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ABSTRACT

Vehicle detection is the first step towards a successful traffic monitoring 

system. Although there were many studies for vehicle detection, only a few methods 

dealt with a complex situation especially in traffic jams. In addition, evaluation under 

different weather conditions (rainy, foggy and snowy) is so important for some 

countries but unfortunately it is rarely performed. Presently, vehicle detection is 

mainly performed using background subtraction method, yet it still faces many 

challenges. In this thesis, an adaptive background model based on the approximate 

median filter (AMF) is developed. To demonstrate its potential, the proposed method 

is further combined with two proposed feature representation techniques to be 

employed in either global or local vehicle detection strategy. In the global approach, 

an adaptive triangle-based threshold method is applied following the proposed 

adaptive background method. As a consequence, a better segmented foreground can 

be differentiated from the background regardless of the different weather conditions 

(i.e., rain, fog and snowfall). Comparisons with the adaptive local threshold (ALT) 

and the three frame differencing methods show that the proposed method achieves 

the average recall value of 85.94% and the average precision value of 79.53% with a 

negligible processing time difference. In the local approach, some predefined 

regions, instead of the whole image, will be used for the background subtraction 

operation. Subsequently, two feature representations, i.e. normalized object-area 

occupancy and normalized edge pixels are computed and formed into a feature 

vector, which is then fed into the k-means clustering technique. As illustrated in the 

results, the proposed method has shown an increment of at least 10% better in terms 

of the precision and 4.5% in terms of F1 score when compared to the existing 

methods. Once again, even with this significant improvement, the proposed method 

does not incur noticeable difference in the processing time. In conducting the 

experiments, different standard datasets have been used to show the performance of 

the proposed approach. In summary, the proposed method has shown better 

performances compared to three frame differencing and adaptive local threshold 

methods.
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ABSTRAK

Pengesanan kenderaan merupakan langkah permulaan kepada kejayaan sistem 

pengawasan trafik. Walaupun terdapat banyak kajian mengenai pengesanan kenderaan, 

hanya beberapa kaedah sahaja yang memfokuskan kepada situasi yang kompleks 

terutamanya ketika kesesakan lalu lintas. Tambahan pula, penilaian dalam keadaan cuaca 

yang berbeza (hujan, kabus dan salji) adalah penting untuk sesetengah negara, namun 

malangnya amat jarang dilaksanakan. Pada masa ini, pengesanan kenderaan adalah 

berdasarkan kaedah penolakan latar belakang, namun ianya masih berhadapan dengan 

pelbagai cabaran. Dalam tesis ini, model latar belakang berdasarkan penapis median 

anggaran adaptif (AMF) dibangunkan. Bagi mempamerkan potensi model ini, kaedah yang 

dicadangkan kemudiannya digabungkan dengan dua teknik pewakilan ciri iaitu dengan 

strategi pengesanan kenderaan secara global atau secara lokal. Di dalam pendekatan secara 

global, kaedah berdasarkan segitiga ambang adaptif diterapkan diikuti dengan kaedah latar 

belakang adaptif. Sebagai hasil, segmentasi latar hadapan yang lebih baik dapat dibezakan 

dengan latar belakang walaupun dalam keadaan cuaca yang berbeza (sebagai contoh: hujan, 

kabus dan salji). Perbandingan dengan ambang lokal adaptif (ALT) dan kaedah perbezaan 

tiga-kerangka menunjukkan bahawa strategi yang dicadangkan mencapai nilai purata 

pulangan sebanyak 85.94% dan nilai purata ketepatan sebanyak 79.53% dengan perbezaan 

masa pemprosesan yang boleh diabaikan. Bagi pendekatan secara lokal pula, hanya beberapa 

kawasan tertentu digunakan untuk operasi penolakan latar belakang, bukannya keseluruhan 

imej. Selanjutnya, dua pewakilan ciri, iaitu penghunian kawasan-objek dinormalisasi dan 

piksel sisi dinormalisasi, dikira dan dibentuk menjadi vektor ciri, yang kemudiannya 

dimasukkan ke dalam teknik pengklusteran k-means. Seperti mana yang digambarkan di 

dalam keputusan, kaedah yang dicadangkan telah menunjukkan peningkatan sekurang- 

kurangnya 10% lebih baik dari segi ketepatan dan 4.5% dari segi skor F1 apabila 

dibandingkan dengan kaedah-kaedah yang sedia ada. Demikian juga, walaupun dengan 

peningkatan yang ketara ini, kaedah yang dicadangkan tidak menunjukkan perbezaan yang 

nyata dalam masa pemprosesan. Dalam menjalankan eksperimen, set data piawaian yang 

berbeza telah digunakan untuk menunjukkan prestasi kaedah yang dicadangkan. Sebagai 

kesimpulan, kaedah yang dicadangkan telah menunjukkan prestasi yang lebih baik 

berbanding dengan kaedah perbezaan tiga-kerangka dan kaedah ambang lokal adaptif.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Intelligent Transportation Systems (ITS) can be defined as an application of 

new information and communication technologies of vehicles and roads for 

monitoring and managing traffic flow, decreasing congestion, improving security and 

optimizing the use of roads and transportation. In addition, it is useful in informing 

the drivers with the best route and the travel time for their destination in real-time [1]. 

