
 

ALLOYING AND AGING TREATMENT EFFECT ON THE SHAPE MEMORY 

AND DAMPING PROPERTIES OF Cu-13Al-4Ni ALLOYS 

 

 

 

 

 

 

 

WEE YING CI 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy (Mechanical Engineering) 

 

 

School of Mechanical Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

MARCH 2021 



ii 

DEDICATION 

 

 

 

 

 

 

 

 

 

To my parents for raising me to believe that everything was possible and to 
my husband for making everything possible 

  



 

iii 

ACKNOWLEDGEMENT 

Foremost, I would like to express my deep and sincere gratitude to my main 

supervisor Assoc. Professor Dr. Tuty Asma Abu Bakar for the continuous support of 

my Ph.D study and research, for her patience, motivation and enthusiasm. I am also 

very thankful to my co supervisor, Professor Dr. Esah Hamzah for imparting her 

knowledge and expertise in this study.   

I would like to acknowledge the Malaysian Ministry of Higher Education 

(MOHE) and University Teknologi Malaysia (UTM) for providing the financial 

support and facilities for this research.  Many thanks are also to the staff, faculty 

members and technicians of the School of Mechanical Engineering, Universiti 

Teknologi Malaysia who assisted me during my research. 

I am extremely grateful to my parents for their love, prayers, caring and 

sacrifices for educating me.  I am very much thankful to my husband for his love, 

understanding and continuing support towards me to complete this research work.  

  



iv 

ABSTRACT 

Copper-based shape memory alloys (SMAs) are gaining attention as materials 
that require a good damping property in high temperature applications because they 
exhibit high damping properties during martensitic transformation and have an 
effective energy dissipation. However, copper-based SMAs such as the ternary alloy 
Cu-Al-Ni are not easily deformed in the lower temperature martensitic phase which 
can be attributed to brittleness induced by coarse grain size, high degree of order and 
elastic anisotropy. Hence, this study aimed to improve the properties of Cu-13Al-4Ni 
SMAs by addition of fourth alloying element and aging treatment that provides a 
significant effect on the microstructures and properties of the alloys. In this research, 
Cu-13Al-4Ni-X alloys with the addition of the fourth additional elements (X=titanium, 
cobalt or boron) were prepared by casting.  The as-cast alloys were then homogenized 
at 900°C and followed by an aging treatment at 150°C, 200°C and 250°C for 24 hours. 
The transformation temperatures and microstructure characteristics of Cu-Al-Ni-X 
SMAs were investigated via differential scanning calorimetry (DSC), scanning 
electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and 
x-ray diffraction (XRD).  The hardness of these alloys was determined using Vicker’s 
hardness tester.  The shape memory effect was determined by compression test using 
an Instron universal testing machine. The damping property was measured by dynamic 
mechanical analysis (DMA) technique. The results revealed that the addition of 
titanium to the Cu-Al-Ni alloy led to the formation of X-phase which consists of 
intermetallic compounds of NiTi and AlTi2 that refined the microstructures. On the 
other hand, addition of cobalt changed the morphologies of the phases with formation 
of γ2 phase which improved the ductility of the quaternary alloy. Addition of boron to 
Cu-Al-Ni alloy led to the formation of secondary phases which also refined the 
microstructures. Among the three element additions, Co, B and Ti, it was found that 
the alloy with 0.7% of Co addition at aging treatment of 150°C for 24 hours showed 
the best shape memory effect with 100% recovery followed by Cu-13Al-4Ni-0.7Ti at 
aging temperature of 200°C with 97.5% recovery.  However, the Cu-13Al-4Ni-0.7Ti 
at aging temperature of 200°C has the best damping properties with 0.18 internal 
friction followed by Cu-13Al-4Ni-0.7Co at aging temperature of 150°C with 0.1 
internal friction. The findings showed that both of these alloys are good candidates for 
damping application. 
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ABSTRAK 

