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ABSTRACT 

Steel fibre reinforced self-compacting concrete (SFRSCC) consolidates under 

its own weight and has been shown to have the ability in providing efficient 

reinforcement mechanism. The research was carried out by leveraging the benefits of 

the SFRSCC to solve the punching shear problem caused by multiaxial forces in 

disturbed regions in reinforced concrete (RC) flat slabs. This thesis presents the results 

of three experimental testing phases to investigate the effectiveness of the SFRSCC, 

self-compacting concrete (SCC) and the normal concrete (NC) in resisting punching 

shear in RC flat slabs. Shear reinforcement in the forms of vertical links and welded 

inclined bars were also investigated in the slabs cast with SCC. The effect of the 

thickness of the slab, and the limiting area of SFRSCC around the column were also 

examined. The fresh and hardened properties of these concretes, as well as the 

optimum content of fibre in the SFRSCC used in the flat slab specimens were 

determined from the tests in Phase 1. Tests to study on the biaxial behaviour of the 

concrete to simulate the multi-axial force effects in the RC flat slabs were carried out 

in Phase 2. Phase 3 deals with the structural testing of slab specimens, tested under a 

single point load in the middle until failure. The results showed that SFRSCC slabs 

can withstand higher punching shear load than NC and SCC slabs, with and without 

shear reinforcement. The failure mode of all fibrous specimens were found to be more 

ductile as compared to others. The results also revealed that slabs with SFRSCC within 

a square area around the column can be as efficient in resisting the punching shear as 

the ones with the SFRSCC cast over the entire slab. These findings were corroborated 

from biaxial behaviour of concrete in Phase 2. The incorporation of steel fibres into 

the concrete matrix provides confining pressure, which contributes to an increase in 

concrete strength under biaxial loading whilst ensuring ductile failure. In term of 

verification, the numerical analysis with two semi-empirical expressions, namely the 

strut-and-tie model and the additive model is also presented. The analysis results for 

the appropriate specimens show good agreement with experimental results, with the 

additive model giving the closest estimate of the punching shear capacity of the slabs.  
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ABSTRAK 

Konkrit bertetulang gentian keluli terpadat sendiri (SFRSCC) memadat oleh 

beratnya sendiri dan telah dibuktikan berkeupayaan menyediakan mekanisma tetulang 

yang cekap. Penyelidikan ini dijalankan dengan memanfaatkan kelebihan SFRSCC 

untuk menyelesaikan masalah ricih tebuk yang berpunca dari daya pelbagai paksi pada 

kawasan terganggu di papak rata konkrit bertetulang (RC). Tesis ini memaparkan 

keputusan ujikaji yang terdiri daripada tiga fasa untuk mengkaji keberkesanan 

SFRSCC, konkrit terpadat sendiri (SCC) dan konkrit biasa (NC) dalam menghalang 

ricih tebuk dalam RC papak rata. Tetulang ricih dalam bentuk perangkai pugak dan 

bar condong berkimpal turut dikaji di dalam papak dengan SCC. Pengaruh ketebalan 

papak dan keluasan terhad SFRSCC di keliling tiang turut juga diselidiki. Sifat-sifat 

konkrit tersebut pada peringkat segar dan keras dan kandungan optima SFRSCC yang 

digunakan dalam spesimen papak rata diperolehi dari Fasa 1 program ujikaji ini. Ujian-

ujian ke atas kelakunan dwi-paksi konkrit untuk mewakili kesan-kesan daya pelbagai 

paksi dalam RC papak rata dijalankan dalam Fasa 2. Fasa 3 melibatkan ujikaji struktur 

untuk semua spesimen papak rata, diuji dengan satu beban tumpu di tengah papak 

sehingga berlaku kegagalan. Keputusan kajian menunjukkan papak dengan SFRSCC 

berupaya menanggung beban ricih tebuk yang lebih besar berbanding daripada papak-

papak lain yang dengan NC dan SCC, bertetulang atau tidak mempunyai tetulang ricih. 

Mod kegagalan bagi papak-papak bergentian adalah bersifat lebih mulur berbanding 

dengan jenis papak yang lain. Keputusan kajian juga menunjukkan bahawa SFRSCC 

dalam keluasan empat segi sama di keliling tiang boleh memberikan kesan yang sama 

dalam merintangi ricih tebuk seperti papak dengan keseluruhan keluasannya daripada 

SFRSCC. Kelakunan dwi-paksi konkrit dalam Fasa 2 menyokong penemuan ini. 

