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ABSTRACT 

Precipitation affects modern satellite communication operating above 10 GHz 

frequencies causing deep signal fades, particularly in equatorial regions. Many studies 

had considered the Fixed Satellite Services (FSS), however recent studies show that 

the same conditions in FSS cannot be applied for Land Mobile Satellite (LMS) 

systems, as the LMS has completely different characteristics. The receiver of LMS is 

moving in complex environments where optimal propagation conditions are rarely 

fulfilled. Past studies on the LMS channel at Ku band and above considered 

exclusively the attenuation coming from the multi-path effect along the route. 

Nevertheless, limited attention has been considered to model tropospheric effects on 

the LMS. Thus, the present study aims to explore the LMS propagation channel 

operating at Ku and Ka bands, by addressing the problem of rain attenuation for mobile 

receivers in equatorial Malaysia. Investigated utilizing two years of meteorological 

radar observation in Kluang, Johor to obtain the rain rate time series for the area. Then 

the attenuation time series at Ku and Ka band frequencies are calculated. The 

attenuation results are then verified with link operating at Ku band at 12 GHz of a 

beacon experimental data to the satellite MEASAT-1, and a Ka band link data 

operating at 20 GHz, to the satellite Syracuse 3A. A statistical approach has been 

chosen and a modelling approach has been presented and detailed. The proposed 

approach builds upon well-established research on rain attenuation time series. Fixed 

and mobile cases are then simulated to assess the model effectiveness in estimating 

strong signal fades in equatorial regions. Additionally, we have reported a method to 

scale the cumulative distribution function, for a given attenuation exceeded in fixed 

terminals, to that for a given attenuation exceeded in mobile terminals, using simulated 

city patterns and simulated freeways. the scaling factor for different speeds and 

probability of directions was presented, ranging between 0.36-0.8 and is 20 percent 

higher in comparison with temperate regions. The speed of the mobile receiver was 

modelled as a lognormal random variable. In all cases, the results can be considered 

frequency-independent. We found that in inner-city roads results depending on 

movement speed modelling and starting conditions. While in freeways attenuation can 

change significantly in different straight lines and opposite directions. The movement 

of rain cells was also considered and a simulation over the radar coverage area was 

carried with multiple mobile terminals within it.   More than three hundred thousand 

different rain intensity values are generated during the simulation. It was observed that 

the terminals' disconnection ratio increases with rain intensity almost monotonically. 

However, for high rain intensities (above 50 mm/h) the exceedance probability is low 

(around 10−4). Nonetheless, 10 percent of the terminals become disconnected even at 

relatively low rain intensities (around 20 mm/h). It is shown that this propagation study 

may provide significant aid, in LMS system simulations and the design and 

optimization of fade mitigation techniques (FMTs). This work also shows that the 

LMS system requires unique treatment when designing such systems, taking into 

account that the channel modelling should study the mobility and the rainfall effects 

concurrently.  
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ABSTRAK 

Presipitasi mempengaruhi komunikasi satelit moden yang beroperasi pada frekuensi 

tinggi menyebabkan isyarat mengalami pemudaran yang tinggi, terutama di kawasan 

khatulistiwa. Banyak kajian tertumpu kepada sistem Fixed Satellite Services (FSS), namun 

kajian terbaru menunjukkan bahawa kajian ke atas FSS tidak dapat diaplikasikan pada sistem 

Land Mobile Satellite (LMS), kerana LMS mempunyai ciri yang sama sekali berbeza. 

