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ABSTRACT 

Blasting produces energy to fragment the rock mass in mining, quarry and 
civil engineering projects. In mining and quarrying operation, blasting aims to extract 
the largest possible quantity of rock at minimum cost in the safest manner with 
minimum side effects such as ground vibration, flyrock and noise. Hence, blast 
design plays a vital role. Poor blast design is harmful to the surrounding and the 
desired rock fragmentation cannot be obtained. It affects the drilling and blasting cost 
as well as the efficiency of all the subsystems such as loading, hauling and crushing 
in mining operations. Therefore, this research aims to evaluate the significant 
parameters related to the blasting operation and establish a blast design model for 
better prediction of particle size of rock fragmentation. The study will focus on the 
granite quarry operation. Terrestrial and aerial survey technology namely Terrestrial 
Laser Scanning (TLS) and Unmanned Aerial Vehicle (UAV) respectively, are carried 
out during pre and post of the blasting for discontinuity mapping. Then the 
engineering properties of the rock are determined through the laboratory work. These 
properties are then utilised in Discrete Element Method (DEM) numerical simulation 
using Bonded Particle Method (BPM) and Particle Blast Method (PBM) to predict 
the blasting performance. Once the model is verified, the influencing parameters are 
further investigated through a series of parametric study on rock fragmentation. The 
parameters involved are burden, spacing, stemming, hole diameter, bench height and 
powder factor. The relationship between the spacing to burden (S/B) ratio, stemming 
to burden (T/B) ratio, burden to hole diameter (B/D) ratio, bench height to burden 
(BH/B) ratio and powder factor against the predict mean particle size (d50) and 
uniformity index (n) is studied. Furthermore, a machine learning algorithm is utilized 
to predict the d50, sieve size at 80% material passing (d80) and parameters n as the 
output product. MATLAB and RapidMiner software of machine learning algorithms 
with four different learnings, which are Linear Regression, Decision Tree, Random 
Forest and Support Vector Machine (SVM), are utilised in this study. Comparisons 
of the output predictions between the learning algorithms are conducted and the 
influential parameters for the predictions are identified. The results show that 
Random Forest learning is chosen as the best machine learning, since the results 
obtained show the highest R-squared value, with the lowest Root Mean Square Error 
(RMSE) value. The best R-squared and RMSE results for prediction of mean particle 
size are 0.85 and 0.046, respectively. In addition, the best R-Squared and RMSE 
results for prediction of uniformity index are 0.75 and 0.324, respectively. A quarry 
blast evaluation system for prediction of rock fragmentation was developed. The 
blast evaluation system and prediction for rock fragmentation developed is focused 
on open pit quarry but this also may be applicable to rock slope. The blasting 
evaluation system established in this study will be very beneficial to policymakers, 
practitioners and designers associated with quarry blasting for a safe quarry blasting 
operation. Hence this will help the engineer to make crucial decisions during the 
planning, design and operational stages of a quarry. 
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ABSTRAK 