Campuran gentian keluli dalam konkrit memberikan tekanan mengurung, yang mana 

menyumbang pada peningkatan kekuatan konkrit di bawah beban dwi-paksi, dan juga 

memastikan kegagalan yang mulur. Untuk pengesahan, analisis berangka dengan dua 

ekspresi separa-empirikal iaitu model tujah-dan-penambat dan model tambahan juga 

dipaparkan. Keputusan analisis ke atas spesimen-spesimen berkaitan memberikan 

keserasian yang baik dengan keputusan ujikaji, dengan model tambahan memberikan 

anggaran ricih tebuk yang terhampir. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Slab-column or flat plate frame system offers numerous construction and 

architectural advantages, which make them a popular choice in reinforced concrete 

(RC) construction. This constructive system is the most competitive for residential and 

commercial buildings with span length between columns varying from 7.0 to 9.0 m 

and a live load not exceeding 5 kN/m2 (PCA–Portland Cement Association, 2005; 

Delahay and Christopher, 2007). The construction of the flat slab eliminates the use of 

beam, where the slab is supported directly by columns. It also offers a simpler 

formwork and greater clear story height as compared to beam-column frame 

construction, leading to substantial savings in construction costs. 

Despite its simple appearance, this slab-column connection is susceptible to 

punching shear failures, which could lead to substantial floor damage and even the 

worst scenario of the structural collapse such as the collapse of the Skyline Plaza 

(Carino et al., 1983), Sampoong department store (Gardner et al., 2002) and 16-storey 

apartment building at 2000 Commonwealth Avenue (King and Delatte, 2004).  

Punching shear failure is a main governing failure mode for a flat slab. It occurs 

when total shear forces act on the slab is greater than shear resistance of the slab, high 

bending moment and shear forces at the slab-column connection (Tuan Ngo, 2003), or 

when the flexural member is unable to develop yield mechanism to fail in a ductile 

manner (Harajli et al., 1995). On top of that, the structure failed in punching shear 

failure showed a sudden drop in load-carrying capacity, and the structure collapsed 

instantaneously without giving people any time to escape (Menétrey, 2002).  
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Generally, the shear capacity of this connection can be enhanced by increasing 

the slab thickness or using drop panels or column capitals, which is not an economical 

or practical option as well as architectural disadvantages. This is because increasing 

the slab thickness will also increase the cost and the weight of the building. 

Furthermore, the presence of the drop panel or column head causes the changes in slab 

cross-section and formwork which result in the non-uniformity in-floor bottom surface 

and decreasing clear story height. Thus, modifying the geometrical of the slab is not 

the only method to increase the punching shear capacity. 

Therefore, since the 1950s, punching shear has been the subject of an intense 

experimental effort. Although, several methods have been proposed to increase the 

punching shear capacity of flat slabs. However, its application is still restricted. For 

example, traditional shear strengthening using stirrups is only applicable to slabs with 

a depth greater than 150 mm (ACI Committee 318, 2002), reinforcement using steel 

section shear head systems (Anderson, 1963; Corley and Hawkins, 1968), stud type 

reinforcement (Elgabry and Ghali, 1987), shear band system (Pilakoutas and Li, 2003) 

and lattice shear reinforcement (Park et al., 2007) prolong the duration and increase 

the cost of construction. 

Due to these circumstances, steel fibre reinforced concrete (SFRC) is seen as 

an alternative in enhancing the punching shear capacity, performance and cracking 

control of the slab-column connection. Steel fibres in a minimum amount of 30 kg/m3 

were found highly useful as an alternative reinforcement (Nguyen-Minh et al., 2012; 

Ragab, 2013). The addition of steel fibres turns the quasi-brittle concrete into a ductile 

material. As the maximum tensile strength is improved, the fibre-knitting through the 

crack enables the transfer of stress even at wide crack openings. Amplitudes of residual 

strength enhancements depend primarily on the geometry and dosage of the fibres. 

Owing to the advantages of including steel fibres in the concrete mix, several 

studies have tried to increase the volume content of steel fibres (Harajli et al., 1995; 

De Hanai and Holanda, 2008; Gouveia et al., 2014). Even, Facconi et al.(2016) and 

K. H. Tan and Venkateshwaran (2017) tried to fully replace the conventional 

reinforcement with the fibre reinforcement. Unfortunately, the specimen failed due to 
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flexural failure. It should be borne in mind that the efficiency of steel fibres does not 

only depend on the volume of steel fibres in the concrete mix. The effectiveness of 

steel fibre reinforcement also relies on the concrete mix proportion, fresh and hardened 

state of the concrete. Therefore, the study on the correlation of the concrete properties 

and the effectiveness of steel fibre reinforcement in reinforced concrete flat slab is has 

become an important issue. 

