole. However, eccentric causes the drilled cuttings and fluid velocities 

to drop in the small gap, particularly for viscous fluid; therefore, eccentric has to be 

studied. 

When the annulus diverges from concentric to eccentric, the number of cuttings 

accumulation increases (Nazari et al., 2010). Cutting removal in deviated holes may 

be more successful than in vertical holes due to pipe rotation and eccentricity. This is 

due to the fact that the mud's ability to flow is enhanced by the average fluid velocity 
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and mechanical action that causes the pipe to spin (Heydari et al., 2017). These 

elements might have a big impact on how cuttings are moved using drilling muds 

(Heshamudin et al., 2019). (Ozbayoglu et al., 2008) investigated how pipe rotation 

affects CTE in holes with deviating and horizontal axes. They noticed that moving the 

drill pipe in a circular motion greatly enhanced cutting conveyance. 

(Mahmoud et al., 2020) used a multiphase flow system by several air and water 

flow rates to inject different quantities of cuttings into an experimental rig to study the 

motions of flow in the hole-cleaning operation. They discovered that frictional 

pressure losses may be quite well anticipated by comparing experimental data to 

recognised models.(Ogunrinde & Dosunmu, 2012) found important elements that 

affect cutting transport and bit hydraulics at various inclination degrees in a separate 

study. To save unproductive time, they created a prototype for forecasting the ideal 

flow rate as well as the rate of penetration.  

Similarly, to this, (Guan et al., 2016) uses the multi-dimensional ant colony 

approach to examine different hole-cleaning parameters in horizontal wells to enhance 

drilling operations. They discovered that when  rising the rate of the flow and pressure-

bearing capacity of the system can improve horizontal good hole cleaning. To improve 

the mud-lifting capabilities of water-based drilling fluids, (Boyou et al., 2018) tried 

polymer beads (polypropylene). They used various cutting sizes to evaluate cutting 

transport effectiveness in inclined static annuli and discovered that small size cuttings 

moved more effectively than big size cuttings because of the drag force on cuttings 

created by polymer beads. As opposed to that,, as cutting sizes reached bead size, the 

effectiveness of cuttings transport declined. 

Recently, the use of nanomaterials has become more widespread, especially 

among scientists. Petroleum development and production benefit from the wide range 

of uses of nanomaterials oil and gas industry and reservoir protection  (Belavadi & 

Chukwu, 1994). Studies indicate that the use of nanoparticles (NPs) greatly enhances 

the rheology of water-based drilling muds (Ariffin & Amir, 2011). (Irfan, 2016) 

discovered that regarding the cooling of bit, torque and drag reducing, viscous 
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behaviour, and low friction factors, nano-drilling fluids found to outperform traditional 

drilling fluids. 

(Irfan, 2016) found that in terms of cooling of bit, torque and drag reduction, 

viscous behaviour, and low friction factors, nano-drilling fluids performed better than 

conventional drilling fluids. A number of experiments that added nanoparticles 

including silica, carbon nanotubes, and aluminium oxide to water-based muds also 

showed improvements in thermal stability up to 160 °C (Kang & Li, 2011) .(Hoelscher 

et al., 2013) reduced pressure transmission in shale by physically plugging Marcellus 

and Manco's shale pores with nanoscale silica. The use of nanomaterials for fluid loss, 

rheological properties augmentation, and other reasons has been detailed in other 

studies that are outside the purview of this study. An extensive review of these efforts 

may be found elsewhere. In general, nanoparticles were used to solve a variety of 

drilling fluid challenges, including mud thermal stability at high temperatures, mud 

cake thickness, and filtrate volume reduction (Jain et al., 2015). 

1.2 Problem Statement 

Conventional WBMs confront severe and difficult formations, such as deep 

and ultra-deep formations and high temperature and high pressure (HTHP) conditions, 

which result in limited temperature stability and thermal degradation of the drilling 

mud above 257–266 oF (125–130 °C) (Yang et al., 2017). As a result, conventional 

WBMs are unable to perform their necessary role in the drilling process properly, 

including lifting drilled cuttings from the bottom of the hole to the surface and 

protecting the formation from drilling fluid intrusion. Therefore, WBMs should be 

formulated with NPs, which have been found to be extremely stable in deeper drilling 

depths and extreme downhole conditions. This will prevent the degradation of 

conventional WBMs under challenging drilling conditions and ensure that they 

continue to perform their functions of lifting drilled cuttings to the surface and 

ensuring minimal fluid loss into the drilled formation (Boyou et al., 2019) (Jokandan 

et al., 2016). 
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There has been a lot of research recently on the use of NPs to improve the 

rheological characteristics of drilling fluids, but none on how to enhance cuttings 

transport in the wellbore, with the exception of nanosilica (SiO2 NP) (Boyou et al., 