Penerima LMS juga bergerak di persekitaran yang kompleks di mana keadaan perambatan 

optimum jarang dipenuhi. Kajian lepas pada sistem LMS jalur-Ku dan ke atas, mengambil kira 

secara eksklusif pelemahan dari kesan multi-path di sepanjang laluan. Namun, kajian tidak 

tertumpu kepada permodelan kesan troposfera pada LMS. Oleh itu, kajian ini bertujuan untuk 

meneroka saluran penyebaran LMS, dengan menangani pelemahan oleh  hujan yang di alami 

oleh penerima mudah alih di khatulistiwa Malaysia. Kajian melibatkan penggunaan data radar 

meteorologi selama dua tahun di Kluang, Johor bagi memperolehi taburan kadar hujan siri 

masa. Seterusnya, pelemahan siri masa bagi jalur frekuensi Ku dan Ka di hitung. Nilai 

pelemahan isyarat in seterusnya di sahkan dengan pengukuran penerimaan isyarat jalur Ku 

pada 12 GHz dari satelit MEASAT-1 dan pengukuran isyarat beacon jalur Ka pada 20GHz 

dari satelit Syracuse 3A. Pendekatan statistik telah di ambil dan pendekatan pemodelan telah 

dikemukakan dan diperincikan. Pendekatan yang dicadangkan adalah berdasarkan kajian yang 

mendalam mengenai pelemahan hujan siri-masa. Pendekatan yang di ambil melibatkan 

penggunaan kajian pelemahan hujan siri-masa yang terkemuka. Simulasi keadaan statik dan 

bergerak dilakukan untuk menguji keberkesanan model terutamanya bagi keadaan pelemahan 

hujan yang tinggi di kawasan khatulistiwa. Juga, kaedah penskalaan masa kumulatif 

pelemahan tertentu bagi terminal statik pada sesuatu masa, kepada nilai pelemahan tertentu 

bagi terminal bergerak menggunakan corak simulasi bandar dan simulasi lebuh raya telah 

dilaporkan. Faktor penskalaan bagi kadar kelajuan yang pelbagai dan kebarangkalian pelbagai 

arah yang diperolehi adalah dalam julat 0.36 hingga 0.8 dengan nilai 20 peratus lebih tinggi 

berbanding kawasan beriklim sederhana. Kelajuan penerima bergerak telah dimodelkan 

menggunakan pemboleh ubah rawak lognormal. Keputusan bagi semua keadaan menunjukkan 

ianya tidak dipengaruhi oleh frekuensi. Didapati bahawa keputusan bagi jalan raya pusat 

bandar bergantung kepada permodelan kelajuan pergerakan dan keadaan permulaan. 

Manakala pelemahan di lebuhraya pula menunjukkan perubahan yang sangat signifikan bagi 

perbezaan pergerakan garis lurus dan arah bertentangan. Simulasi dilakukan dengan 

melibatkan pergerakan sel, dengan  beberapa terminal bergerak dalam kawasan liputan radar 

yang di kaji. Simulasi melibatkan penjanaan lebih dari tiga ratus ribu kadar hujan yang 

berbeza. Didapati bahawa nisbah pemutusan terminal meningkat secara monotonus dengan 

peningkatan kadar hujan. Namun, bagi kadar hujan yng tinggi (melebihi 50 mm/j), 

kebarangkalian terlampau adalah rendah (sekitar 10-4). Walau bagaimana pun, 10 peratus 

terminal akan terputus walau pun pada kadar hujan yang rendah (sekitar 20 mm/j). Kajian ini 

berjaya menekankan kepentingan melibatkan kajian perambatan dalam simulasi LMS dan reka 

bentuk serta pengoptimum teknik mitigasi pemudaran (FMT). Kajian ini juga mendapati 

bahawa sistem LMS memerlukan pendekatan tersendiri dalam mereka bentuk permodelan 

saluran dengan mengambil kira kedua-dua faktor mobiliti dan kesan hujan secara serentak.  
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INTRODUCTION 

1.1 Introduction 

Our generation has witnessed a revolution in wireless communication systems. 

A long time has already passed since the first mobile services were introduced to the 

public in the 1980’s and the 1990’s, and nowadays cell phones and wireless networks 

can be found everywhere. People expect to have a mobile connection and fast internet 

access wherever they go. For this reason, current and future telecommunication 

markets are pushing towards wide bandwidth with high-speed data rates due to the 

increasing demand from the end user and the congestion of the lower frequency bands. 

