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ABSTRACT 

 

 

 

 

This thesis reports an original research on the development of refractive index (RI) 

sensor based on all-fiber Mach Zehnder Interferometer (MZI). The research development 

process involved design and analysis of sensor structure using BeamPROP software, in-

house fabrication using pre-determined optical fiber splicing recipe and experimental 

work for verifying sensing performance. The fiber MZI sensor was realized from 

symmetrical offset of coreless silica fiber (CSF), where a section of CSF was spliced 

between two CSF sections in an offset manner. Thus, two distinct optical paths were 

created with large index difference, the first path through the connecting CSF sections and 

the second path at the outside of CSF through the surrounding media. RI sensing was 

established from direct interaction of light with surrounding media, hence high sensitivity 

can be achieved with a relatively compact sensor size. The use of CSF purposely to reduce 

the complexity of sensor fabrication as large diameter of CSF allows lower tolerance of 

getting the optimum offset distance. The offset distance was optimized using BeamPROP 

software for maximum fringe visibility at different sensor lengths. Fabrication recipe was 

meticulously refined and successfully employed in manufacturing the lateral offset 

structure. Three samples of sensor with different MZI arm length of 0.5 mm, 1.0 mm and 

1.5 mm were experimented for (RI) sensing. The highest sensitivity of 1025 nm/RIU was 

recorded by the sensor of 1.0 mm arm length for RI range between 1.335 and 1.350. The 

flexibility of the sensor structure was further manifested in temperature sensing by filling 

the secondary path with high-thermo-optic material. Substantial temperature sensitivity 

enhancement from 28 pm/ºC to 3220 pm/ºC was achieved with regard to the original air 

filled secondary path structure. With the main attributes of high RI/temperature sensitivity 

and compact size, the proposed sensor would be an attractive sensing tool for many 

applications including include blood diagnosis, water quality control and food industries 

in near future. 
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ABSTRAK 

 

 

 

 

Tesis ini melaporkan penyelidikan asal perkembangan sensor indeks bias (RI) 

berdasarkan semua-gentian Mach Zehnder Interferometer (MZI). Proses pembangunan 

penyelidikan ini melibatkan reka bentuk dan analisis struktur sensor menggunakan 

perisian BeamPROP, fabrikasi dalaman dengan menggunakan resipi sambungan gentian 

optik yang telah ditentukan dan kerja eksperimen untuk mengesahkan prestasi penderiaan. 

Sensor gentian MZI telah direalisasikan dari ofset simetri gentian silika tidak berteras 

(CFS), di mana satu bahagian CSF telah disambung di antara dua bahagian CSF dengan 

cara imbangan. Oleh itu, dua laluan optik yang berbeza telah dihasilkan dengan perbezaan 

indeks yang besar, laluan pertama adalah melalui bahagian cantuman CSF dan laluan 

kedua adalah di luar CSF melalui media sekitar. Penginderaan RI ditubuhkan dari 

interaksi langsung cahaya dengan media sekitar, maka kepekaan yang tinggi dapat dicapai 

dengan saiz sensor relatif yang padat. CSF telah digunakan untuk mengurangkan 

kerumitan fabrikasi sensor kerana diameter besar CSF membolehkan toleransi yang lebih 

rendah untuk memperoleh jarak optimum. Jarak ofset dioptimumkan menggunakan 

perisian BeamPROP untuk penglihatan pinggir maksimum untuk panjang sensor yang 

berbeza. Resepi fabrikasi telah ditapis dengan teliti dan berjaya digunakan dalam 

pembuatan struktur mengimbangi sisi. Tiga sampel sensor dengan panjang lengan MZI 

yang berlainan iaitu 0.5 mm, 1.0 mm dan 1.5 mm telah diuji untuk penderiaan RI. 