Pembedilan menghasilkan tenaga untuk memecahkan batuan dalam projek 
perlombongan, kuari dan kejuruteraan awam. Dalam operasi perlombongan dan 
kuari, pembedilan bertujuan untuk mengekstrak batu dalam kuantiti yang maksimum 
dengan cara yang selamat dan kesan sampingan yang minimum seperti getaran darat, 
batu terbang dan pencemaran bunyi. Oleh itu, reka bentuk bedilan memainkan 
peranan penting dalam aktiviti tersebut. Kelemahan pada reka bentuk bedilan 
membahayakan kawasan sekeliling dan saiz serpihan batu yang diingini tidak dapat 
diperolehi. Selain itu, ia juga memberi kesan kepada kos penggerudian dan bedilan 
serta kesan kepada kecekapan subsistem dalam operasi perlombongan seperti 
memuat, mengangkut dan menghancurkan. Tujuan penyelidikan ini adalah untuk 
menilai parameter penting yang berkaitan dengan operasi bedilan dan juga 
menghasilkan model reka bentuk bedilan untuk ramalan saiz pecahan batu yang lebih 
baik. Kajian ini memberi tumpuan kepada operasi kuari granit. Tinjauan geomatik 
dan tinjauan teknologi udara iaitu pengimbasan laser terrestrial dan kenderaan udara 
tanpa kawalan dilakukan sebelum dan selepas letupan untuk pemetaan 
ketakselanjaran. Kemudian, sifat kejuruteraan batu diperoleh dari kerja makmal. Ia 
kemudiannya digunakan dalam simulasi alat pengiraan element diskret dengan 
menggunakan kaedah ikatan partikel (BPM) dan kaedah bedilan partikel (PBM) 
untuk meramal prestasi bedilan. Setelah model ini telah disahkan, parameter yang 
mempengaruhi pemecahan batu akan dikaji secara lebih mendalam melalui satu siri 
kajian parametrik. Parameter yang terlibat adalah beban, jarak, ketinggian sumbatan, 
diameter lubang bedilan, tinggi tingkatan dan faktor serbuk. Hubungan antara nisbah 
jarak dan beban (S/B), ketinggian sumbatan dan beban (T/B), beban dan diameter 
lubang bedilan (B/D), tinggi tingkatan dan beban (BH/B) dan faktor serbuk terhadap 
meramal min saiz batu (d50) dan keseragaman indeks (n) telah dikaji. Tambahan 
pula, algoritma pembelajaran mesin digunakan untuk meramal d50, 80% lepasan saiz 
ayak (d80), parameter n sebagai produk keluaran. Algoritma pembelajaran mesin 
dalam perisian MATLAB dan RapidMiner dengan empat pembelajaran yang berbeza 
iaitu Regresi Lelurus, Akar Pokok Keputusan, Hutan Rawak, Mesin Vektor 
Sokongan digunakan dalam kajian ini. Perbandingan ramalan keluaran antara 
algoritma pembelajaran dijalankan dan parameter yang paling berpengaruh untuk 
ramalan telah dikenalpasti. Hasil kajian mendapati bahawa pembelajaran Hutan 
Rawak adalah pembelajaran terbaik kerana hasil yang diperoleh menunjukkan nilai 
R-kuadrat tertinggi dan nilai min ralat kuasa dua (RMSE) terendah. Nilai R-kuadrat 
dan RMSE yang terbaik untuk ramalan min saiz batu masing-masing ialah 0.85 dan 
0.046. Manakala, nilai R-kuadrat dan RMSE yang terbaik masing-masing untuk 
ramalan keseragaman indeks ialah 0.75 dan 0.324. Sistem penilaian bedilan kuari 
untuk ramalan pecahan batu telah dibangunkan. Sistem penilaian bedilan kuari yang 
telah dibangunkan itu difokuskan untuk kuari lubang terbuka, akan tetapi ia juga 
mungkin sesuai untuk cerun batu. Sistem bedilan yang dibangunkan dalam kajian ini 
akan memberi manfaat kepada penggubal dasar, pengamal dan pereka yang berkaitan 
dengan operasi pembedilan, untuk operasi pembedilan yang selamat. Selain itu, 
model ramalan akan membantu jurutera dalam membuat keputusan penting semasa 
perancangan, rekabentuk dan peringkat operasi sesuatu kuari. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of Study 

Blasting has been widely used for rock breakage especially in mining and 

civil engineering applications because it is more economical (Singh, 2012). In 

mining and quarrying operations, blasting aim is to extract the largest possible 

quantity of rock at a minimum cost in a safer manner with minimum side effects. 

Blasting operation is carried out to provide quality and quantity requirements of 

production. Assessment of each blast is necessary to ensure the aim of the blast is 

achieved. The blast design plays an important role in the blast results. A poorly 

conducted blast will be resulting in poor fragmentation and other blast results such as 

ground vibration, flyrock, airblast, backbreak and toe formation. These blast results 

need to be well understood because it is related to health and safety issues. 

One of the major concerns related to blasting operation in mining and civil 

engineering projects is rock fragmentation. In large-scale quarrying activities, rock 

fragmentation plays a major role due to its direct effects on the costs of drilling, 

blasting and the efficiency of all the subsystems such as loading, hauling and 

crushing in mining operations (Dershowitz, 1993; Goodman and Shi, 1985; 

Faramarzi et al., 2013). Rock fragmentation depends on two groups of variables 

which are uncontrollable rock mass properties, and parameters of drill and blast 

design that can be controlled and optimized. The optimisation of blast design 

parameters to ensure target fragmentation will reduce downstream operation costs 

(Singh et al., 2016). The optimum blasting pattern for efficiently and economically 

excavating a quarry can be determined based on the minimum cost of production, 

which is generally estimated according to the characteristics of rock fragmentation 

namely mean particle size (d50), uniformity index (n), and sieve size at 80% material 

passing (d80). 
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Accurate information about the blast geometry of a quarry rock face will 

profoundly affect the success of blasting operations. Thus, terrestrial and aerial 

survey technology can be used to accelerate and to obtain more accurate 

discontinuity survey. Hämmerle et al. (2015) mentioned that it is important for 

quarry operators to identify the detailed and quickly available geodata of quarries 

such as breaklines or dump volumes because it is needed for planning and 

monitoring raw material extraction, calculating extraction costs, and commercial 

purposes. 