1.2  Problem Statement 

Before focusing on a method for enhancing the integrity of the slab-column 

connection, it should not be overlooked from the structural point of view that it is 

highly problematic to support a thin slab directly on the column. This static 

discontinuity is one of the most critical D-regions occurring in concrete structures. The 

very high moments occur in this D-region of the flat slab and the three-dimensional 

stress state in extremely complex. In an attempt to find a viable solution to the 

deficiencies, the issues are outlined in detail. 

 Disturbed Region of the Reinforced Concrete Flat Slab 

In designing a reinforced concrete structure, the component is divided into two 

parts, which is Beam or Bernoulli region (B-region) and Discontinuity region (D- 

region). The B-Region is part of a structure in which Bernoulli’s hypothesis of straight-

line strain profiles applies. The D-Region, on the other hand, is part of a structure with 

a complex variation in strain. For reinforced concrete, the absence of any transition 

between column and slab is extremely disadvantageous and the thickness of the slab 

is often determined by the punching problem. Besides, flat slabs inevitably violate the 

principle that the safety level of a structure should be equal throughout because, as 

against any other part of the slab, the D-region with the punching zone is not 

sufficiently ductile to gain capacity from force redistribution.  
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Hence, a number of shear reinforcement, such as stirrup, steel section shear 

head systems (Anderson, 1963; Corley and Hawkins, 1968), stud type reinforcement 

(Elgabry and Ghali, 1987), shear band system (Pilakoutas and Li, 2003) or lattice shear 

reinforcement (Park et al., 2007) are provided to improve the ductility in this region. 

Improper dimensioning and distribution of reinforcing steel in disturbed regions can 

lead an adverse cracking and failure of the structure. The serviceability limit state is 

equally important to ultimate strength due to large stress concentrations in the vicinity 

of bearing surfaces. 

However, the installation of any shear reinforcement in a thin element such as 

flat slab causes the steel reinforcement congestion, particularly within the critical 

perimeter of slab-column connection. If a lot of hoops overlap within a small space in 

the joint (as shown in Figure 1.1), the bond between the concrete and the rebar could 

be weak due to the limited space between the bars to allow the concrete to flow 

through. Furthermore, the placement and compaction of normal concrete are difficult 

in the congested area. Consequently, the development of bond between concrete and 

the bar is interrupted, as well as degrading the quality of concrete due to the existence 

of voids and honeycombs in the reinforced concrete structure (Mohamed, 2009). It is 

also affect the strength and durability of concrete, particularly the tensile strength of 

concrete which is so important in transferring the shear mechanism. On the other hand, 

increasing the depth of the slab would not be too beneficial, it would only increase the 

dead load of the structure. Thus, while retaining the comparable strength of the RC flat 

slab, it is important to minimize the slab depth. 

 

Figure 1.1 The overlap stirrup within a small space in the joint may disturb the 

flow of concrete 
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Furthermore, when a concentrated force acts on the surface of a member, the 

compressive stresses fan out from the loaded region. The punching shear problem for 

a slab–column connection has a three-dimensional nature due to the complex state of 

the stresses that dictate failure around the connection region (Hallgren, 1996). Figure 

1.2 shows the compression zone in the D-region subjected to multiaxial stresses. At 

such locations, the concrete is loaded with a combination of more than one force 

action, which induces a field of tensile stresses normal to the line of compression. 

Diagonal cracking can develop along planes perpendicular to the plane of principal 

tensile stress due to the low tensile properties of concrete. Therefore, the knowledge 

of the behaviour of the concrete subject to a multiaxial stress situation is necessary for 

a better understanding of the process of failure of the concrete. 

 

Figure 1.2 The disturbing region (D-region) at the slab-column connection of 

reinforced concrete flat slab 

 

 

 

 

 Application of Steel Fibre Reinforcement in Reinforced Concrete Slab 

The steel fibres with an adequate amount has proven its ability to provide 

efficient reinforcement mechanism through its bridging action and consequently 

enhance the integrity of the slab-column connection (Nguyen-Minh et al., 2011; 
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Facconi et al., 2016). Apart from the fibre volume fraction and types of fibre, the 

efficiency of steel fibres also depends on other factors, such as the casting procedure, 

and the fresh and hardened state of the concrete. Due to its high specific weight, steel 

fibre has a higher tendency than other constituents to segregate towards the bottom 

surface, resulting in a lower fibre content near the top surface of the element (Barros 

and Antunes, 2003). This can be avoided by using high-flowing concrete matrices such 

as self-compacting concrete (SCC) as the medium to transport the fibre. 