Kepekaan tertinggi 1025 nm/RIU dicatatkan oleh sensor panjang lengan 1.0 mm untuk 

rentang RI diantara 1.335 dan 1.350. Fleksibiliti struktur sensor dalam penginderaan suhu 

dengan lebih terperinci diuji dengan mengisi laluan kedua dengan bahan termo-optik 

tinggi. Peningkatan kepekaan suhu yang besar dari 28 pm/ºC hingga 3220 pm/ºC telah 

dicapai berbanding struktur laluan kedua yang diisi udara asli. Dengan ciri-ciri utama 

kepekaan RI/suhu tinggi dan saiz yang kecil, sensor yang dicadangkan akan menjadi alat 

pengesan yang menarik dalam waktu terdekat bagi banyak aplikasi termasuk diagnosis 

darah, kawalan kualiti air dan industri makanan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Referring to the American National Standards Institute [1], sensor is a 

device that provides a usable output in response to changes of specific quantities. 

The output of sensor can be in electrical signal (conventional sensor) or optical 

signals (optical sensor). Due to its well-known advantageous such as immunity to 

electromagnetic interference, small size and cost effective, fiber optic sensor 

(FOS) becomes more preferable in niche applications where the conventional 

electrical sensors are impractical. FOS is also capable to operate in harsh 

environment and at the same time provides comparable performance to the 

electronic sensors. With better performance and more reliable telecommunication 

links, the revolution also brings more benefits to FOS industry by “spin-off” the 

production of optical components in high volume rate. Thus, the growth of FOS 

technology becomes faster due to dramatically reduce of optical component price 

[2]. Until now, FOS technology is continuously researched to fulfill the needs of 

new emerging applications. FOS are being used in medical [3], [4], structural 

health monitoring of aircraft [5] and building structure [6], oil and gas industry [7] 

and also in food industry [8].  
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1.2 Fiber Optic Sensor 

 

Figure 1.1 shows the basic components of an optical fiber sensing system. 

It consists of a light source, optical fibers and a detector. Light emits from the light 

source will propagate through the optical fibers. When light passes through the 

sensor head, external perturbations (i.e. physical parameters) cause changes in 

optical properties. These physical parameters can be quantified from the changes 

of optical properties such as intensity (amplitude), frequency, polarization and 

phase. Wavelength-based sensing technique is one of the promising techniques 

available, whereby sensor response is measured from the wavelength change of 

the output spectra.  The optical signal that contains sensing information is detected 

by the optical detector. 

 

 

 

Figure 1.1 Basic elements in optical fiber sensing system 

 

 

Among the typical FOS types available are the  fiber laser [9]–[11], fiber 

gratings [3], [12] and fiber interferometer [13]–[15]. Fiber grating is a periodical 

change of refractive index on single mode fiber (SMF) which can be formed by 

high intensity UV laser scanning with a phase mask. It is considered as the most 

established and reliable technique in fiber sensor, however it also comes with the 

high manufacturing cost. Fiber laser is basically a fiber grating that written on 

active fiber such the erbium-doped fiber. While a fiber laser system is typically 

more complex than the fiber grating system, it is also provides much better 

performance and desirable for high end military applications such as hydrophone. 

Generally, implementation of fiber optic interferometer sensor is much simpler 

and cost effective compared to fiber gratings and fiber laser. Fiber interferometer 

has been used to detect various physical parameters such as temperature, refractive 

Light source 

Sensor head 

Optical Detector 

Optical fiber 

Optical fiber 
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index (RI), curvature, strain, vibration, and displacement. As shown in Figure 1.2, 

the major interferometer types can be categorized into Fabry Perot Interferometer 

(FPI) [16]-[17], Michelson Interferometer (MI) [18]–[20], Mach-Zehnder 

Interferometer (MZI) [21]–[23] and composite interferometer [24].  