Thus, telecommunication service providers are required to offer the systems that 

operate at high frequencies, typically in the Ka band (20 GHz) and above Q/V bands 

(40/50 GHz) [1]. 

With rapidly growing telecommunication technologies, a mobile receiver with 

high data throughput becomes more and more important. Terrestrial mobile 

communications infrastructure has made deep inroads around the world. Even rural 

areas are obtaining good coverage in many countries. However, there are still 

geographically remote and isolated areas without good coverage, and some countries 

do not yet have coverage in towns and cities. On the other hand, satellite mobile 

communications offers the benefits of true global coverage, reaching into remote areas 

as well as populated areas. This has made them popular for niche markets like news 

reporting, marine, military and disaster relief services. However, until now there has 

been no wide-range adoption of mobile satellite communications to the mass market.  

Current terrestrial mobile communication systems are inefficient in the 

delivery of multicast and broadcast traffic, due to network resource duplication (i.e. 

multiple base stations transmitting the same traffic). Satellite based mobile 
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communications offers great advantages in delivering multicast and broadcast traffic 

because of their intrinsic broadcast nature. The utilization of satellites to complement 

terrestrial mobile communications for bringing this type of traffic to the mass market 

is gaining increasing support in the standards groups, as it may well be the cheapest 

and most efficient method.  

Current mobile satellite communication systems however often suffer from 

poorer Quality of Service (QoS) due to high path loss, shadowing, blockage, 

tropospheric effects, limited satellite power and high link delay. Unfortunately, even 

with state of the art high power satellites with narrow spot beams or multiple satellite 

constellations, link availability is not always possible when the signal is blocked by 

buildings, and indoor coverage is often poor. With future satellites providing 

substantially more radiated power and possibly using diversity techniques, users may 

someday perceive the same QoS from a satellite or terrestrial communication system. 

However there is a long way to go before this is achieved. Satellite communication 

system operators are always trying to achieve adequate QoS with the minimum fade 

margin (and therefore cost). A figure of 16.5 dB was used in the Iridium constellation 

system [2]. However, signal blockage can easily be 30 dB or more, and the link would 

be dropped. Even with multiple satellites offering satellite diversity, signal availability 

is not guaranteed.  

The future mobile satellite systems will provide some major changes to the 

current systems. It will be designed to deliver higher capacity with the use of higher 

frequency band [3,4], such frequencies will suffer from the strong attenuation 

phenomena due to atmospheric effects. Among these, rain is the certainly dominant 

impairment that limits the reliability and high availability of the system. In fact, this 

phenomenon is particularly significant in the extremely heavy rain region (i.e. 

equatorial regions) [5]. In this situation, signal fades due to the rain can no longer be 

overcome by static power margins, instead application of advanced Propagation 

Impairment Mitigation Techniques (PIMTs) are necessary [6].  

The implementation of such smart strategies as well as the design of modern 

telecommunication system requires the detail’s knowledge of precipitation 
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characteristics. Temporal dynamics of the propagation channel is highly dependent on 

the dynamics of rain events. On the other hand, the knowledge of spatial rain structures 

over specific range of distance can serve as a crucial input for the mobile satellite 

channel model when optimizing the Radio Resource Management (RRM) to obtain 

high traffic throughput with a given limited resources. In fact, such information shows 

it might vary from location to location, specifically in tropical/equatorial region with 

high intensity rain localized in a small area.  

To this end, various research projects aimed at tackling these issues being 

actively carried out. Unfortunately, most of the studies are concentrated in temperate 

regions which exhibit much lower rainfall intensity with respect to the 

tropical/equatorial regions. In fact, the findings or model proposed for the temperate 

region might not reflect the dynamics and actual rainfall structure in equatorial and 

tropical areas. Although several propagation studies have been carried in the past few 

decades at several locations lying in heavy rain regions such as Brazil, India, Indonesia 

and Singapore [7]–[9], however, most of the studies focused mainly on fixed services 

rather than mobile terminals. 