2019) and multi-walled carbon nanotubes (MWCNTs)  (Ariffin & Amir, 2011). The 

use of these SiO2 NP and MWCNTs, however, does not account for the effect of pipe 

eccentricity on cuttings transport performance, which could be necessary for efficient 

hole cleaning. Additionally, no laboratory research has been carried out on how 

alumina (Al2O3), copper oxide (CuO), and magnesium oxide (MgO) perform in the 

transfer of cuttings from the hole to the surface in a laboratory flow loop that is field-

oriented. Therefore, using various WBM formulations containing SiO2, Al2O3, CuO, 

and MgO NPs, this study investigated the effects of pipe eccentricity along with other 

drilling parameters such as pipe rotation, fluid velocity, cuttings size, and hole angle 

on the cuttings transport process. 

1.3 Research Questions 

The following research questions were used to guide the execution of this 

study: 

(a) How do SiO2, Al2O3, CuO, and MgO modify the rheological and filtration 

characteristics of the conventional WBM system? 

(b) Does the presence of SiO2, Al2O3, CuO, and MgO alter the conventional WBM 

system's ability to transport cuttings? 

(c) Does pipe eccentricity influence the efficiency of conventional WBM in the 

cutting transport process?  
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1.4 Research Objectives 

The general aim of this study is to examine the performance of WBM in lifting 

drilled cuttings out of the hole to the surface using different NPs. This goal was met 

by completing the following tasks: 

(1) To determine the performance of rheological and filtration properties of WBM-

free NPs and WBM with varying concentrations of SiO2, Al2O3, CuO, and 

MgO NPs at 25 °C. 

(2) To determine and compare between the cuttings transport performance of 

WBM-free NPs and WBM-containing NPs when the drill pipe eccentricity is 

concentric and fully eccentric. 

 

1.5 Scope of the Study 

(1) Formulation of a conventional WBM system without NPs. 

(2) Formulation of NP-based drilling muds by adding 0.13 wt.% and 0.26 wt.% of 

SiO2 NP, Al2O3 NP, CuO NP, and MgO NP into conventional WBM. 

(3) Measurement of the rheological properties (plastic viscosity, yield point, gel 

strength), pH, and density of all the formulated drilling mud systems at a low 

temperature of 25 °C. 

(4) Measurement of the filtration properties (fluid loss volume and filter cake 

thickness) of all the formulated drilling mud systems at low pressure and low 

temperature (LPLT) conditions of 100 psi and 25 oC, respectively. 

(5) Determining the cuttings transport performance of the WBM-free NPs and the 

WBMs containing NPs using NP optimum concentrations cuttings sizes of 1.0–
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1.4 mm, 1.5–1.7 mm, and 1.8–2.0 mm, hole angles of 0, 30, 60, and 90o at 

varied flowrates of 1.9 L/s, 2.15 L/s and 2.4 L/s in a concentric drill pipe 

(eccentricity, e = 0). 

(6) Determining the cuttings transport performance of the WBM-free NPs and the 

WBMs containing NPs using NP optimum concentrations cuttings sizes of 1.0–

1.4 mm, 1.5–1.7 mm, and 1.8–2.0 mm, hole angles of 0, 30, 60, and 90o at 

varied flowrates of 1.9 L/s, 2.15 L/s and 2.4 L/s in a concentric drill pipe 

(eccentricity, e = 1.0). 

1.6 Significant of the Study and Contribution to Knowledge 

This study is significant and can contribute to knowledge in the following 

ways: 

(1) To overcome the limitations of conventional WBM at high temperature 

conditions. 

(2) To increase the efficiency of drilling operation with improvement in cuttings 

transport process by using less-viscous and dispersible drilling fluid of NPs. 

(3) The cuttings transport performance of WBM could be simpler with NPs 

thereby improving the drilling process for greater oil productivity and reduced 

drilling time and cost. 

(4) The incorporation of the NPs into conventional WBMs may contribute to the 

addition of new knowledge on drilled cuttings recovery at the surface. 
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