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ABSTRACT 

Rice is one of the staple foods that contributes significantly to global food 

security. In Malaysia, rice occupies the commanding height of staple food basket. 

However, local rice production fails to satisfy domestic demand as domestic expansion 

of rice production is hampered by the low yield of Malaysian rice, its long reproductive 

phase and poor amenability to genetic transformation. Biotechnology methods 

employed to improve the Malaysia rice proved unsatisfactory due to its recalcitrance 

to transformation. This study sought to address these challenges by identifying the 

most efficient and rapid methods for indica rice transformation up to transgenic 

recovery. For this, RFT1 gene was isolated from Malaysia upland rice (cultivar Wai) 

and constructed into pCAMBIA1305.2 expression vector. The construct was further 

mobilized into Agrobacterium tumefaciens LBA4404. MR219 Malaysian wetland rice 

was used for shoot apex induction. Five-day-old shoot explants were used for 

transformation with A. tumefaciens LBA4404 harbouring pCAMB::RFT1 construct. 

The transformants were regenerated and analyzed for transient expression of RFT1, 

hpt and GUS. Stable integration of transgene and GUS were validated by PCR 

amplification and histochemical analysis. The RT-PCR and bioinformatics analyses 

showed that full-length RFT1 gene was isolated and shared 99% nucleotide and 80% 

amino acid identity with other rice cultivars. pCAMB::RFT1 construct was 

successfully developed and transformed into MR219 wetland rice. Optimum shoot 

apices regeneration frequency of 71.64±0.74% was recorded in MS medium 

supplemented with 3 mg/L TDZ and genetically transformed. The molecular analysis 

of the transgenic rice confirmed the integration of the RFT1 transgene, hpt and GUS 

gene into the T0 plant. Histochemical and PCR analyses of established transgenic 

MR219 also confirmed the presence of the transgenes. Total transformation efficiency 

was recorded in the range of 12.5±5.37% to 17.5±4.91%. This is the first report of full-

length RFT1 gene isolation and transformation into MR219 shoot apex. Findings from 

this study could serve as a new procedure for genetic manipulation and a fundamental 

stage for producing transgenic rice. 
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ABSTRAK 

Padi adalah antara makanan ruji yang menyumbang utama kepada keselamatan 

makanan global. Di Malaysia, padi menduduki tempat tertinggi dalam kempulan 

makanan ruji. Walau bagaimanapun, pengeluaran padi tempatan gagal memenuhi 

permintaan dalam negeri kerana perluasan penghasilan padi terhalang oleh hasil padi 

Malaysia yang rendah, fasa pembiakannya yang panjang, dan kebolehmampuan untuk 

transformasi genetic yang rendah. Kaedah bioteknologi yang digunakan untuk 

menambahbaik padi Malaysia terbukti tidak memuaskan kerana sifatnya yang kurang 

daya untuk transformasi. Kajian ini bertujuan menangani cabaran-cabaran ini dengan 

mengenalpasti kaedah transformasi padi indica yang paling cekap dan pantas sehingga 

perolehan transgenik. Untuk itu, gen RFT1 telah dipencilkan daripada padi tanah tinggi 

Malaysia (kultivar Wai) dan dibina ke dalam vector pengekspressan 

pCAMBIA1305.2. Konstruk itu telah dipindahkan seterusnya ke dalam 

Agrobacterium tumefaciens LBA4404. Padi sawah Malaysia MR219 telah digunakan 

bagi induksi apeks pucuk. Eksplan pucuk berusia lima hari telah digunakan dalam 

transformasi menggunakan A. tumefaciens LBA4404 menggandungi konstruk 

pCAMB::RFT1.  Transforman telah ditumbuhkan semula dan dianalisa untuk ekspresi 

sementara RFT1, hpt dan GUS.  Integrasi stabil transgen dan GUS telah disahkan 

melalui amplifikasi PCR dan analisa histokimia.  Analisa RT-PCR dan bioinformatik 