As a consequence, spatial and temporal properties of precipitation in these 

heavy rain regions remain as interesting topics to be explored by the propagation 

communities. This work will discuss the rain attenuation effects, as the rain will remain 

the biggest challenge, especially in tropical regions such as Malaysia [10], [11]. 

1.2 Problem Statement  

Variations in the atmospheric condition have a major effect on earth-sky 

channel performance, particularly at frequencies above 10 GHz [10], [11]. Rain 

attenuation at Ku-band has a dominant impact on signal attenuation in space, followed 

by cloud attenuation [12]. Consequently, such channel impairments increase the need 

for developing channel models to predict the atmospheric fade level and for proposing 

a proper Fade Mitigating Technique (FMT). Raindrops and cloud content of liquid 

water absorb and scatter signal energy, resulting in degradation of performance level 
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of instantaneous energy to certain values, depending on the instantaneous weather 

parameters.  

Channel modelling for Land Mobile Satellite (LMS) systems that incorporates 

weather dynamics effect has recently gained interest for frequencies above 10 GHz 

[8]. Atmospheric variations are higher in tropical regions than in temperate areas 

because of their different weather parameters [10], [14]. Consequently, recent 

advances in satellite communication technologies in the tropical regions have led to 

significant increase in the demand for services and applications that require high 

channel quality for mobile satellite terminals [13]. Several rain attenuation prediction 

models [14]–[17] have been developed and have gained worldwide acceptance. These 

models were developed through many years of monitoring and observations and were 

proposed for application to temperate and tropical regions. However, some studies [5], 

[18]–[20] proved that these models have a significant inaccuracy level when applied 

to tropical regions on the basis of their specific atmospheric parameters. Moreover, the 

signal propagated in the satellite communication link is affected by cloud impairments. 

Cloud effect should be considered in the design of LMS channel models for 

frequencies above 10 GHz; otherwise, serious problems may be encountered because 

of the inaccuracy of the model, particularly during cloudy weather [18]. Clouds in 

tropical regions are more dense and cause more attenuation than those in temperate 

regions [15].  

Channel dynamics, along with the lack of an accurate and reliable channel 

model for satellite networks in tropical regions, increase the need to develop a channel 

model for these regions to replace the existing channel models that were previously 

developed in temperate regions. Thus, the effective atmospheric impairments in the 

tropical regions, namely, rain, cloud, and tropospheric scintillation, on the channel 

performance and quality should be considered to index the atmospheric fade level and 

to select a suitable FMTs. 

Subsequently, more accurate weather impairments modelling for mobile 

terminal in tropical regions becomes a necessity and a challenge because the model 

should approach the realistic measured channel impairments under different weather 
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conditions. In addition, channel impairment measurement campaigns have not been 

conducted yet for mobile terminal scenario at Ku-band; therefore, measurements of 

LMS channel performance under a rainy environment are highly needed and can be 

added to the global database. Such measurement campaign can be used to recognize 

the accuracy of the proposed channel models. Moreover, rain-induced attenuation 

calculated in these measurements can be easily scaled to investigate the channel 

condition using different frequencies and movement speeds as well should be 

considered in the design of the impairments produced in LMS systems. 

1.3 Research Objective 

In regards to recent technological advances and problems mentioned above, 

the main goal of this study is to provide critical information for the propagation 

channel model in space and time for land mobile satellite (LMS) services in equatorial 

areas, particularly in Malaysia. More specifically, the main research objectives are 

listed below:  

1. To analyse the rainfall statistics and rain cell characteristics based on measured 

weather radar data in Malaysia.  

2. To investigate the rain effects on Land Mobile Satellite Links links and develop 

scaling model to predict the induced attenuation from measurements of fixed 

satellite terminals. 

3. To evaluate the performance of Land mobile satellite links in different 

scenarios in tropical climate and provide a criterion for the improvement in site 

diversity technique. 
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1.4 Research Scope  

This study focusses on the rain attenuation effects on LMS communication 

systems in a tropical region, namely Malaysia, based on two years data (2007-2008) 

obtained by the metrological radar station in Kluang, Malaysia, and verified by several 

tipping bucket rain gauges located in Universiti Teknologi Malaysia (UTM) Skudai. 

