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ABSTRACT 

The use of ceramic membranes as sorbents has more advantages compared to 
polymer filtration systems. However, their production high costs with regards to raw 
materials has somewhat limited further applicability. Thus, the potential of palm oil 
fuel ash (POFA), an agricultural waste as a low cost adsorbent for the removal of 
arsenite (As(III)) and arsenate (As(V)) was explored. This study comprised of two 
stages: (1) POFA powder: characterization and adsorption mechanism and (2) POFA 
adsorptive hollow fibre ceramic membrane: properties and separation performance. 
In stage 1 of the study, the POFA powder were characterized using nitrogen 
adsorption-desorption, field emission scanning electron microscopy-energy-
dispersive X-ray spectroscopy mapping, X-ray fluorescence, X-ray diffraction, 
Fourier transform infrared spectroscopy and thermogravimetric analyses while 
adsorptivity activity was examined by batch adsorption studies. The maximum 
adsorption capacities of 78.0 and 94.6 mg∙g−1 for As(III) and As(V) were achieved 
when the smallest particle size of 30 µm POFA was used and increased from 18.75 
to 99.4 mg∙g−1 for both As species with increasing of calcination temperature from 
900 to 1150 °C. Desorption test revealed that As-loaded POFA was stable in water. 
The equilibrium data was better described by the pseudo-second-order model for 
both As(III) and As(V) while in adsorption isotherm study, the data were better fitted 
to the Langmuir isotherm model. All the results were then optimized by response 
surface methodology which concluded that calcination temperature has a major 
significance in the adsorption proses. Further attempt of molecular modeling study 
using the density functional theory via Gaussian 09 software consequently identified 
optimized structure of SiO- molecule and the energy for the proposed mechanism 
routes between the As+ species. In stage 2, based on excellent properties and 
condition from stage 1 namely 30 µm particle size and calcination temperature, 
POFA hollow fibre ceramic membrane (PHFCM) was fabricated via phase inversion 
and sintering technique at three different sintering temperatures i.e. 1100, 1150 and 
1200 °C, by which the samples were named as PHFCM-1100, PHFCM 1150 and 
PHFCM-1200 respectively. The characterization analyses clearly showed that the 
PHFCM was constructed of two concentric rings with rich composition of Si and Al. 
The highest mechanical strength of 52.84 MPa and permeation flux of 250.73 L/m2.h 
of PHFCM-1150 was in favor for adsorption of As species yielding maximum 
adsorption capacities corresponding to 95.62 and 98.34 mg∙g−1 of As(III) and As(V) 
which then were selected for further exploration with ozonation study. The enhanced 
adsorption of As(III) and As(V) by the PHFCM-1150 was associated during pre-
ozonation. For post-ozonation, 3 min exposure time used had permitted satisfactory 
cleaning of PHFCM-1150 to mitigate fouling problem while allowing repeated 
usages of the adsorbent for As removal. The performance of with and without 
ozonated PHFCM-1150 was evaluated with real wastewater samples and showed 
almost total rejection of arsenic contamination which signified the possible 
implementation in real wastewater system. Finally, this study has demonstrated that 
adsorptive PHFCM was effective and its respective As removal met the maximum 
discharge limit of 10 μg/L set by the world health organization and the national 
legislation in Malaysia. 