Perak Department of Occupational Safety and Health (DOSH) mentioned that 

most of the quarries inspected by DOSH are rated poor and not a single quarry 

received a good rating in all of last year. Poor ratings represent a weak security 

system for the employee’s safety aspect and some of the quarry without security 

system (www.nst.com.my, 2018; www.malaymail.com, 2018). Among the issues of 

the low ranked is lack of safety features, no housekeeping, no barriers to machineries 

and untrained personnel handling heavy machineries and blasting. Thus, the 

numerical simulation and machine learning prediction model developed in this 

research will help the quarry owners and operators to increase the productivity of the 

quarry production, preventing accidents and work-related illnesses. 

1.2 Problem Statement 

Few cases of incident involving rock blasting have been reported in Malaysia, 

where a few factory workers have been killed or injured after being hit by rock debris 

from blasting at a nearby quarry, which also damaged cars and buildings along the 

road (Mohamad et al., 2013; www.thestar.com.my, 2008; www.malaymail.com, 

2019; www.thestar.com.my, 2019). Mohamad et al. (2013) investigated one of the 

cases that occurred in Johor, Malaysia which causes many buildings damaged plant 

and equipment, workers were injured and vehicles were badly damaged and the 

prices of a loss can reach up to millions of dollars. Their concluded that there are 

several causes for the incident. First, the people responsible for handling explosives 

need to be well trained. This is because it will endanger not only quarry workers but 
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also people's surroundings. Second, the geological conditions which are the 

uncontrollable parameters should be clearly identified and understood before blast 

operation. Adhikari and Gupta (1989) also mentioned that properties of rock mass 

are important parameters that need to be considered in blast design and it is 

fundamental to understand the effect of discontinuities in rock mass and 

physicomechanical properties on blasting. Poor blast design geometry also results in 

poor fragmentation and other blast results. In some cases, trial and error blasting is 

conducted to improve the blast design because of the limited data of trial and 

difficulties in getting variability in the blast design. Thus, prediction blasting models 

need to be extensively studied to produce a more robust and better prediction of rock 

fragmentation and fracture in quarry blasting. 

Several attempts of empirical models have been developed to improve the 

blast design and prediction of blast results such as rock fragmentation, flyrock, 

airblast, and ground vibration. However, empirical methods have limited inputs and 

are unable to predict multiple outputs. With the aid of computer technology, some 

researchers have developed models using numerical methods to overcome the 

shortcomings of the empirical methods of fragmentation prediction. Numerical 

simulation used in this study to evaluate the mechanism of the rock fragmentation 

related to the geometrical of the open pit and also its rock mass condition. This study 

also evaluates the behaviour of rock fragmentation blast induced by performing a 

series of parametric study using numerical simulation. Prediction of rock 

fragmentation characteristics using machine learning algorithm with different 

learning’s is used to improve the existing predictors and to resolve the blasting 

challenges. In addition, the parameters that affect blasting need to be identified 

clearly to get better blast results prediction especially on rock fragmentation. 
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1.3 Objectives of Study 

Hence, in order to address the above problem statements, three main 

objectives are identified in order to establish a blast evaluation system for better 

prediction of rock fragmentation characteristics in quarry operation. 

1. To determine rock mass classification scoring and blastability index by 

discontinuity mapping based on the point cloud data from terrestrial and 

aerial survey technology. 

 

The rock mass is classified using Rock Mass Rating (RMR) and Geological 

Strength Index (GSI) based on point cloud data obtained from terrestrial and 

aerial survey technology namely Terrestrial Laser Scanning (TLS) and 

Unmanned Aerial Vehicle (UAV) respectively. Then, Blastability Index (BI) 

is determined from RMR and GSI. 

 

2. To evaluate the behaviour of rock fragmentation blast induced by performing 

a series of parametric study based on the selected parameters through 

numerical analysis. 

 

The blast design parameters involved are burden, spacing, stemming, hole 

diameter, bench height and powder factor. 

 

3. To develop new rock fragmentation model through machine learning 

algorithms for prediction of rock fragmentation characteristics. 