 

There several techniques have been developed in order to produce RI 

sensor based on MZI. Among the available techniques in previous research 

including the implementation of lateral offset structure [14], [25]–[28], fiber taper 

method [29], [30] and large core diameter of MMF [31], [32]. In essence, there are 

two types of lateral offset structure being adopted in previous research. The first 

type involves offsetting the first fiber core with small lateral offset such that the 

light can spread into the core and cladding of the sensing fiber. Hence, detection is 

established from the interaction between the cladding modes with the surrounding 

perturbation [27], [28]. In contrast, the second type of the techniques requires 

large offset such that light from the lead in fiber is directly spread into the 

surrounding (e.g. air and liquid), as well as the cladding of a fiber, which creates 

two distinct interferometer arms with large RI difference. As a result, higher RI 

sensitivity can achieve attributed to direct interaction with the surrounding 

material [14]. Due to its high sensitivity from direct interaction, the sensor may be 

realized with small sensor size which is very much desired in practical 

applications.  However, it is believed that the existing designs require high 

fabrication precision which may difficult to implement using basic splicing 

equipment. This work proposed a new sensor design based on lateral offset of 

coreless silica fiber to overcome high fabrication tolerance requirement and at the 

same time retain the advantages of the direct interaction type sensor. Performance 

comparison between different techniques applied in the RI sensor will be 

presented in Table (2.1) at the end of Chapter 2 to justify the achievement of the 

proposed sensor.  
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Figure 1.2 Classification of fiber optic sensors 
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1.3 Problem Statement 

 

There are several techniques employed to realize fiber MZI for RI sensing in 

the way that light is split into two different optical paths. Sensing performance has 

been continuously improved with new designs.  Basically, the key performance 

parameters of a sensor are the RI sensitivity, easiness of fabrication process and 

sensor head size. Tapering [33] and laser ablation [34] techniques may require 

expensive tapering machine and laser system to perform the fabrication. Meanwhile 

sensor based on PCF [35]–[37]  , peanut structure [38] and fiber core mismatched 

[39], [40] techniques can be fabricated using basic splicing equipment. However, all 

of these techniques rely on evanescent field interaction of cladding modes with the 

surrounding which feasible by long optical path (which translate to sensor head size) 

in range of few centimeters. Their sensitivity can be improved by fiber tapering [35], 

[41] to enhance cladding mode leakage to surrounding. On the other hand, lateral 

offset technique can be further categorized into small offset and large offset 

techniques. Small offset technique [26], [27], [42] is basically identical to the PCF 

collapsed region, peanut structure and fiber core mismatched techniques in term of its 

sensing mechanism which is based on evanescent field interaction. Thus, it has the 

similar disadvantages as have been discussed. Several research works have 

demonstrated that the large lateral offset structure for RI measurement capable to 

improve the sensitivity performance up to thousands nm/RIU if compared with a few 

micrometer offset distance structure.  Previous research [14] involved with the use of 

single mode fiber as the sensing element in the lateral offset structure which is 

subjected to high precision requirement as the core diameter of the SMF is typically 

around 9 μm. Thus, allowable offset distance is only a few micrometers from core 

center in order to ensure the functionality of sensor. This suggests that slight 

misalignment in the range of micrometers could lead to unworkable sensor. In this 

work, coreless silica fiber with diameter of 125 μm is proposed to reduce stringent 

alignment requirement during fabrication and at the same time retain the high 

sensitivity of large offset structure.  
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1.4 Objectives of Research 

 

From the problem statement in the previous section, the objectives of this 

research can be stated as follows: 

 

1) To develop a compact size refractive index sensor based on large 

lateral-offset structure of coreless silica fiber.  

2) To characterize the sensor response towards refractive index changes   

through experimental work. 

3) To test the applicability of the sensor structure in high sensitivity 

temperature sensing.  

 

 

1.5 Scope of Study  

 

In order to provide a clear research overview, the scope of study is divided 

into two main parts which are design and simulation, and experimental work.  

 

 

1.5.1 Design and simulation  

 

The use of large offset structure in RI measurement is motivated from the 

development of the same structure for measurement of RI gas in previous study [14]. 

The reported study which attained great sensitivity performance was demonstrated 

using conventional SMF. Considering high alignment accuracy requirement using the 

SMF in the study, we propose a novel structure based on CSF to improve the 

suggested fabrication problem as previously discussed in section 1.3. In simulation 

works, the characteristics of proposed sensor structures with three different lengths 

are investigated. The effects of changing the offset distance at both offset splicing 

joints are observed while the optimum offset distance for a particular sensor length is 

chosen based on highest fringe visibility of simulated output spectra. Then, using the 
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optimized offset distance that determined from previous step, the simulation is further 

executed to generate field distribution along the fiber structures.  