Consequently, the development of ITS that extracts information from the traffic 

surveillance systems plays an important role in traffic management. It can ensuring 

better safety, directing smoother traffic flow, improving better traffic control in a 

congested urban area, and maintaining law and order of traffic and traffic signals 

[1,2].

One of the primary keys to ITS is the video-based surveillance system. It can 

be used for extracting some useful information such as vehicle counting, detection, 

tracking and recognition [3]. Traditionally, such information can be extracted by 

utilizing induction loops, passive magnetic sensors or pneumatic tubes under the road. 

These methods, in general, have limitations such as unable to detect stationary 

vehicles in addition to being highly complex in the hardware design, which translates 

to high cost [4]. Moreover, it can only extract local information from a specific 

location, causing limitation of the effectiveness of traffic management [5]. Therefore, 

the vision-based traffic monitoring system has attracted many researchers due to its 

two-fold advantages: less costly and easier to deploy [6]. Moreover, the advancement 

in the development of computational technologies has made vision-based vehicle 

counting an extremely attractive option for ITS. Nevertheless, such a system does face 

some challenges, such as changing lighting conditions, occlusion, and unfavorable 

weather conditions. Such problems have opened up a new horizon of research
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opportunities. Therefore, vehicle detection based on video camera becomes an active 

research field.

Figure 1.1

Motorway Alerting Aid

Main components in traffic management based on CCTV system [7].

Figure 1.1 shows the main components for a traffic management system based 

on a CCTV system. Two types of cameras can be used; analog or digital. A digital 

camera has an advantage over the analog as it has high storage capacity and high 

resolution. The captured video can be reviewed in real-time or recorded to manage the 

traffic flow. A central controller is responsible for some pre-processing steps such as 

shadow removal, noise removal, and other processing steps such as feature extraction 

and background subtraction processes. In addition, post-processing steps such as 

morphological operations can be included for better vehicle detection performance.

Monocular cameras are usually deployed for the human operator; however, 

stereo cameras can provide more depth information about the scene [8]. In monocular 

vision-based monitoring systems, a stationary camera is mounted at a high position, 

such as on the traffic lights or bridges to capture the passing vehicles. As a 

consequence, detecting vehicles can be affected by many challenges such as 

occlusion, changing lane and illumination conditions [9].
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Conversely, stereo cameras and 3D modeling are deployed mainly to 

overcome the occlusion problem by improving the scene analysis obtained from the 

extracted depth information. These models, however, are computationally intensive, 

which, in return, affect the real-time speed and require prior tracking information [9]. 

For a typical surveillance system, a traffic camera network is used to analyze and 

extract parameters from the captured scene and then transmit them in real-time [10].
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on Road Network
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_  J
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Figure 1.2 Main components of video surveillance systems [3].

Figure 1.2 illustrates the main components of a video surveillance system that 

consists of four layers:

• Layer 1: Image acquisition

• Layer 2: Dynamic and static attributes extraction

• Layer 3: Behavior understanding

• Layer 4: ITS services
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The main function of layer 1 is to capture the traffic scene and extract images 

based on visual sensors. The purpose of layer 2 is to extract the dynamic attributes of 

vehicles such as velocity, vehicle trajectories and direction of movement, and static 

attributes of vehicles, which include its color, shape, and type. For layer 3, it aims to 

analyze and understand the dynamic and static attributes extracted from layer 2. 

Based on the extracted information, layer 4 provides ITS services such as traffic flow 

analysis, security monitoring, and transportation planning and road construction [3].

1.1.1 Vehicle Counting

Vehicle counting is a key feature in traffic flow estimation, which is one of the 

crucial features in the ITS [4]. Estimating the number of vehicles in ITS based on 

traffic video sequences is an important task, as it can provide reliable information for 

traffic management and control [11]. It can be used for understanding the traffic 

status, such as road-traffic density, lane occupancy, and congestion level, which helps 

drivers to avoid traffic congestion and spend less time in traffic. Subsequently, 

development authorities can use such information to design a better solution for road 

traffic.

1.1.2 Vehicle Detection

In any ITS, reliable vehicle detection is the first step to be achieved [12]. 