 

The predicted rock fragmentation characteristics are mean particle size (d50), 

uniformity index (n), and sieve size at 80% material passing (d80). 
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1.4 Scope of Study 

This study presents an assessment of rock fragmentation in quarry blasting at 

Gemencheh, Negeri Sembilan, Malaysia. The quarry is selected due to safety reason 

as the bench height is suitable for research purposes. For safety purposes, the newly 

blast rock surface at quarry is not safe for conventional method. Terrestrial and aerial 

survey technology namely Terrestrial Laser Scanning (TLS) and Unmanned Aerial 

Vehicle (UAV) was used for safer fieldwork. The study will focus on the granitic 

rock quarry operation. The rock properties of intact rock is obtained from laboratory 

test which are Density test, Ultrasonic velocity test, Point load test, Rebound 

Hammer Test, Brazilian test, Unconfined compression test, Triaxial compression test 

and Direct shear test. Based on the rock mass discontinuities obtained from 

discontinuity mapping and intact rock properties from laboratory test, the rock mass 

are classified using Rock Mass Rating (RMR) and Geological Strength Index (GSI). 

From here, the Blastability Index (BI) is identified based on RMR and GSI scoring. 

The blast result is focused on rock fragmentation; specifically the characteristics of 

rock fragmentation namely mean particle size (d50), uniformity index (n), and sieve 

size at 80% material passing (d80). A series of parametric study on rock 

fragmentation will be made through numerical analysis using Discrete Element 

Method (DEM) numerical simulation using Bonded Particle Method (BPM) and 

Particle Blast Method (PBM) to predict the blasting performance. The parameters 

involved are burden, spacing, stemming, hole diameter, bench height and powder 

factor. A prediction model of rock fragmentation will be established based on 

machine learning algorithm with different learning’s using MATLAB and 

RapidMiner software. Linear Regression, Decision Tree, Random Forest and SVM 

are learnings utilised in this study. Machine Learning algorithm is used to predict the 

d50, d80 and uniformity index as the output product. The best prediction model is 

selected based on the performance indices which show the highest R-squared value, 

with the lowest Root Mean Square Error (RMSE) value. The outcome of this study is 

specifically addressing certain conditions as specified in the scope. The blast 

evaluation system and prediction for rock fragmentation developed is focused on 

open pit quarry but this also may be applicable to rock slope. 
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1.5 Significance of Study 

The quarry blast evaluation system and prediction blast model to be 

developed can improved the existing prediction of rock fragmentation used in quarry 

operation. Predicting the optimum fragmentation size will allow the quarry owners to 

select the blast design parameters to produce the material size required at a known 

cost, as well as select crushers and conveyor systems. The optimum rock 

fragmentation size can be obtained when the contractor is able to adapt the blasting 

by knowing the size distribution for specific blast and rock mass conditions. 

Relationship between the blast parameters involved and the predicted rock 

fragmentation characteristics will be very beneficial for policymakers, shot-firers and 

designers associated with quarry blasting for a safe quarry blasting operation. It may 

deliver engineering justification that may help engineer to make important decisions 

during the planning, design and production stages of a quarry. The blast evaluation 

system can produce good fragmentation for the quarry. The good fragmentation may 

avoid the flyrock incident, thus indirectly will avoid the fatality and bad effect to the 

surrounding area. 

1.6  Thesis outline 

This thesis consists of five chapters. The introduction of the research topic in 

Chapter 1 describes the importance of quarry blast design to the blast results. In this 

chapter, the problem statement, aim and objectives, scope and significant of the study 

were all highlighted. 

Chapter 2 provides an extensive review of previous literature on the quarry 

blast model for rock fragmentation and deals exclusively with the theoretical 

background on the research topic, concepts and applicable methods employed in this 

research. It highlights the blast mechanism; parameters influence blast results, rock 

mass classification, blastability index, field data acquisition methods, blast results, 

methods to predict rock fragmentation, numerical modelling and machine learning. 
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Chapter 3 explicates the research methodology adopted in this study, 

discussing the fieldwork and laboratory testing of rock, numerical modelling and 

parametric study to predict rock fragmentation and finally, prediction using machine 

learning algorithm. 

Chapter 4 presents and discusses the results of fieldwork discontinuity 

mapping using terrestrial and aerial survey technology, and laboratory work. Based 

on the data obtained from fieldwork and laboratory work, the rock mass is classified 

using rock mass classification. Then, blastability index is obtained. 

Chapter 5 presents and discusses the results of the behaviour of rock 

fragmentation induced by blasting based on the selected parameters by performing a 

series of parametric study using numerical modelling. The rock properties obtained 

from laboratory tests is utilised in the numerical modelling. The rock fragmentation 

characteristics is obtained from the numerical modelling and the data used for 

prediction in Chapter 6. 

In Chapter 6, the results of machine learning algorithm prediction to predict 

rock fragmentation characteristics are presented and discussed in this chapter. The 

data used in machine learning is based on fieldwork and numerical results. 

Chapter 7 covers the research outcomes, and the contribution of knowledge 

achieved from this study and recommendations for further researches on the subject 

are presented. 
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