Additionally, The results are verified with link operating at Ku band at 12 GHz of a 

beacon experimental data collected at Kuala Lumpur to the satellite MEASAT-1 in the 

year August 1996 to July 1999, and a Ka band link data operating at 20 GHz collected 

in Johor, to the satellite Syracuse 3A, in the period 2015-2016.  The datasets used in 

this study are described in Table 1.1. 

Table 1.1 Datasets used in the study. 

Dataset Description  
Time period 

of dataset 

Reason of dataset use 

Metrological 

Radar 

images 

S-band weather radar 

managed by Malaysia 

Meteorological 

Department located at 

Kluang, Johor (latitude 

2.02° N, longitude 103.3° 

E), Malaysia.  

The database consists of 

69,351 rainfall maps. 

2 years 

dataset 

2007 -2008 

First it was used for the 

analysis and modelling 

of horizontal structure 

of rain cells. 

Then the horizontal 

structure was extended 

to 3D area to simulate 

the coverage of LMS 

System 

Satellite 

Link 1 

link operating at Ku band 

at 12 GHz of a beacon 

experimental data 

collected at Kuala Lumpur 

to the satellite MEASAT-

1 

August 

1996 to July 

1999 

To evaluate the 

statistics of rain 

attenuation on 12 GHz 

links in tropical 

regions. Then to be 

used for the simulation 

of LMS links scenarios 

and compare and verify 

the results  

Satellite 

Link 2 

Ka band link data 

operating at 20 GHz 

collected in Johor, to the 

satellite Syracuse 3A.  

2 Years 

2015-2016. 

To evaluate the 

statistics of rain 

attenuation on 20 GHz 

links in tropical 

regions. Then to be 

used for the simulation 

of LMS links scenarios 

and compare and verify 

the results 
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Tipping 

bucket rain 

gauges 

3 rain gauges that are 

installed on the same roof 

as the satellite link 2. With 

different time periods 

RG0  

3Years  

1998-2000 

RG1  

3Years 

2015-2018. 

To generate the time 

series of rain rate and 

compare it with the 

time series of rain 

attenuation to verify 

the records of the link. 

Further, it was used to 

compare point rain rate 

statistics to radar 

coverage rain rate 

statistics  

 

The research scopes are:  

1. Analyse the local climatology characteristics (i.e. seasonal and diurnal variations) 

in equatorial Malaysia based on the one-minute rainfall rate dataset recorded for 3 

years.  

2. Further improve currently available rain attenuation models for the LMS 

communication application which reproduces the physical mechanism underlying 

the precipitation-attenuation phenomena as much as possible in this heavy rain 

region.  

3. Validate the performance of the proposed model with respect to the beacon 

measurement results from the MEASAT satellite and Syracuse 3A.  

4. Exploit the new proposed model to demonstrate the performance of LMS system 

in the heavy rain region.  

5. Asses the performances of LMS systems in equatorial Malaysia through the all-

weather radar images.  

6. The analyses in this thesis work focus on several frequencies in Ku, Ka and Q/V 

band, such as, 12 GHz ( MEASAT satellite) , 18.9 GHz (WINDS satellite), 20 GHz 

and 30 GHz (common operating frequency in Ka band) , 28 GHz (downlink 

frequency allocated by ITU to High Altitude Platform Stations (HAPs) in 
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Malaysia), 48 GHz ( Q/V band frequency that is planned to be used in the next 

future for satellite services).  

7. The locations of the analyses in this work are restricted only to the locations in 

Peninsula Malaysia covered with Kluang meteorological radar station and southern 

peninsula Malaysia (Johor) for rain gauge verification and satellite links.   

Ultimately, the work done here is intended to provide the necessary procedure 

to follow when designing higher-frequency LMS communication links in tropical 

regions. The data collected and the result presented will be highly beneficial to the 

design and execution of LMS links.  

