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ABSTRACT  

Acoustic properties are important to evaluate the compatibility of tested 

samples as tissue mimicking materials (TMMs). Common acoustic measurement 

systems require distilled water as the propagation medium. However, their accuracies 

are affected by the small change in the medium density and the inaccurate 

measurement of water temperature. An alternative acoustic pulse echo immersion 

measurement system for nonporous TMMs is developed in this study. It is developed 

based on the alternative pulse echo immersion technique (aPEIT) to improve the 

previous developed system for the noncontact pulse echo immersion technique 

(PEIT) and specifically designed for the step-shaped nonporous sample. It consists of 

a pulser/receiver generator, an unfocused transducer, a digital oscilloscope, a 

temperature controller and a personal computer which are installed with the custom-

developed computer program to determine the longitudinal velocity, acoustic 

impedance, phase velocity and attenuation coefficient of the sample. The precision 

and accuracy of the developed system are tested for different thickness of sample, 

temperature of medium, density of medium and center frequency of transducer. The 

study indicates that developed system for the aPEIT produces the comparable results 

within 1.16% differences as the previous developed system for the noncontact PEIT, 

precise results within 6.38% from the average values and accurate results within 

0.62% error compared to the reference values. The developed system for the aPEIT 

offers comparable but more precise results compared to the previous developed 

system for the noncontact PEIT in measuring the acoustic properties of nonporous 

TMMs. It can be operated using online and offline analysis modes to measure and 

differentiate the acoustic properties of specific types of human tissues and TMMs. 
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ABSTRAK 

Sifat-sifat akustik adalah penting untuk menilai kesesuaian sampel-sampel 

yang diuji sebagai bahan-bahan menyerupai tisu (TMMs). Sistem-sistem pengukuran 

akustik yang biasa memerlukan air suling sebagai medium perambatan. Akan tetapi, 

kejituan sistem-sistem tersebut dipengaruhi oleh perubahan kecil yang berlaku pada 

ketumpatan medium dan ketidaktepatan pengukuran suhu air. Satu sistem 

pengukuran akustik alternatif bagi TMMs tidak poros telah dibangunkan dalam 

kajian ini. Sistem ini dibangunkan berdasarkan teknik rendaman pantulan gema 

alternatif (aPEIT) untuk menambah baik sistem terdahulu yang dibangunkan bagi 

teknik rendaman pantulan gema (PEIT) tanpa sentuh dan direka khusus untuk sampel 

berbentuk tetangga yang tidak poros. Sistem ini terdiri daripada satu penjana 

pendenyut/penerima, satu transduser tidak berfokus, satu osiloskop digital, satu 

pengawal suhu dan satu komputer yang dipasang dengan perisian komputer yang 

dibangunkan sendiri untuk menentukan halaju gelombang membujur, impedans 

akustik, halaju fasa dan pekali pengecilan akustik sampel. Kepersisan dan kejituan 

sistem yang dibangunkan diuji untuk ketebalan sampel, suhu medium, ketumpatan 

medium dan frekuensi pusat untuk transduser yang berbeza. Kajian ini menunjukkan 

bahawa sistem yang dibangunkan bagi aPEIT menghasilkan keputusan yang 

setanding dalam julat perbezaan 1.16% seperti sistem terdahulu yang dibangunkan 

bagi PEIT tanpa sentuh, keputusan yang persis dalam julat 6.38% daripada nilai-nilai 

purata dan keputusan yang tepat dalam julat selisih 0.62% berbanding dengan nilai-

nilai rujukan. Sistem yang dibangunkan bagi aPEIT menawarkan keputusan yang 

setanding tetapi lebih persis berbanding sistem terdahulu yang dibangunkan bagi 

PEIT tanpa sentuh untuk mengukur sifat-sifat akustik TMMs yang tidak poros. 

