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ABSTRACT 

Multivariate statistical process control (MSPC) has been widely used for 

quality prediction and monitoring in palm oil refinery processes. Currently, the 

refined, bleached deodorized palm oil (RBDPO) quality is determined based on the 

relationship between crude palm oil quality and process parameters, with the 

assumption that the process is static and not affected by the time-varying 

characteristic of the palm oil refinery process. However, the prediction is less 

accurate since the generated regression coefficients from static prediction models do 

not reflect the current process status and remain constant over time. Therefore, this 

study was conducted to introduce a new framework for regression coefficients 

improvement via dynamic prediction models. The dynamic prediction models were 

developed by integrating the MSPC prediction tool with time-series expansion 

methods where the prediction models were adapted to new process dynamics. Data 

collected from an industrial palm oil refining plant were used as the case study in this 

research. Four MSPC models, namely linear principal component regression (PCR), 

linear partial least squares (PLS), nonlinear principal component regression based on 

nonlinear iterative partial least squares algorithm (NIPALS-PCR) and nonlinear 

partial least squares based on nonlinear iterative partial least square algorithm 

(NIPALS-PLS) were used to determine the relationship between the quality and process 

variables. Time-series expansion methods were used to trace the dynamic behaviour 

based on five approaches, namely static, moving window (MW), recursive window 

(RW), exponentially weighted moving window (EWMW) and exponentially 

weighted recursive window (EWRW). The findings show that the combination of the 
linear prediction model with the time-series expansion method showed a more reliable 

prediction performance than the nonlinear prediction model. The performance of the 

PCR EWMW model in predicting the RBDPO quality is improved by 12.02 % 

(11.96 % for free fatty acid, 6.92 % for moisture content, 16.13 % for iodine value 

and 13.01 % for colour) compared to other prediction models. The sensitivity of the 

regression coefficients was also improved where the regression coefficients 

fluctuated very smoothly and showed high convergence to zero value when using the 

PCR EWMW model. This shows that the implementation of the linear dynamic 

prediction model was better than the static prediction model. Therefore, the linear 

dynamic prediction model for quality prediction was the best for it has the greatest 

prediction improvement and showed a better trend of the regression coefficient.  
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ABSTRAK 

Proses kawalan statistik multipembolehubah (MSPC) digunakan secara 

meluas untuk ramalan kualiti dan memantau kualiti dalam proses penapisan minyak 

sawit. Pada masa kini, kualiti minyak sawit yang ditapis, diluntur, dinyahbau 

(RBDPO) ditentukan berdasarkan hubungan di antara kualiti minyak sawit mentah 

dan parameter proses dengan andaian proses tersebut adalah statik dan tidak 

dipengaruhi oleh ciri berbeza-beza semasa proses penapisan minyak sawit. Namun 

begitu, ramalan tersebut kurang tepat memandangkan pekali regresi yang dihasilkan 

daripada model ramalan statik itu tidak menggambarkan status proses semasa dan 

kekal malar sepanjang masa. Justeru, kajian ini dijalankan bagi memperkenalkan satu 

kerangka baharu untuk peningkatan pekali regresi melalui model ramalan dinamik. 

Model ramalan dinamik dibangunkan dengan mengintegrasikan alat ramalan MSPC 

dengan kaedah siri masa berkembang, dengan itu model ramalan dapat disesuaikan 

ke dinamik proses baharu. Data dikumpulkan dari loji industri penapisan minyak 

sawit digunakan sebagai kajian kes dalam penyelidikan ini. Empat model MSPC, 

iaitu regresi komponen utama linear (PCR), regresi kuasa dua terkecil separa linear 

(PLS), regresi komponen utama bukan linear berdasarkan algoritma regresi kuasa 

dua terkecil separa bukan linear (NIPALS-PLS) dan regresi kuasa dua terkecil separa 

bukan linear berdasarkan algoritma regresi kuasa dua terkecil separa bukan linear 

(NIPALS-PLS) digunakan untuk menentukan hubungan di antara pembolehubah 

kualiti dan pembolehubah proses. Kaedah pengembangan siri masa digunakan untuk 

menjejak tingkah laku dinamik berdasarkan lima pendekatan, iaitu statik, tetingkap 

bergerak (MW), tetingkap berkembang (RW), tetingkap bergerak berwajaran secara 

eksponen (EWMW) dan tetingkap berkembang berwajaran secara eksponen 

(EWRW). Hasil kajian mendapati kombinasi antara model ramalan linear dengan 

kaedah pengembangan siri masa menunjukkan prestasi ramalan yang lebih 

dipercayai berbanding model ramalan bukan linear. Prestasi model PCR EWMW 

dalam meramal kualiti RBDPO bertambah baik dengan 12.02 % (11.96 % bagi asid 

lemak bebas, 6.92 % bagi kandungan kelembapan, 16.13 % bagi nilai iodin dan 

13.01 % bagi warna) berbanding model ramalan yang lain. Kepekaan pekali regresi 

juga bertambah baik di mana pekali regresi berubah-ubah dengan linear dan 

menunjukkan penumpuan yang tinggi ke nilai sifar apabila menggunakan model 

PCR EWMW. Ini menunjukkan bahawa pelaksanaan model ramalan dinamik linear 

lebih baik berbanding model ramalan statik. Justeru, model ramalan dinamik linear 

bagi ramalan kualiti adalah yang terbaik dengan penambahbaikan ramalan yang 

besar dan menunjukkan tren pekali regresi yang lebih baik.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