 

 

1.5.2 Experimental works 

  

Experimental works involved fabrication, experimental setup and sensor 

testing. All of these works are carried out using in-house facility. Experimental setup 

to measure RI and temperature response of the sensor is prepared for both RI and 

temperature measurement. RI solutions with range 1.300 to 1.350 are used for RI 

measurement. Meanwhile, the sensors were tested in temperature variations between 

30 ºC to 100 ºC in order to investigate the susceptibility for temperature measurement. 

Further investigation to enhance the temperature sensitivity was also investigated and 

tested in lower temperature range between 26 ºC to 30 ºC. Labview software is used 

for real-time data acquisition. The recorded data from RI and temperature 

measurement are analysed offline by using Matlab software.  

 

 

1.6 Significance of Study 

 

Fiber optic RI sensors are widely used in industrial application such as 

biomedical, manufacturing and health monitoring system due to its well-known 

advantages over the conventional electrical sensor such as immune to electromagnetic 

interference, compact size and ruggedness performance in harsh surrounding 

conditions. Hence, it is crucial to provide better approach in order to produce the 

sensors in bulk quantity specifically for the industrial application. Previously, RI 

sensor based-MZI structure have been widely researched by develop various 

fabrication techniques. It is expected that MZI sensor based on large offset structure 

possess high potential in RI measurements, considering the direct interaction of fiber 

cladding with the measurands. In this study, emphasis is given on the sensitivity 

performance of large offset structure, and compact sensor design as it is more 
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preferable many of practical applications. Through implementation of systematic 

design process and fabrication procedures, high RI sensitivity has been achieved. The 

proposed structure is highly flexible as it can be utilized for detection of other 

parameters such as temperature, magnetic field, gas and relative humidity by simple 

setup adjustment. This is possible as long as the sensing mechanism relies on the 

change of RI at the second optical path. In this work, feasibility of the structure for 

high sensitivity temperature measurement is also demonstrated by filling the gap area 

with high thermo-optic RI liquid. 

 

 

1.7 Thesis Overview 

 

Chapter 1 presents the basic operations of fiber optic sensor. Starting from the 

basic principle of fiber optic sensor, FOS is further described. Classification of fiber 

interferometers are then made based on the existing techniques that have been 

achieved in previous studies such as collapsed region of PCF, fiber core mismatch, 

lateral offset structure and etcetera. Then, the formulated research problems are 

briefly explained which mainly concerned on the high tolerance requirement for 

fabrication process and low sensitivity performance of lateral offset structure using 

conventional SMF. The objectives of research and the scope of study are also 

presented.  

 

In Chapter 2, large growing body of literature review consist of three types of 

fiber interferometers including FPI, MI and MZI and their recent performance are 

further elaborated. All the related equations of MZI principle are presented to 

understand how the proposed structure response to RI and temperature changes.  

Discussion are also broadly covers the existing methods that have been used to 

develop the MZI sensor in previous study. The selection of CSF and recent 

development of CSF in application of fiber optic sensor has been discussed in detail at 

the end of the chapter. 
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While in Chapter 3, details on design specification and working principles of 

the sensor structure are presented. The steps involved to investigate the characteristics 

and sensitivity performance of the sensor including feasibility test, simulation work 

using BeamPROP software, fabrication procedure and the experimental works have 

been included.  

 

Simulation and experimental findings are reported in Chapter 4.  In general, 

there are two important result that have been extracted from the simulation results 

which are the optimized sensor design and distributed light along the fiber structures. 

The sensitivity performance of proposed sensor has been characterized based on the 

response in RI measurement. The response of sensor towards temperature variations 

and the long term stability characteristic of the sensor are also examined. The 

application of proposed structure for low temperature sensing is further investigated 

with a slight modification onto the sensor head.  

 

Finally, Chapter 5 concludes all the outcomes of the research works.  All 

suggested works as expansion of current topic the is also provided.  
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