Sistem ini boleh dikendalikan dengan menggunakan mod dalam dan luar talian untuk 

mengukur dan membezakan sifat-sifat akustik bagi tisu-tisu manusia dan TMMs 

yang khusus. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background of Study  

Tissue mimicking materials (TMMs) refer to materials that mimic the 

acoustic properties of human tissues (Zell, et al., 2007; Maggi, et al., 2009). TMMs 

are important for the performance testing of medical ultrasonic systems and the 

development of new ultrasonic transducers or diagnostic systems. TMMs can be 

categorized into two main types; soft and hard TMMs. Soft tissues consist of 

muscles, tendons, ligaments, fascia, fat, fibrous tissue, synovial membranes, nerves 

and blood vessels while hard tissues consist of cortical bone, trabecular bone, dental, 

enamel and dentin. Soft TMMs are usually prepared from agar, gelatin, 

polyacrylamide (PAA) and polyvinyl alcohol (PVA) while hard TMMs are 

developed from epoxy, plastics and ceramic (Culjat, et al., 2010).  

Recently, researchers studied the potential of alternative samples as TMMs 

like polyvinyl chloride plastisol (PVCP) (Fonseca, et al., 2015; Vogt, et al., 2016), 

gellum gum hydrogel (Cortela, et al., 2015), Konjac-Carrageenan (KC) hydrogel 

(Kenwright, et al., 2014) and Konjac Glucomannan (KGM) gel (Mat Daud, et al., 

2017). The compatibility of a tested sample as a TMM is confirmed by comparing its 

acoustic properties with the acoustic properties of real human tissues. There are four 

common techniques of ultrasonic method for the acoustic characterization of TMMs; 

through transmission technique (TT), pulse echo technique (PET), ultrasonic 

insertion technique (UIT) and pulse echo immersion technique (PEIT).  
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The TT and PET are the common techniques for determining the acoustic 

properties of a material. However, both techniques involve the direct application of 

couplant gel at the surface of the tested sample. Thus, the acoustic properties of the 

sample could be changed as the applied couplant on the surface is absorbed into the 

sample (Green Jr., 2004; Yochev, et al., 2006; Kadem, 2011). Therefore, the UIT and 

PEIT are employed by previous researchers as they replace the couplant gel with the 

aqueous medium to acoustically couple the sample with the transducers. The UIT 

and PEIT are the common techniques used to determine the acoustic properties of 

TMMs. There are two types of UIT; contact and noncontact UIT, and PEIT; contact 

and noncontact PEIT. 

Since the TT, PET, contact UIT and contact PEIT involve the direct contact 

between the transducer and the sample, the soft TMMs may be compressed during 

the experiment and it will cause some errors in the acoustic properties measurement. 

Meanwhile, the TT, contact UIT and noncontact UIT require the alignment of two 

identical transducers in a line facing each other. Thus, all three techniques require the 

accessibility of two sides of the sample. Furthermore, the sample should be carefully 

inserted between transducers to ensure that both sides of the sample are 

perpendicular to transducers (Fahr, 2013; Mat Daud, et al., 2017; Mat Daud, et al., 

2018). 

Meanwhile, the contact UIT, noncontact UIT, contact PEIT and noncontact 

PEIT require the distilled water as the propagation medium to acoustically couple the 

sample with the transducers. However, only the contact UIT, noncontact UIT and 

noncontact PEIT involve two measurement steps of ultrasonic pulse transmission in a 

single sample to determine its acoustic properties. Therefore, all three techniques 

require the ultrasonic pulse transmission in distilled water as the calibration 

procedure (Ghoshal, et al., 2011; Cortela, et al., 2013; de Carvalho, et al., 2016; 

Rabell-Montiel, et al., 2016). The techniques also involve the measurement of water 

temperature to calculate the acoustic properties of samples (Maggi, et al., 2011; 

Cortela, et al., 2013; de Carvalho, et al., 2016). 
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The acoustic properties of tested samples can be calculated from the 

transmitted or reflected acoustic signals in it. The acoustic signals can be analysed 

using the time domain analysis to calculate the longitudinal velocity, acoustic 

impedance and attenuation coefficient of samples at the center frequency value of a 

transducer. The signals also can be analysed using the frequency domain analysis to 

determine the frequency dependent phase velocity and attenuation coefficient of 

samples. The frequency dependent phase velocity of a sample is important to 

determine its acoustic dispersion characteristic while its frequency dependent 

attenuation coefficient is essential to determine the effects of scattering and 

absorption with the change of frequency (He, 1999; Lee, et al., 2007). 