menunjukkan bahawa gen penuh RFT1 telah dipencilkan dan berkongsi identiti 99% 

nukleotida dan 80% asid amino dengan kultivar padi lain. Konstruk pCAMB::RFT1 

telah berjaya dibina dan ditransformasi ke dalam padi sawah MR219.  Kekerapan 

penghasilan semula apeks pucuk optimum sebanyak 71.64 ± 0.74% dicatatkan di 

dalam media MS yang ditambah dengan 3 mg/L TDZ dan telah dilakukan transformasi 

genetik. Analisis molekul padi transgenik mengesahkan selitan transgen RFT1, hpt dan 

gen GUS ke dalam tumbuhan T0.  Analisis histokimia dan PCR bagi MR219 

transgenik tertubuh juga mengesahkan kehadiran transgen.  Jumlah kecekapan 

transformasi yang dicatatkan adalah dalam julat 12.5±5.37% ke 17.5±4.9%. Ini 

merupakan laporan pertama kali pemencilan gen penuh RFT1 dan transformasi ke 

dalam apeks pucuk MR219. Penemuan dalam kajian ini boleh menjadi kaedah baru 

untuk manipulasi genetik dan peringkat asas penghasilan padi transgenik.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Rice (Oryza sativa L.) is an essential cereal, suitable as a food source, and 

widely cultivated and used as a staple food in many population centres around the 

world. It is the most extensively cultivated cereal crop after wheat and enjoys attractive 

agronomic importance. Rice is cultivated worldwide due to its diversified flowering 

time. It is a facultative short day (SD) plant but also produce flower during non-

inductive long-day (LD) condition (Itoh and Izawa, 2013a; Izawa, 2007). In addition, 

rice is apposite for flowering development analysis due to its relatively small genome 

size (≥ 430 Mb) and diploid origin (2n = 24) (Sahoo et al., 2011; Sankepally and Singh, 

2016). It is a model species for studies on gene expression, genome organisation and 

transgenes behaviour (Manimaran et al., 2013). 

The species has 3 sub-species including Indica, Japonica and Javanica. About 

80% of the world rice production is indica which is cultivated under tropical and sub-

tropical environments as slender and long-sized grain (Din et al., 2016). In Malaysia, 

many types of indica rice are cultivated, including upland and wetland cultivars 

(Sohrabi et al., 2012). Examples of Malaysian upland rice cultivars include Lamsan, 

Selasi (Shahsavari et al., 2010), Hitam Wai (Arifa et al., 2016) and Panderas (Din et 

al., 2016). Examples of wetland cultivars cultivated in Malaysia include MR219, 

MR232 and MR220 (Htwe et al., 2011; Zuraida et al., 2011). The uplands are 

cultivated in Sabah and Sarawak and some parts of Peninsula Malaysia under naturally 

well-drained soil, without surface water accumulation and phreatic water supply. The 

wetlands are farmed only in Peninsula Malaysia under flooded soil conditions.  

Research on Malaysia upland rice has been neglected due to their low yield, 

long reproductive phase, and poor amenability to genetic transformation (Din et al., 
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2016). Wetland varieties, particularly MR219, are high yielding cultivars and verified 

for their genetic transformation (Htwe et al., 2011; Zuraida et al., 2013; Zuraida et al., 

2012). The MR219 is a developed cultivar having resistance to abiotic stresses 

including drought, salinity and acidity. However, MR219 has proven to be susceptible 

to bacterial and fungal diseases such as leaf blight and blast (Fook et al., 2015; Tan et 

al., 2017). Nevertheless, the flowering development and productivity of this rice 

cultivar can be improved via genetic transformation of its florigen. This alteration may 

significantly increase rice productivity and decrease massive importation of rice into 

Malaysia. In recent times, this biotechnological approach has become an important 

tool in gene function studies, grain production and stress tolerant analysis (Tan et al., 

2017; Zhu et al., 2017).  