Despite the obvious advantages of SCC, relatively few works have been 

published related to the application of steel fibre reinforced self-compacting concrete 

(SFRSCC) to enhance the punching shear resistance of reinforced concrete flat slab 

(Facconi et al., 2016; Nguyen et al., 2017). Further research on this topic is therefore 

clearly desirable. On top of that, the use of shear reinforcement remains as a top choice 

to resist the punching shear issue, even though it is four times as labour-intensive as 

fibrous concrete in fabrication and casting of the slab (Narayanan and Darwish, 1987). 

This is because the use of fibrous concrete mix is costly as compared to the normal 

concrete. 

Furthermore, the importance of this study is because, while many experimental 

researchers have studied various parameters in the punching capacity of fibre-

reinforced slab-column connection, in most cases, concrete is only distinguished by its 

compression strength (Harajli et al., 1995; Nguyen-Minh et al., 2011; K H Tan and 

Venkateshwaran, 2017). The increment of the compressive strength of concrete due to 

the fibre addition is not significant (Olivito and Zuccarello, 2010; Iqbal et al., 2015; 

Soulioti et al., 2011). Therefore, the equations developed using compressive strength 

may not accurately represent the actual contribution of fibrous concrete to structural 

capacity enhancement. Only a few researchers addressed the concrete strength 

characteristic by its flexural tensile strength, which is the dominant strength of the 

fibrous concrete (Gouveia et al., 2014; Barros et al., 2015; Facconi et al., 2016). 

Furthermore, most of the researchers neglected the crucial information on the fibre 

dispersion and orientation in large-scale steel fibre concrete elements. Stähli and van 

Mier (2007) confirmed the result that the moulded smaller sized prism shows higher 

bending stresses than the geometrical specimens cut off from bigger cast specimens. 
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This so-called 'wall effect' has a significant effect when there is a huge difference in 

size or two different structural elements.  

Meanwhile, the established design standard or codes such as ACI Building 

Code (ACI Committee 318, 2008), British standard (BS 8110-1, 1997), the Fib Model 

Code 2010 (Du Béton, 2010) and Euro code 2 (BS EN 1992-1-1, 2004) present various 

formulas to estimate the punching shear capacity of the reinforced concrete flat slabs. 

However, these formulas were developed for a normal reinforced concrete flat slab, 

thus, its applicability to predict the punching shear resistance of SFRC flat slab is 

debatable. Therefore, a solution for predicting the punching shear resistance is seen as 

a crucial issue. 

1.3 Aim and Objectives of Research 

The general aim of the investigation was to determine the possible benefits of 

using steel fibres in reinforced concrete flat slab. In more specific terms, the objectives 

of the study are as follows: 

i. To develop an optimum mix design of SFRSCC by investigating the 

performance of the concrete in terms of fresh and hardened concrete properties. 

ii. To study the behaviour of SCC and SFRSCC specimens subjected to the biaxial 

loads due to the multiple types of forces existed at a slab-column connection. 

iii. To investigate the punching shear and deformation behaviour of RC flat slab 

made of SFRSCC. 

iv. To relate the improvement in punching shear strength and ductility due to the 

inclusion of steel fibres into possible design equations for strength prediction 

of RC flat slab. 
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1.4 Scope of Research 

The research would be experimental in nature, beginning with the development 

of SCC and SFRSCC with the addition of fibres at volume fractions of 0.5%, 0.75%, 

1.0%, and 1.25%. In this study, hooked-end steel fibre with a length of 35 mm and an 

aspect ratio of 60 was used in SFRSCC mixes. To compare the properties of normal 

concrete (NC) and SCC, NC of the same grade as the SCC was also casted. Phase 1 

focuses on the investigation of the properties of fresh and hardened concrete. The fresh 

properties included the filling ability, passing ability and the segregation resistance of 

concrete. Meanwhile, the hardened concrete properties included compressive, flexural 

tensile, splitting tensile and residual flexural tensile strengths, as well as the flexural 

toughness and modulus of elasticity.  

The optimum fibre content determined in Phase 1 was investigated further in 

Phases 2 and 3. The second phase focuses on the investigation of concrete under biaxial 

loading in the compression–tension and tension – tension regions with variation in 

stress ratios. The last phase involved the use of fibre reinforcement in RC flat slabs. 

Eight RC flat slabs with a dimension of 1.65 m x 1.65 m were casted with an effective 

span of 1.4 m and simply supported on all edges. The RC flat slabs were provided with 

identical main reinforcement, which were designed to fail in punching shear. The 

variables considered were concrete types, shear reinforcement, slab thickness, and the 

effective area of SFRSCC. Lastly, new semi-empirical equations were proposed to 

predict the punching shear resistance of RC flat slabs with various parameters. The 

experimental results were used to validate the accuracy of the proposed equations. 