According to previous researches, all techniques can be employed to measure 

the acoustic properties of TMMs at the center frequency value of a transducer. 

However, only UIT and PEIT were utilized to determine the frequency dependent 

attenuation coefficient of TMMs. Furthermore, the noncontact UIT was the common 

technique to determine the frequency dependent phase velocity of TMMs (Lee, 2011; 

Zhang, et al., 2011; Lee, 2015). It requires the accessibility of two sides of the 

sample and the alignment of two identical transducers in a line facing each other. 

Hence, the sample should be carefully inserted between transducers to ensure that 

both sides of the sample are perpendicular to transducers. Thus, the noncontact PEIT 

can be used as an alternative technique to determine the frequency dependent phase 

velocity of soft TMMs as it involves the accessibility of one side of the sample and a 

single transducer. 

Most previous researchers studied the frequency dependent phase velocities 

of hard TMMs; normal bone (Chen & Chen, 2006), calcaneus bone (Chen & Chen, 

2006), trabecular bone (Lee, 2011; Lee, 2015) and osteoporotic bone (Chen & Chen, 

2006). The variation of frequency dependent phase velocities of hard TMMs could 

be due to the size and distribution of porosity in the samples as confirmed by 

previous studies (Lee & Choi, 2007; Zhang, et al., 2011). Previous researchers also 

measured the frequency dependent phase velocities of soft TMMs. However, they 
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only discussed the frequency dependent phase velocities of soft tissue (Rajagopal, et 

al., 2015) and tendon (Garcia, et al., 2003) TMMs.  

Previous researchers also studied the temperature dependent acoustic 

properties of TMMs. However, only several previous studies discussed the effect of 

scatterer on the temperature dependent longitudinal velocities and attenuation 

coefficients of TMMs (Ortega, et al., 2010; Cortela, et al., 2013; Maggi, et al., 

2013). Furthermore, most of them utilized graphite powder as scatterer in TMMs 

(Cortela, et al., 2013; Maggi, et al., 2013). Meanwhile, the effect of modifier on the 

temperature dependent acoustic properties of TMMs was solely studied by Maggi, et 

al. (2013). Besides, they only investigated the effect of modifier on the temperature 

dependent longitudinal velocities of TMMs.  

Therefore, a technique is proposed to improve the established techniques for 

the acoustic characterization of TMMs. Then, the acoustic measurement system is 

developed for the proposed technique to perform time and frequency domain analysis 

to determine the acoustic properties of TMMs. The developed system can be 

employed to study the factors affecting the temperature and frequency dependent 

acoustic properties of TMMs. 

1.2 Problem Statement  

Acoustic properties are important to confirm the compatibility of a tested 

sample as a TMM by comparing its acoustic properties with the acoustic properties 

of real human tissues. The noncontact UIT is the common technique used to 

determine the frequency dependent phase velocity of TMMs (Lee, 2011; Zhang, et 

al., 2011; Lee, 2015). However, it requires the alignment of two identical transducers 

in a line facing each other and the accessibility of two sides of the sample. Therefore, 

the noncontact PEIT can be used as an alternative technique for the acoustic 
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characterization of soft TMMs as it requires the accessibility of one side of the 

sample and a single transducer to measure its acoustic properties.  