This chapter explains the purpose and content of the research. This chapter 

includes the research background, problem statement, research objectives, scope of 

research, and the significance of study and layout of the thesis. 

1.2 Research Background 

In today‘s consumer-driven world market, the manufacturing industries‘ 

ability to sustain maximum production efficiency and ensuring high product quality 

has become a great challenge. The whole manufacturing process has to operate at the 

minimum waste production, minimum cost of utilities and minimum reprocess of 

flawed product quality to maximise production. The traditional quality assurance 

process such as performing manual machinery checks are difficult to validate; hence 

the company looking for the side of caution and discarding more off-specification 

end products. The inconsistent end-product quality and time-varying process 

behaviour during the start-up process led to drag overall operational efficiency. To 

maintain the production of high standard product quality, modern manufacturing 

industries need to bring systematic quality control into existence by considering all 

parameters affecting the product quality. Hence, efficient quality prediction tools 

need to be developed such that the product quality can be predicted ahead of time.  

Multivariate Statistical Process Control (MSPC) has gained broad 

manufacturing industries' applications for quality improvement (Lestander et al., 

2012). MSPC is a technique to monitor and control of a process using statistical 

method. The implementation of MSPC quality tool such as control chart allows the 
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detection and correction of the process variation (Madanhire and Mbohwa, 2016). 

Therefore, this research aims to develop a reliable product quality prediction tool 

using the combination of MSPC and time-series expansion method to reduce the 

effect of process time-varying behaviour. This prediction tool's is developed to 

improve the predictor coefficient such that the quality can be predicted accurately 

and thus, reducing the production of off-specification end-products. A palm oil 

refinery process is chosen as the case study. 

1.3 Problem Statement 

The Crude Palm Oil (CPO) produced from palm oil mills undergoes physical 

refining, which consists of degumming, bleaching and deodorization processes to 

produce Refined Bleached Deodorized Palm Oil (RBDPO). Currently, the palm oil 

refining process has difficulties in predicting and maintaining the quality of RBDPO. 

The RBDPO quality is highly depending on the CPO quality and the process 

condition. For example, during rainy season, the moisture content and free fatty acid 

of CPO is increased, which eventually forced the refining plant to consume more 

utilities such as bleaching earth and steam in order to maintain the RBDPO quality. 

Hence, to ensure the exiting RBDPO quality meet the specified standards, most 

commercial refining plants opt to go for the reprocessing alternative, to rectify and 

refine the inferior product again, thus to prevent scrapping the product altogether.  

During the reprocessing, the off-specification RBDPO quality, for example 

RBDPO with high colour quality will be reprocessed from the beginning of the 

refining process to adjust the quality accordingly. However, to reprocess the off-

specification RBDPO, the manufacturing plants have to allocate a large amount of 

cost and processing time (Schweiger and Floudas, 2009). The recycle process 

consumed about 30 minutes to five hours, and the loss of profit was about RM 

159,000.00 per hour, mainly due to the production cost and opportunity loss (Makky
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 and Soni, 2014). Thus, by reducing the possibility of reprocessing, the refinery 

would save up to 10 % per day with average of two hours reprocessing per day. In 

brief, the inadequacy to determine the final quality of RBDPO leads to the delay of 

processing time and raises the processing cost. 

Conventionally, the quality of RBDPO can only be validated and inspected 

once the end product exits the refining process. Although it was possible for 

laboratory analysts to determine the qualities via chemical analysis and operator have 

access to massive amounts of process data, the analysts still need some more time 

and expertise to analyse and integrate the information with the RBDPO quality. This 

in-depth research and statistical analysis are far beyond laboratory analysts' scope 

and the operator‘s work. Besides that, the quality adjustment is made based on the 

tacit knowledge of the plant‘s supervisor, which cannot be easily comprehended for 

other operators to conduct the process condition readjustment.  