Naturally, the reproductive phase of rice is triggered by both florigens (Itoh 

and Izawa, 2013b) and environmental signals during its photoperiod (Albani and 

Coupland, 2010; Nuñez and Yamada, 2017). The florigens include Heading date 3a 

(Hd3a) under SD condition and Rice Flowering Locus T1 (RFT1) under LD condition 

which are highly conserved (Komiya et al., 2009). Specifically, RFT1 gene regulates 

flowering by translocation from the leaf to the shoot apical meristem (SAM). The gene 

interacts with transcriptional factor flowering locus D (FD) and functions as a mobile 

signal for switching on the flowering process (Itoh and Izawa, 2013b; Komiya et al., 

2008). Itoh and Izawa (2013b) reported that Heading date 1 (Hd1) and Early Heading 

date1 (Ehd1) act as floral regulators in transcriptional regulation and promote the 

activation of the RFT1 gene. To date, no biotechnology-experimental evidence on the 

gene isolation and transformation in Malaysia rice has been reported. Similarly, its 

expression pattern is still not fully understood. 

Genetic transformation is the best biotechnological strategy for developing 

transgenic rice (Yaqoob et al.; Zhu et al., 2017). The system generates plants with 

improved traits and phenotype that are unachievable by a conventional breeding 

system. As reviewed by Birch (1997), mediated Agrobacterium transformation system 

appears to be the most promising transformation system for the production of 

transgenic cereal crops including rice. However, indica rice transformation remains 

difficult due to the cultivars’ genotype-dependence, tissue culture recalcitrance, 
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transformation to transgene integration and regeneration to transgenic recovery (Tan 

et al., 2017). Therefore, the present research identified suitable and viable explant that 

would allow successful integration of transgene during transformation, followed by 

regeneration to final recovery of transgenic rice.  

In tissue culture, suitable explant identification was employed to achieve 

efficient gene transfer and transformants regeneration. Previously, several explants 

were considered for rice transformation, namely: embryogenic callus (Rahman et al., 

2011) and immature embryo (Hiei and Komari, 2008). Callus has less regeneration 

potential after transformation due to variety-dependence, while immature embryos are 

available only at certain periods in the year and are difficult to handle (Dey et al., 

2012). In this research, young rice shoot apex was used for successful transformation 

via Agrobacterium-mediated transformation system and transgenic recovery. The 

merit for shoot apex transformation includes being genotype-independent, direct 

regeneration of transformants, maintained cultivar integrity and ease of handling 

(Clement et al., 2016; Dey et al., 2012; Fook et al., 2015).  

To comprehensively dissect the naturally occurring LD flowering development 

in rice in pursuance of this research, a detailed study of the RFT1 gene transformation 

and expression is necessary in order to fully understand its gene molecular 

mechanisms. However, construction is the basis for understanding the florigen 

mechanism and its flowering regulation by the application of genetic engineering. The 

current research is the first to isolate and construct the RFT1 gene from upland rice, 

which is then transformed into MR219 cultivar. Therefore, RFT1 gene isolation and 

genetic transformation would allow the development of new rice lines, facilitate 

elucidation on the gene mechanism, and provide insight into the molecular basis of 

rice growing at LD temperate regions.  

1.2 Problem Statement 

Gene isolation and appropriate construct development for genetic 

transformation to produce a high volume of transgenic variety(s) with predictable 
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transgene expression are the major technical challenges of indica rice transformation 

research. Till date, no report on the genetic transformation of Malaysian rice using any 

florigen has been reported. RFT1 florigen was only isolated from wetland rice and was 

rarely transformed. The gene isolation from upland rice and its transformation would 

provide insight into the production of local transgenic rice and enhance stable 

integration of the transgene for phenotype improvement. Besides, the molecular 

mechanism underlying the rice flowering development in the nation and the 

responsible florigen gene is also incompletely understood. These tricky issues need 

urgent attention with regards to understanding the flowering regulation network of the 

country’s rice cultivars. Such ends can only be achieved via the successful 

transformation of the flowering gene using suitable and viable explant. However, the 

identification of suitable explant via tissue culture prior to its transformation, its in 

vitro regeneration potential after the transformation, and its productive transformation 

technique remain problematic. 