However, both techniques involve two measurement steps to determine the 

acoustic properties of a single sample; the measurement of ultrasonic pulse 

transmission with and without sample immersed in the distilled water. Therefore, 

they require the distilled water as the medium of ultrasonic pulse propagation to 

acoustically couple the sample with the transducer. Thus, the measurement of 

ultrasonic pulse transmission in distilled water is compulsory as the calibration 

procedure (Ghoshal, et al., 2011; Cortela, et al., 2013; de Carvalho, et al., 2016; 

Rabell-Montiel, et al., 2016). Both techniques also require the measurement of water 

temperature to calculate the acoustic properties of samples (Maggi, et al., 2011; 

Cortela, et al., 2013; de Carvalho, et al., 2016). The acoustic properties of TMMs are 

also highly dependent on the water temperature (Ghoshal, et al., 2011; King, et al., 

2011; Dunmire, et al., 2013; Parisa, et al., 2013; Souza, et al., 2018). Hence, the 

fluctuation and inaccurate measurement of water temperature could affect the 

accuracy of acoustic properties measurement of TMMs. 

The frequency and temperature dependent acoustic properties of TMMs 

depend on the modifier, scatterer and porosity. However, previous researchers only 

studied the effect of porosity on the frequency dependent acoustic properties of bone 

(Lee & Choi, 2007) and cancellous bone (Zhang, et al., 2011) TMMs. Meanwhile, 

previous researchers also only discussed the effect of scatterer on the temperature 

dependent attenuation coefficients of TMMs (Ortega, et al., 2010; Cortela, et al., 

2013). The findings were important to develop the specific type of TMMs as their 

acoustic properties can be manipulated by the addition of modifier and the presence 

of scatterer and porosity in the samples. However, previous researchers did not 

investigate the effect of modifier on the frequency dependent phase velocities and 

temperature dependent attenuation coefficients of TMMs. Previous researchers also 

did not determine the effect of scatterer on the frequency dependent phase velocities 

of TMMs. 
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Based on the limitations of previous researches, this study proposes the 

development of an acoustic measurement system for time and frequency domain 

analysis to measure the acoustic properties of nonporous TMMs. The developed 

system employs an alternative technique, which is adapted from the noncontact PEIT 

to eliminate the requirement of the distilled water as the propagation medium, the 

ultrasonic pulse transmission in distilled water as the calibration procedure and the 

water temperature measurement to calculate the acoustic properties of TMMs. Then, 

the developed system is employed to measure the acoustic properties of two types of 

nonporous TMMs and study the effect of modifier and scatterer on their temperature 

and frequency dependent acoustic properties. 

1.3 Objectives of Study 

The objectives of this study are:  

(a) To develop the alternative acoustic pulse echo immersion measurement 

system for nonporous tissue mimicking materials.  

(b) To evaluate the precision and accuracy of the alternative acoustic pulse echo 

immersion measurement system for nonporous tissue mimicking materials. 

(c) To measure the temperature and frequency dependent acoustic properties of 

agar-based and Konjac Glucomannan-based samples using the developed 

system. 

(d) To determine the effects of modifier and scatterer on the temperature and 

frequency dependent acoustic properties of agar and Konjac Glucomannan 

samples using the developed system. 
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1.4 Scope of Study  

This study is carried out to develop an alternative acoustic pulse echo 

immersion measurement system for TMMs. The developed system employs the 

alternative pulse echo immersion technique (aPEIT), which is adapted from the 

noncontact PEIT and specially designed for the step-shaped sample. It is particularly 

developed for nonporous TMMs. Therefore, the developed system could not be used 

to determine the acoustic properties of porous and multilayered TMMs. 

The system is developed to calculate the acoustic properties of a TMM from 

the reflected acoustic signals through the thin and thick sections of the sample using 

time and frequency domain analysis. In this study, the acoustic signals are analysed 

using the time domain analysis to calculate the longitudinal velocity and acoustic 

impedance of the sample. The acoustic signals are also analysed using the frequency 

domain analysis to calculate its phase velocity and attenuation coefficient. The other 

acoustic properties such as shear velocity, backscatter coefficient and nonlinear 

parameter are not included in this study. 