In order to improve the quality management in the refining plant, there is a 

need of a systematic quality prediction tool that can predict the RBDPO quality 

ahead of time using a statistical method. This quality prediction tool can reduce the 

dependence of reprocessing stream and transforming the tacit knowledge into a 

model which can be accessed and practised by other operators. Several quality 

prediction tools have been developed for palm oil refinery process. Rani and teams 

have developed a quality prediction tool for refining process based on the 

relationship between CPO quality and RBDPO quality only (Rani et al., 2015). On 

the other hand, Sulaiman and Yusof (2015) have successfully predicted the refined 

palm oil quality based on the relationship between CPO quality, process parameter 

and RBDPO quality.  

Although these two prediction models can predict the refined palm oil 

quality, the model is not robust since the models are developed with the assumption 

that the sample population's underlying behaviour is static and does not change over 

time (static prediction model). In static prediction model, the regression coefficients 

are generated only once through single regression model and remain constant over 

the time-series. The model does not adapt to new process dynamic, where the change 
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of process condition and quality of raw material over the time is neglected. This 

causes the accuracy of the prediction to diminish over time. Hence, there is a need to 

develop predictor that is automatically adapted to new process dynamic by 

developing the regression coefficient through dynamic prediction model as suggested 

by Shao and Tian (2015).  

In this study, the dynamic prediction model is developed through continuous 

learning of the process behaviour based on real time data in order to improve the 

prediction tools. The improved prediction tools are developed by integrating the 

information of CPO quality, process parameters and RBDPO quality, and implement 

the dynamic approaches known as time-series expansion method. In dynamic 

prediction model, the updated model combines the information from the original data 

with the data from a new sample to predict future data and allows the model to 

capture the changes in data behaviour over time. Through this study, the dynamic 

prediction model improves the regression coefficient through convergence to zero 

value and hence, reducing the probability of off-specification RBDPO production. 

By doing these, the palm oil refining plant can predict the incoming RBDPO quality 

such that the product quality can be systematically guaranteed, and thus optimal plant 

performance can be fine-tuned for better smooth running and productivity. 

1.4 Research Objectives 

This research aims to develop a framework of an adaptive prediction tool to 

optimize palm oil refining plant performance through the improvement of the 

RBDPO quality prediction. Therefore, to achieve the abovementioned aim, several 

objectives of this research have been planned, which are: 

a. To develop an adaptive linear and nonlinear quality prediction framework 

that can predict the RBDPO quality from the CPO quality and process 

parameters. 
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b. To generate the regression coefficients between input and output variables 

using linear and nonlinear Multivariate Statistical Process Control (MSPC). 

c. To compare the linear and nonlinear prediction models' performance by 

calculating the error of prediction and monitoring the control chart. 

d. To compare the developed prediction models' process capability index and 

regression coefficient values that can produce the RBDPO quality within the 

quality specification.  

1.5 Research Scopes 

This research requires several knowledge, including the physical refining 

process of palm oil and its parameters, statistical process control approaches related 

to industrial big data analysis, and quality monitoring and prediction concepts. The 

research scopes have been identified and listed as follows: 

a. Using data from a palm oil refinery plant located in Sabah, Malaysia as a case 

study.  

b. Developing the quality prediction tool using MATLAB software. 

c. Assessing the performance of the developed quality prediction tools. 

Prediction results obtained using MATLAB software was compared to the 

data from the refinery plant. 

d. Selecting output variables of interest and input variable using the reliefF 

algorithm. 

e. Determining the optimum sampling time using autocorrelation analysis. 

f. Determining the optimum processing time using cross-correlation analysis. 

g. Developing quality prediction tools using Principal Component Regression 

(PCR) and Partial Least Squares Regression (PLS), Nonlinear Iterative Partial 

Least Squares algorithm for Principal Component Regression (NIPALS-PCR) 

and Nonlinear Iterative Partial Least Squares algorithm for Partial Least 

Squares Regression (NIPALS-PLS).  
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h. Developing an adaptive prediction model using time-series expansion 

methods namely Moving Window (MW), Recursive Window (RW), 

Exponentially Weighted Moving Window (EWMW) and Exponentially 

Weighted Recursive Window (EWRW).  

i. Using a monitoring chart to monitor the process change (process behaviour) 

over time for both actual and predicted output variables.  

j. Measuring the error of deviation between actual and predicted output 

variables using Mean Absolute Error (MAE). 

k. Comparing the performance of prediction models using Unscaled Mean 

Bounded Relative Absolute Error (UMBRAE). 

l. Measuring the capability of the prediction models using process capability 

index. 

1.6 Research Significance 

This research is an excellent showcase of the practicality and significance of 

statistical process control and regressions as prediction techniques in terms of 

knowledge, technology, and community.  

a. Contribution to knowledge. 