Aloi ingatan bentuk (SMA) berasaskan kuprum mendapat perhatian sebagai 
bahan yang memerlukan sifat redaman yang baik dalam aplikasi suhu tinggi kerana ia 
menunjukkan sifat redaman yang tinggi semasa transformasi martensitik dan berkesan 
dalam penyebaran tenaga. Walau bagaimanapun, SMA berasaskan kuprum seperti aloi 
ternari Cu-Al-Ni tidak mudah berubah bentuk pada fasa martensitik suhu rendah yang 
dapat dikaitkan dengan kerapuhan disebabkan oleh saiz bijian besar, tahap tertib tinggi 
dan anisotropi elastik. Oleh itu, kajian ini bertujuan untuk meningkatkan sifat-sifat 
SMA Cu-13Al-Ni dengan penambahan unsur keempat dan rawatan penuaan yang 
memberi kesan yang ketara terhadap struktur mikro dan sifat-sifat aloi. Dalam 
penyelidikan ini, aloi Cu-13Al-4Ni-X dengan penambahan unsur tambahan keempat 
(X = titanium, kobalt atau boron) disediakan melalui proses tuangan. Aloi tuangan 
kemudian dihomogenkan pada suhu 900°C dan diikuti dengan rawatan penuaan pada 
suhu 150°C, 200°C dan 250°C selama 24 jam. Suhu transformasi dan ciri 
mikrostruktur Cu-13Al-4Ni-X SMA disiasat melalui permeteran kalori pengimbasan 
kebezaan (DSC), mikroskop elektron pengimbas (SEM), spektrometri serakan tenaga 
(EDS) dan pembelauan sinar-x (XRD). Kekerasan aloi ini ditentukan dengan 
menggunakan penguji kekerasan Vicker. Keingatan bentuk telah ditentukan dengan 
ujian mampatan menggunakan mesin Instron. Sifat redaman diukur dengan analisis 
mekanikal dinamik (DMA). Hasil kajian menunjukkan bahawa kesan penambahan 
titanium pada aloi Cu-13Al-4Ni menyebabkan pembentukan fasa-X yang terdiri 
daripada sebatian intermetalik NiTi dan AlTi2 yang menghaluskan saiz struktur mikro. 
Sebaliknya, penambahan kobalt mengubah morfologi fasa dengan pembentukan fasa 
γ2 yang meningkatkan kemuluran aloi kuaternari. Penambahan boron kepada Cu-
13Al-4Ni menyebabkan pembentukan fasa sekunder yang juga menghaluskan saiz 
struktur mikro. Di antara tiga penambahan unsur, Co, B dan Ti, didapati bahawa aloi 
dengan penambahan Co 0.7% yang telah menjalani rawatan penuaan pada suhu 150°C 
selama 24 jam menunjukkan kesan ingatan bentuk terbaik dengan pemulihan 100 % 
diikuti oleh Cu-13Al-4Ni-0.7Ti pada suhu penuaan 200°C dengan pemulihan 97.5%.  
Walau bagaimanapun, Cu-13Al-4Ni-0.7Ti pada suhu penuaan 200°C mempunyai sifat 
redaman terbaik dengan geseran dalaman 0.18 diikuti oleh Cu-13Al-4Ni-0.7Co pada 
suhu penuaan 150°C dengan geseran dalaman 0.1. Hasil kajian menunjukkan bahawa 
kedua-dua aloi ini merupakan calon aloi yang sesuai untuk aplikasi redaman. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Research 

Environmental issues related to mechanical, structural and noise vibrations 

from seismic events such as excavation, construction, mining, and exploration 

activities have gained considerable attention [1]. Mild discomfort to human and 

general machinery inefficiencies are some of the detrimental effects of the vibration 

sources generated from the seismic events that may lead to structural failure, loss of 

lives, properties and investments [2, 3].  These unwanted vibrations maybe eliminated 

by selecting materials with good damping properties for engineering structures and 

systems [4, 5].  Research on these materials has created tremendous interest among 

scientists and engineers. 

Shape memory alloys (SMAs) are materials which capable of regaining their 

original shape after a large inelastic deformation. This is due to the reversible 

transformation between two different phases namely martensite and austenite. The 

martensite phase is highly twinned crystalline structure with high transformation strain 

and it is stable in low energy level, and the austenite phase is stable in high energy 

level with low strain. Most SMAs show two unique properties which are known as 

shape memory effect. The SMAs has ability to recover its original structure upon 

heating and pseudoelastic effect by restoring the stress-induced deformation upon 

releasing the applied loads [6].   

Copper based SMAs are notable for their easy production and application in 

addition to their lower price compared to NiTi alloys.   Among Cu based SMAs, Cu-

Al-Ni alloys have a higher themal stability.  Therefore, Cu-Al-Ni alloys are being 

developed for high temperature applications due to their potential to be used as sensors 
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and actuators at temperature around 200 °C. Also, it has emerged as a potential material 

for high damping material.  Composition of aluminium and content of nickel is 

strongly affects the shape memory properties of Cu-Al-Ni SMAs. The shape memory 

properties of the alloys can be accomplished when the Al content is about 11wt.% -

13wt.%and content of Ni is about 3-5wt.% [7].  Some other factors that influence the 

shape memory properties are martensite structure, composition and transformation 

temperatues [7, 8]. Various kinds of martensite such as 𝛽ଵ
ᇱ  (18R), 𝛾ଵ

ᇱ  (2H) or 𝛼ଵ
ᇱ (6R) 

can be formed by transformation of  β1 (DO3) parent phase in Cu-Al-Ni SMAs, in 

which formation of these martensite phases depends on applied stress and temperature.  