1.5 Significance of Research 

Punching shear is still a polemic topic and advancements in the state of the art 

are still required. This work intends to contribute with the additional results regarding 

the test of SFRSCC flat slabs, with a different approach from the previous works. As 

been mentioned earlier, the rheological properties of high-flowing concrete play an 

important role in determining the effectiveness of the steel fibre reinforcement, 
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therefore, this study was focusing on understanding the material behaviour, by 

including the finding from the fresh and hardened concrete properties, hence an 

adequate mix composition of SFRSCC could be decided before structure testing. In 

addition, the behaviour of concrete under uniaxial and biaxial loading was further 

discussed in order to determine the actual behaviour of the SFRSCC specimens. This 

knowledge is scarce and is therefore of interest to the engineering and scientific 

community. 

Apart from the investigation on the contribution of steel fibres as a secondary 

reinforcement, this study also investigated the boundary area of SFRSCC need to be 

provided to produce superior structural performance. This concept is similar to the 

concept of the use of high strength concrete in the column head area only. Thus, it was 

possible to minimize the economic impact of using SFRSCC and enhance its 

competitiveness. On top of that, the simple semi-empirical equation was proposed to 

predict structural performance. Thus, the experimental result and the proposed semi-

empirical equation could contribute to future development and improve the 

phenomenological understanding of reinforced concrete flat slab using steel fibres as 

the secondary reinforcement. 

1.6 Thesis layout 

This thesis is made up of nine chapters. The outline of the thesis and the details 

of each chapter are as follows: 

Chapter 1 describes the background, problem statements, the study objectives, 

the scope of the study and the significance of the study. 

Chapter 2 and 3 present the compilation of literature data related to materials 

properties of SCC, SFRC, SFRSCC, and reinforced concrete flat slabs. Chapter 2 

discusses the properties and behaviour of the steel fibres in the concrete matrix in order 

to broaden the perspective on the advantages of the steel fibres to be used in the 

structural system. In the continuation of Chapter 2, Chapter 3 is related to the previous 
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studies and methods applied to enhance the punching shear capacity of a reinforced 

concrete flat slab, as well as considering the potential use of steel fibres as the 

replacement of conventional reinforcement.  

Chapter 4 deals with the research methodology used to achieve the objectives 

of the study. The procedures and methods are described in detail in this chapter. Three 

phases of experimental work have been integrated into this study. Phase 1 and phase 

2, which are mainly focused on the properties of concrete, explain the procedure in 

preparation of the NC, SCC, and SFRSCC. It also describes the testing procedures for 

the fresh and hardened concrete (e.g. test under uniaxial load and biaxial load). The 

last phase presented the experimental work related to the application of concrete in the 

structure system (namely: the reinforced concrete flat slab). 

Chapter 5 reports the experimental findings from the fresh and hardened 

concrete tests. Objective 1 and 2 are discussed in this chapter. The results give the 

optimum fibre content evaluated based on its fresh and hardened concrete properties. 

It also produces the biaxial envelope, which is correlated to the concrete matrix 

behaviour in the structure system. 

Chapter 6 presents the experimental findings retrieved from the punching shear 

test of a reinforced concrete flat slab. In this chapter, the related experimental 

parameters are discussed to determine the impact of the steel fibre reinforcement on 

the structural behaviour, such as punching shear capacity, steel and concrete strain, 

and mode of failure. The inter-connection of the results of concrete behaviour under 

biaxial loading to the behaviour of reinforced concrete flat slab is discussed. 

Chapter 7 presents the development of the semi-empirical equation used to 

predict the punching shear capacity of reinforced concrete flat slab. The failure 

influencing factors, post cracking shear behaviour of SFRSCC flat slab and 

contribution from other factors such as the contribution of concrete, fibre bridging, 

compressive resistance and dowel action are considered in the development of the 

semi-empirical equation. 
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Chapter 8 presents the validation of the proposed semi-empirical equations, 

which are validated against experimental results and further compared to existing 

equations proposed by other researchers. In this chapter as well, the contribution of 

fibre in enhancing the shear strength is further analysed and discussed. The implication 

of the results of the tests on the use of steel fibres as a replacement for conventional 

reinforcement in the punching shear capacity of reinforced concrete flat slab is also 

presented. 

Chapter 9 concludes the study by highlighting the significant outcome of the 

study and the achievement of the objectives mentioned in Chapter 1. Several 

recommendations for further research are suggested. 
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