The conventional quality prediction tools are developed by using linear 

regression model with the assumption the process behaviour is static and neglecting 

the change in the process condition and quality of raw material. For example, Sepuan 

(2017) has shown that the RBDPO quality can be forecasted using a linear static 

MSPC model based on the relationship between the quality of RBDPO and CPO 

only. The idea was further extended in this study by considering the refinery 

process's nonlinear and time-varying behaviour. This study improves the current 

quality prediction framework through the integration of nonlinear regression model 

with the dynamic approaches using time-series expansion methods. The regression 

coefficient is generated based on the relationship between the quality variables and 

process variables. This study also explores the possibilities of using normal statistical 
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techniques to estimate parameters that are unable to acquire in-situ. For example, the 

sampling time can be optimized via auto-correlation analysis for the industrial 

analysts to sample the CPO and RBDPO accordingly, to give the best randomized 

results.  

b. Contribution to the technology. 

Through the statistical prediction of RBDPO quality via adaptive MSPC 

models, this study can, hopefully, provide aid for the industrial personnel, especially 

for palm oil refinery industries, by creating an automated system via conversion of 

tacit knowledge into machine learning. Tacit knowledge is the know-how and 

intuitive knowledge, gain from experience and practices, which is hard to 

communicate since the knowledge resides in the mind of the practitioner. This tacit 

knowledge can be transformed into a mathematical modelling via machine learning 

through artificial intelligence (AI) where the data from the supply chains, production 

lines, quality control are linked together to form a highly integrated and intelligent 

engine. In this case study, the CPO quality, process parameter and RBDPO quality 

information are integrated and statistically computed into a mathematical model 

based on the training data.  

The monitoring chart developed from this adaptive prediction models provide 

the process insight and guidelines to the plant operators at the beginning of the 

refinery process. Action plans must be prepared to deal with any possible out-of-

specification condition, specifically during high-quality specification production. 

Action plans such as identifying the time where outliers input is expected to come 

into the process, monitoring the outliers and actions for adjustment on the off-

specification products, are therefore necessary to optimize the refinery process's 

efficiency. 

Besides that, with the monitoring chart's aid, the operators‘ schedule in 

operation can be efficiently managed where the plant manager can schedule the 

operators based on the product specification. For instance, the manager can schedule 

the junior operator, working during the production of low specification RBDPO 
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quality with normal or in-control process behaviour. For normal high specification 

quality production, both senior and junior operators can be scheduled to monitor the 

process. When the chart detected several outliers during the production of high 

specification RBDPO quality, the senior operator should monitor the process, 

perform the necessary action plans, and bring the process in control.  

c. Contribution to the community. 

This study is also the pioneering initiative to improve the big data analysis in 

the palm oil refining industry using MSPC, which makes a significant contribution to 

the widespread use of quality management. Big data analytic is one of the technology 

advancement in the 4
th

 Industrial Revolution (4IR) where technology implements 

human intelligence, such as thinking and learning through computers. For this case 

study, the data is integrated and analysed using predictive model, where the 

computer or program learns through data observation and identifying the pattern and 

trend of the process. Through the combination of artificial intelligent and big data 

analytic, the refining plant can find the optimal way to manufacture the RBDPO 

quality, and hence, improving the product quality.   

With this study, any uncertainty that arose during palm oil refining 

production can be efficiently minimized to maintain and satisfyingly guarantee the 

high-quality palm oil product. This study covers the use of MSPC, industrial big data 

and knowledge work automation, which also innovation to the palm oil refinery 

industry. 

1.7 Thesis Layout 

This study focuses on implementing linear and non-linear MSPC models with 

the time-series expansion method to predict the RBDPO quality adaptively. The 

outline of the thesis was stated as follows: 
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Chapter 1, the Introduction chapter, provides the research topic, research objectives, 

and scopes of the study's research and significance.  

Chapter 2, the Literature Review chapter, elaborates Multivariate Statistical Process 

Control (MSPC) through the scholarly articles related to the prediction and finding 

the gaps. To name a few, the reviewed articles included statistical analysis for time-

series, regression methods, statistical process control, an overview of the palm oil 

process flow and the modelling of a refinery plant as the case study. 

Chapter 3, the Methodology chapter, outlines the overall methodological framework 

and explains the procedures to conduct quality prediction for RBDPO quality. 

Chapter 4, the Results and Discussion chapter discuss the results obtained after 

executing the complete methodological steps in Chapter 3. The results include the 

optimum sample size, optimum sampling time, optimum processing time, regression 

coefficients, monitoring chart, prediction models' capability, and mean absolute error 

calculation.  

Chapter 5, the Conclusion and Recommendations chapter, provide closure to the 

research by summarizing the findings and highlighting the significance of the study. 

The limitation of the study was also acknowledged and recommendations were 

suggested to address the limitation in future study.  

1.8 Summary 

The first chapter of the thesis opens with the research background and 

describes the current issues in the refinery palm oil industry. This is followed by the 

objective and the scope of the research. The contribution of the study to the 

knowledge, technology and community are explained in the section on research 

significance. The chapter ends with the layout of the thesis.  
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