18R (𝛽ଵ
ᇱ) and 2H (𝛾ଵ

ᇱ) are the two martensite structures that normally formed in Cu-Al-

Ni SMAs, in which the content of Al and Ni as well as heat treatment affect their 

formation  [8, 9].  Martensite formed on cooling is 𝛽ଵ
ᇱ  in a low Al alloy and is 𝛾ଵ

ᇱ  in a 

high Al alloy, In alloys with composition with compositions near the phase boundary 

between these two martensites, both can coexist [10]. 𝛽ଵ
ᇱ  and 𝛾ଵ

ᇱ  are two martensite 

structures that typically obtained in Cu-Al-Ni SMAs, in which their formation are 

strongly affected by content of Al and Ni and the requied characteristic of the 

application determines the content of combination of both Al and Ni.   

Nevertheless, the single crystal in structure of the Cu-Al-Ni SMA is ductile 

however polycrystalline Cu-Al-Ni SMA is generally brittle and low recovery strain 

which has limitation in practical application [11, 12].  In fact, existence of β phase in 

Cu-Al-Ni alloy results in intergranular fracture as a result of high elastic anisotropy 

and large size grains. To solve this issue, several approaches such as grain refining by 

addition of alloying elements, precipitation hardening or heat treatment can be utilized 

to enhance the mechanical properties and improving its ductility as well as workability 

[13-16].  

  Addition of alloying elements such as Nb, V, B, Ti and Mn or various 

concentrations of Al and Ni to Cu based SMAs is one of the approaches to increase 

the ductility and refining these alloys [17-20].  Once the grain size is refined, the mode 

of the fracture alters from intergranular to transgranular with a ductile fracture mode 

during impact test [20].  Ti has a significant effect in decreasing grain size in Cu-Al-

Ni ternary alloy [13, 19].  The grain refinement due to the Ti addition is attributed to 
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the development of finely dispersed Ti-rich precipitates of X-phase, which hinder the 

grain growth [21]. It has been proved that the grain refinement enhances the 

mechanical properties.  

Martensitic phase transformation from austenite to martensite is crucial to 

achieve the superelasticity and shape memory effects. Therefore, the shape memory 

characteristics such as thermal hysteresis, transformation temperatures and 

recoverable strain depend on aging effects for both phases [7].  Based on the Canbay 

et.al [22] findings, during the different annealing treatment of Cu-Al-Ni SMAs, β1’ 

martensite formed as the main phase, in which based on the applied condition, various 

crystalline size of this phase is formed. The relative steadiness of the both martensite 

and austenite in SMAs is a function of heat treatments, as the Cu based SMAs are 

sensitive to heat treatments [22, 23]. 

Damping is the transformation of mechanical energy of a vibrating structure 

into thermal energy. Its mechanism is complex with the combination of structural and 

material damping. Material damping depend on many factors which include type of 

materials, stress amplitude, internal forces, quality of surfaces and temperature. There 

are many engineering materials that have good damping property and among them are 

shape memory alloys (SMAs) [24].  SMAs are well known alloys which have 

pseudoelastic and shape memory properties but they are also known to have excellent 

damping property which makes them desirable for the vibration control devices design 

[25].  High damping capacity of SMAs in austenitic and martensitic states is due to 

stress induced martensitic transformation and stress-induced martensite variant 

orientation respectively [26].  SMAs with high damping capacity have many 

applications in different industries.  

One of the important functional properties of SMAs is desired damping 

capacity of these alloys. Its mechanism is complex with the combination of structural 

and material damping. It is because a large fraction of mechanical energy is dissipated 

in the internal interfaces between the phases during their formation and motion, which 

is due to shape memory effect and superlasticity deformation of SMAs [27, 28]. 

Martensite variant interfaces and twin boundaries as hysteresis movement of interfaces 
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leads to high damping capability of the thermoelastic martensite phase. Kustov et. al 

[29] establish a high damping capacity in Cu-Al-Ni alloys which is because of the 

dislocations and their relations with other lattice effects.  Hence, Cu-Al-Ni alloys is 

possible to be used as shape memory energy absorbers which can minimize structural 

damage during earthquake. 

Numerous studies reported the influence of aging on the damping properties of 

Cu based SMAs [30-33].  Cu-Al-Ni alloys have tendency to ageing which leads to 

formation of precipitate and consecutive martensitic transitions from 𝛽ଵ
ᇱ  to 𝛾ଵ

ᇱ .  

Hereafter, their damping properties are also likely to alter significantly with aging. 