Despite the good characteristics of some Malaysia indica rice cultivars, little 

has been reported about its efficient genetic transformation mainly due to its 

recalcitrance and less amenability to transformation. However, most of the 

transformation methods are dependent on embryogenic callus or immature embryo 

culture as explant source, while their regeneration capacity and transformation 

efficiency are limited. Thus, these regional indica cultivars have a high risk of 

contamination during culture, thus limiting their regeneration efficiency after the 

transformation. This study sought to address the problems of these fewer viable-

explants, their inefficient regeneration and unsatisfactory transformation (genotype-

dependence) by providing a viable alternative with efficient regeneration and 

transformation potentials. Hence, the choice of MR219 variety for successful 

transformation would be very beneficial due to its abiotic stress resistance and 

susceptibility to diseases.  



 

5 

1.3 Significance of the Research 

Isolation and construction of florigen remain the basis for understanding the 

flowering regulation mechanism of rice cultivars through the application of genetic 

transformation. Precise characterisation of the molecular nature of the photoperiod 

sensitivity in RFT1 gene is the key factor to provide an insight into the molecular basis 

of day length recognition and mechanism behind the breeding system of rice in 

Malaysia. Further, the exact understanding of the molecular function of the floral 

regulator would allow the identification of critical targets for the development of local 

rice lines in the nation. Hence, to attain that, it is important to establish an efficient 

tissue culture by identifying a suitable explant for the transformation activity and 

transgenic regeneration protocol. 

A successful transformation of RFT1 gene into MR219 cultivar and transgenic 

regeneration to acclimatization will be of paramount importance. It will improve local 

rice transformation following the provision of viable explant and efficient 

transformation procedure, as well as produce prolific or stress-resistant lines after 

stable expression of the transgene in the transgenic variety line. In fact, the established 

method followed in this research will generate young viable-explants containing 

actively-dividing cells with high regeneration and transformation potentials. These 

better-quality varieties could lead to the improvement of local rice cultivars and reduce 

the persistent problem of rice importation into Malaysia. Thus, genetic engineering 

intervention through shoot apex transformation could break the barrier of genotype-

dependence and establish a regenerable protocol for local transgenic indica varieties. 

Additionally, this solution could provide useful insights into the transformation of 

other rice cultivars.  

1.4 Research Objectives 

I. To isolate full-length Rice Flowering Locus T1 (RFT1) gene. 

II. To develop RFT1 construct into a plant expression vector for transformation of 

Malaysia rice MR219. 



6 

III. To optimize the transformation of RFT1 gene into Malaysia rice MR219 shoot 

apex. 

IV. To characterize RFT1 gene expression pattern in the transgenic MR219. 

1.5 Scope of the Research 

Genomic deoxyribonucleic acid (gDNA) and ribonucleic acid (RNA) was 

isolated from mature leaves of Malaysia upland rice, cultivar Wai. The full-length 

RFT1 gene was amplified from the gDNA and complementary DNA (cDNA) by 

polymerase chain reaction (RT-PCR) analysis. Both the gene amplicon and sequences 

were analysed for full-length amplification. pGMT:RFT1 construct was transformed 

into E. coli DH5α, while pCAMB::RFT1 expression construct was transformed into 

Agrobacterium tumefaciens LBA4404. In vitro shoot apex induction for 

transformational purposes was carried out from mature seeds of MR219 Malaysia 

wetland rice. Agrobacterium-mediated transformation of the rice shoot apices with 

Agrobacterium cells harbouring the pCAMB::RFT1 construct and regeneration of 

transgenic plant were established. The genotype of the transgenic rice by PCR 

amplification of the RFT1, hpt and GUS gene was determined. The transgenic rice was 

regenerated and acclimatized, the phenotypic characteristics at the vegetative stage 

were observed, and the transformation efficiency determined. Stable integration of the 

transgenes in the T0 plant was confirmed by GUS assay and PCR validation.  
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