Subsequent applications such as vehicle counting, speed estimation and traffic flow 

depend on this first step. Hence, increasing the accuracy of the vehicle detection 

process will result in enhancing the efficiency of traffic control. Additionally, this will 

lead to improving the accuracy of other processes following it, such as vehicle 

tracking, vehicle trajectory, and behavior understanding, which is common in traffic 

surveillance systems [5].
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1.2 Problem Statement

One of the main reasons for traffic congestion is the exponential increase in 

the number of vehicles concerning the number of roads [13]. In such a situation, 

developing a robust and reliable system that can estimate the traffic measurements in 

any weather conditions is necessary.

Vehicle detection can be considered as the first step for any ITS system. 

However, some challenges still remain particularly during adverse weather 

conditions. In such a situation, the exact shape or size of the moving vehicle may not 

be clearly detected leading to miscounting. The same problem is faced when one 

vehicle is being occluded by another vehicle.

Therefore, many approaches have been proposed for vehicle detection. 

However, a number of these approaches cannot be implemented in real-time due to 

their high computational complexity, such as the optical flow approach. On the other 

hand, some algorithms are so simple that they do not provide reliable reliable with a 

sufficient level of accuracy, such as the frame differencing approach. Additionally, 

the background subtraction (BS) approach still faces some challenges and the most 

challenging of all is in modeling of the background scene with acceptable degree of 

accuracy. Moreover, the performance of these algorithms decreases under 

unfavourable environment situations such as different weather conditions. As in 

many previous works, the worst accuracy for vehicle detection occurs when the 

visibility in the scene is poor or low such as during heavy rain condition.

Although there were many studies for vehicle detection, only a few methods 

dealt with the abnormal situation, especially in traffic jams [8,14,15]. In addition, 

evaluation under different weather conditions (Rainy, Foggy and Snowy) is so 

important for some countries, but unfortunately, it is rarely performed [8]. 

Furthermore, urban traffic is more challenging than highway traffic due to lower 

camera angles, which leads to occlusion and traffic density [8].

Moreover, the algorithm used for vehicle detection must be computationally 

efficient so that it can be implemented in real-time. This is essential so that the
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extracted information can be delivered to traffic users on time. Therefore, having an 

accurate algorithm, which can cope with these challenges and can be used in real­

time, is very important.

1.3 Objectives

The undertaken research has the following objectives:

1. To propose an accurate vehicle detection and counting method that is robust 

under different conditions such as different weather conditions (sunny, rainy, 

foggy and snowy), and different traffic landscapes (urban and highway). An 

adaptive background modelling with feature representation techniques 

covering global and local approach is proposed.

2. To propose a detection model that is computationally efficient for possible 

real-time implementation. The proposed background method along with the 

local feature representation technique is further explored and analysed.

1.4 Scope

The scope of this research includes the followings:

a) This work will focus on vehicle detection and counting in urban and highway 

traffic under different illumination and weather conditions (Foggy, Rainy, 

Snowy and Sunny) using handcrafted methods.

b) The datasets used are standard datasets used by other researchers [17-20]. 

Additionally, data collected from urban roads in Malaysia, especially in the 

rainy condition, will also be used. This is because public dataset on different 

rainy condition is not currently available.
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c) The collected videos were recorded from a stationary camera placed above 

the road so as to obtain two views; either the traffic is facing towards or away 

from the camera.

d) MATLAB software is used for testing the developed algorithms using Intel i5 

core processor, 2.3 GHz speed and 4GB RAM operated under Windows 10.

1.5 Thesis Outline

This thesis is organized as follows: Chapter 1 presents an overview of the 

thesis. In this chapter the problem statement is presented along with the research 

objectives and scopes. Chapter 2 gives a survey of the existing techniques in vehicle 

detection and counting along with a summary of the existing methods. Chapter 3 

details out the proposed background modeling in addition to the details of the two 

proposed feature representation techniques (global and local). The primary key 

technique is the adaptive background modelling based on Aproximate Median Filter 

(AMF). To proof the efficacy of the proposed method, it will then be applied to both 

global and local vehicle detection and counting methods. In the global method, the 

triangle threshold technique is implemented after the background subtraction 

operation to obtain foreground objects representing moving vehicles. While in the 

local method, two additional features are extracted from the background subtraction 

result performed in a predefined region. Next, k-means clustering technique is then 

applied for the vehicle detection and counting. Chapter 4 presents the results of the 

proposed adaptive background modelling accompanied by a comparison with some 

existing methods using existing benchmarks datasets and self-collected videos from 

different weather conditions. The results show the potential of the proposed methods 

compared to some existing methods in terms of accuracy and computational 

efficient. Finally, Chapter 5 summarizes the main contribution achieved by this 

thesis with suggestions for future work.
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