Suresh and Ramamurty [30] examined the influence of aging on the damping capacity 

of Cu-Al-Ni and found decreasing in the internal friction (IF) value of this alloy with 

aging treatment as a result of the  precipitation formation ( 𝛾ଶ)  at certain aging 

temperature. Shivaramu [32] reported that the damping limit of the Cu-Al-Be-Mn 

SMAs decreased with increasing the aging temperature and time  due to the formation 

of precipitates which can acts as barrier for the movement of the interfaces.  Hence, it 

is shown in numerous studies that damping capacity is strongly depends on the 

influence of addition elements and heat treatment process.  Therefore, the aims of the 

present study are to elucidate the influence of various addition elements and heat 

treatment on the microstructure and properties such as hardness, shape memory 

behaviour and damping characteristics of Cu-Al-Ni-X alloys.  

1.2 Problem Statement of the Research 

Shape memory alloys have been drawing attention in current times for the 

vibration control systems design, seismic resistant design and retrofit of structure [4, 

24, 34] due to their high energy absorption and dissipation capacities that results in 

high damping capacity. The well-known and established SMAs, Ni-Ti alloys have high 

superelasticity, large recoverable strain and high fatigue life which satisfy actual 

application requirements [35, 36]. Nevertheless, poor cold workability and high cost 

of material is the main hindrance against utilizing Ni-Ti alloys for such applications 

[37, 38]. In addition, the austenite-finish temperature (𝐴௙) of Ni-Ti alloy is around 
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0°C.  It is challenging to obtain 20°C by adjusting the composition and heat treatments. 

Hence, their outdoor engineering application is restricted by relatively high range of 

working temperature in practical limits. Alternatively, Cu-Al-Ni SMAs are considered 

as potential materials for damping application due to their martensitic transformation 

temperature are adjustable to above room temperature, low production cost, easy 

manufacturing, excellent shape memory function and high damping capacity. 

However, high brittleness and unfavourable mechanical properties due to coarse grains 

limit their further development and applications in certain fields.  The undesirable 

properties may be improved by adding alloying elements followed by aging treatments.  

Therefore, addition of fourth element in the Cu-Al-Ni SMA together with aging 

treatment became the focal point of this research in order to achieve the optimum 

performance to the shape memory recovery and damping capacity. 

1.3 Objectives of the Research 

The main objective of the research is: 

To modify the microstructure and shape memory property of Cu-Al-Ni shape 

memory alloys by addition of alloying elements and heat treatment  

The specific objectives of the research are: 

1. To investigate the effect of various alloying elements on the microstructure, 

mechanical properties and shape memory behaviour of Cu-Al-Ni-X alloys. 

2. To determine the effect of aging treatment on the microstructure, mechanical 

properties, and shape memory behaviour of Cu-Al-Ni-X alloys. 

3. To correlate the effect of alloying elements and aging treatment on the damping 

properties of Cu-Al-Ni-X alloys. 



6 

1.4 Scopes of the Research 

Based on the objectives of the study, the scopes of the research are: 

1. Production of Cu-Al-Ni shape memory alloys with and without addition of 

alloying elements (Ti, Co, and B) using casting process. 

2. Performed the aging treatment process on the base Cu-Al-Ni SMAs with 

addition of different alloying elements. 

3. Conducted the material characterization to investigate the properties using 

various testing equipments such as inductively coupled plasma mass 

spectrometry (ICP-MS), differential scanning calorimetry (DSC), optical 

microscopy (OM), variable pressure scanning electron microscopy (VPSEM) 

and x-ray diffraction (XRD). 

4. Performed the compression test using universal testing machine to investigate 

the shape memory effect and compression properties. 

5. Determination of the damping characteristic using dynamic mechanical 

analysis (DMA) with cooling rate = 3°C/min, frequency = 1 Hz, and applied 

strain = 5.0 × 10ିହ. 

 

1.5 Significance of the Research 

Copper-based shape memory alloys specifically the ternary Cu-Al-Ni have 

gained attention among scientists and engineers seeking for alloys with superior 

properties. Many attempted to improve the properties of Cu-Al-Ni by modifying the 

alloy composition with addition of various elements or by heat treatment processes but 

with no major success to be used for industrial applications. The primary purpose of 

this research is to enhance the properties of Cu-Al-Ni by adding fourth alloying 

element, namely, titanium, cobalt and boron followed by aging treatment with specific 

application that require good damping property. Hardly any literature or previous 

research have reported on the role of these three alloying elements and aging treatment 

on the damping property.  The findings of this study will provide better understanding 

on the relationship between microstructural modification and the enhancement of 
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mechanical properties of Cu-Al-Ni-X alloys especially on the damping property for 

seismic resistant devices and structures.    
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