The precision and accuracy of the developed system are evaluated to validate 

whether it can produce comparable or better results compared to the noncontact 

PEIT. In this study, the precision of the developed system is determined by 

comparing the results obtained from the developed system for the aPEIT and the 

previous developed system for the noncontact PEIT for four parameters; thickness of 

sample (the thin section of the sample is one third, half and two third of its thick 

section), temperature of medium (25.0
o
C, 30.0

o
C and 35.0

o
C), density of medium 

(1000 kg m
-3

, 1003 kg m
-3

 and 1007 kg m
-3

) and center frequency of transducer 

(2.25 MHz, 4.00 MHz and 5.00 MHz). Meanwhile, its accuracy is determined by 

comparing the results obtained from the developed system for the aPEIT, the 

previous developed system for the noncontact PEIT and the reference values. 
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Then, the developed system is used to determine the temperature and 

frequency dependent acoustic properties of agar-based and KGM-based samples. In 

this study, the temperature dependent acoustic properties of both samples are 

determined within the range of 25.0
o
C and 33.0

o
C temperatures of distilled water at 

5.00 MHz frequency. Meanwhile, the frequency dependent acoustic properties of 

samples are determined within the range of 4.00 MHz and 6.00 MHz frequency at 

25.0
o
C temperature of distilled water.  

Then, the temperature and frequency dependent acoustic properties of agar-

based and KGM-based samples are analysed to determine the effects of modifier and 

scatterer on the temperature and frequency dependent acoustic properties of agar and 

KGM samples. In this study, the temperature dependent acoustic properties of agar-

based and KGM-based samples are analysed to determine the effects of modifier and 

scatterer on the temperature dependent longitudinal velocity, acoustic impedance, 

phase velocity and attenuation coefficient of agar and KGM samples. Meanwhile, the 

frequency dependent acoustic properties of agar-based and KGM-based samples are 

analysed to determine the effects of modifier and scatterer on the frequency 

dependent phase velocity and attenuation coefficient of agar and KGM samples.  

1.5 Significance of Study 

This study is important for researchers who are involved in the development 

of TMMs. Since the common acoustic measurement system adapts the noncontact 

UIT and PEIT, both techniques require the distilled water as the propagation 

medium, ultrasonic pulse transmission in distilled water as the calibration procedure 

and water temperature measurement to calculate the acoustic properties of a sample. 

Therefore, the developed alternative acoustic pulse echo immersion measurement 

system in this study is significant to improve the accuracy of common acoustic 

measurement of human tissues and TMMs.  
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The acoustic properties of human tissues also highly depend on temperature 

and frequency. Thus, the temperature and frequency dependent acoustic properties of 

TMMs can be manipulated by the addition of modifier and the presence of scatterer 

and porosity to mimic the acoustic properties of human tissues. However, previous 

researchers only studied the effect of modifier on the temperature dependent 

longitudinal velocity of TMMs and the effect of porosity on the frequency dependent 

phase velocity of TMMs. Therefore, this study is significant to determine the effects 

of modifier and scatterer on the temperature and frequency dependent acoustic 

properties of TMMs. 

This study is also important for researchers who are involved in the medical 

field. The abnormal human tissues have different acoustic properties compared to the 

normal tissues. According to the previous researches, the TMMs with modifier and 

scatterer may mimic the abnormal human tissues. However, previous researchers 

only studied the frequency dependent attenuation coefficient of abnormal TMMs. 

Therefore, this study is significant to differentiate the temperature and frequency 

dependent acoustic properties of normal and abnormal human tissues and TMMs. 

1.6 Thesis Organization 

This thesis is divided into five chapters. The first chapter, chapter 1 covers 

the background of study, problem statement, objectives of study, scope of study and 

significance of study. Meanwhile, chapter 2 describes the literature review related to 

the acoustic measurement techniques of human tissues and TMMs, their acoustic 

properties and factors affecting the temperature and frequency dependent acoustic 

properties of TMMs. Then, chapter 3 explains the measurement procedure for aPEIT, 

development of alternative acoustic pulse echo immersion measurement system for 

nonporous TMMs and sample preparation. Meanwhile, chapter 4 discusses the 

performance of the developed system and the temperature and frequency dependent 



 

10 

 

acoustic properties of agar-based and KGM-based samples. Finally, chapter 5 covers 

the conclusion and recommendation for further study. 
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