1.5 Research Contributions  

The Mobile satellite communications will play a significant role in the 5th 

generation mobile services. The use of high-frequency bands will be the enabler of this 

advancement. However, at high frequencies, excess rain attenuation causes severe 

signal losses and presents a major threat for the system availability, especially in the 

tropical region.  To that end, this study presents the rain attenuation impact on mobile 

satellite communications estimated using long-term radar measurements in Malaysia, 

by exploiting the horizontal structure of rain from the radar database and simulating 

inner-city and highway mobile terminals scenarios. The following are the points 

identified to be the main contributions:  

1. The first contribution concerned the characterization of rain intensity distribution 

and temporal and spatial characteristics of rain cells from the weather radar 

measurement at equatorial Malaysia. Such parameters are particular importance 

for the calculation of rain induced attenuation for the design of rain attenuation 

models. These parameters are presented for the first time in the content of LMS 

link scenarios on maps created based on radar database in Malaysia.   

2. The second contribution is to develop an appropriate rain attenuation model for 

land mobile satellite communication application in equatorial Malaysia. The main 
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advantage of this model lies in its adaptability to the local precipitation physical 

mechanisms which can be extended to any other equatorial site. A scaling factor is 

presented for the first time in equatorial region, with details on the use of it with 

different LMS scenarios. The factor can be used to calculate the expected rain 

attenuation on LMS  link by scaling the available fixed link data. 

3. The third contribution investigating the availability of the LMS system during 

different rain scenarios, which can serve in selecting a mitigation technique to 

maximize data throughput for future systems, based on the defined model. Several 

scenarios were simulated and the availability of an entire LMS system was 

presented. 

4. The Fourth contribution to this work is the demonstration of the performance 

effectiveness in LMS system operating in the equatorial region assessed by means 

of weather radar images. In addition, such radar resources have proven to provide 

useful and reliable indications of the large-scale spatial distribution features of 

local precipitation for the simulation of advanced PIMTs techniques. 

 

1.6 Thesis Organization  

This thesis is presented in five chapters. This chapter presents a brief research 

background of the investigated topic, identifying the motivations which have led to 

this research. The scientific objectives and the key contribution in this work are 

outlined and highlighted with a clear identification of the novel content in the research. 

The remaining chapters of the thesis are organized as follows.  

Chapter 2 begins by discussed the main features of climatology characteristic 

in tropical and equatorial regions, concentrating, in particular on equatorial Malaysia. 

A review of the LMS systems together with its models and the characteristics of 

specific attenuation with respect to radio wave propagation are given next followed by 

the main slant path attenuation prediction models that has been developed and 

proposed in the literature so far. Spatial characteristics and its well-known model 

currently available are also presented in terms of spatial distribution. Finally, some 
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brief introductions of propagation impairment techniques currently used by the 

advanced satellite communication system are reviewed.  

Chapter 3 presents the methodology followed in this work as well as  an 

investigation on the statistical properties of the rain. To this aim, radar derived rainfall 

database from meteorological Malaysia located at Kluang, Johor are employed, from 

which the characteristics of actual rain cells are extracted and investigated. This 

analysis also permits the determination of the most suitable synthetic rain cell 

analytical profile that preserved the actual spatial characteristics of the rain cells. 

Finally, large numbers of the weather radar images are employed for the investigation 

of satellite systems performances operating in the equatorial region.  

Chapter 4 investigates the relation between LMS and tropical rainfall effects 

and develop a rain attenuation model for LMS communication application in 

equatorial Malaysia, the model is then tested in multiple scenarios and the properties 

of rain attenuation in equatorial Malaysia is exploited. Then, the evaluation of the 

impact and performances of the system with respect to the temporal dynamic and 

spatial characteristics of precipitation in equatorial regions model is done. Further the 

availability of LMS system is investigated, to maximize the availability of the LMS 

system in general.  

Chapter 5 presents the conclusion and future works. The major works in this 

thesis are concluded and summarized, followed by some constructive 

recommendations on the further work given.  
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