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ABSTRAK 

Penggunaan membran seramik sebagai penjerap mempunyai banyak kebaikan 
berbanding sistem penapisan polimer. Walaubagaimanapun, kos pembuatan yang 
tinggi disebabkan oleh bahan mentah telah sedikit sebanyak mengehadkan 
penggunaannya. Justeru, keupayaan abu bahan bakar kelapa sawit (POFA), iaitu 
bahan buangan pertanian sebagai penjerap kos rendah bagi menyingkirkan arsenit 
(As(III)) dan arsenat (As(V)) telah diterokai. Kajian ini mempunya dua peringkat: (1) 
serbuk POFA: pencirian dan mekanisma penjerapan dan (2) membran seramik 
gentian berongga POFA: sifat dan prestasi pemisahan. Pada peringkat 1 kajian, 
serbuk POFA ini dicirikan dengan analisa fizijerapan nitrogen, pengimbas-elektron-
pancaran-medan pemetaan spektroskopi imbasan-X, pendarfluor sinar-X, belauan 
sinar-X, spektroskopi inframerah  jelmaan Fourier dan analisis termogravimetri 
manakala aktiviti penjerapan diuji dengan kajian-kajian penjerapan kelompok. 
Kapasiti penjerapan maksima sebanyak 78.0 and 94.6 mg∙g−1 bagi As(III) dan As(V) 
dicapai apabila POFA partikel saiz terkecil pada 30 µm digunakan dan meningkat 
daripada 18.75 ke 99.4 mg∙g−1 untuk kedua-dua spesis As dengan suhu kalsin 
dinaikkan dari 900 ke 1150 °C. Kajian penyahjerapan telah mendedahkan bahawa As 
terkandung POFA adalah stabil di dalam air. Data keseimbangan kedua-dua As(III) 
dan As(V) sesuai digambarkan oleh  model tertib kedua pseudo, manakala dalam 
kajian penjerapan isoterma, data sesuai dipadankan dengan model isoterma 
Langmuir. Kesemua data kemudiannya dioptimumkan dengan kaedah sambutan 
permukaan yang merumuskan suhu kalsin ialah kesan utama dalam penjerapan. 
Percubaan lanjut pemodelan molekul menggunakan teori ketumpatan fungsian 
melalui perisian Gaussian 09 telah mengenalpasti struktur optimum molekul SiO- 
dan tenaga bagi laluan mekanisma yang dicadangkan untuk tindakbalas antara spesis 
As+. Pada peringkat 2, berdasarkan sifat cemerlang dan keadaan pada tahap 1 seperti 
saiz partikel 30 µm dan suhu kalsin, membran seramik gentian berongga POFA 
(PHFCM) disediakan melalui songsangan fasa dan teknik pensinteran pada 3 suhu 
kalsin berbeza i.e. 1100, 1150 dan 1200 °C, yang mana sampel masing-masing 
dinamakan PHFCM-1100, PHFCM-1150 dan PHFCM-1200. Analisa-analisa secara 
jelas menunjukkan bahawa PHFCM terdiri daripada dua cincin sepusat dengan 
komposisi Si dan Al yang tinggi. PHFCM-1150 yang mempunyai kekuatan 
mekanikal 52.84 MPa dan fluks penelapan tertinggi 250.73 L/m3h telah menjadi 
pilihan untuk penjerapan spesies As dengan menghasilkan kapasiti penjerapan 
maksima 95.62 mg.g-1 As(III) dan 98.34 mg.g-1 As(V) telah dipilih untuk kajian 
ozonisasi selanjutnya. Peningkatan penjerapan As(III) dan As(V) oleh PHFCM-1150 
adalah dikaitkan semasa pra-ozonisasi. Untuk pasca-ozonisasi, tempoh pendedahan 3 
min telah membenarkan pembersihan PHFCM-1150 yang memuaskan untuk 
mengurangkan masalah kotoran yang membenarkan pengunaan berulangkali bahan 
jerap untuk membuang As. Prestasi PHFCM dengan dan tanpa ozonasi telah diuji 
dengan sampel air sisa sebenar dan menunjukkan penolakan sepenuhnya pencemaran 
As yang menandakan pelaksanaan yang mustahil  dalam sistem air sisa sebenar. 
Akhir sekali, kajian ini telah memperlihatkan bahawa PHFCM sangat berkesan dan 
penyingkiran As telah memenuhi piawaian 10 μg/L tahap maksimum pelepasan yang 
ditetapkan pertubuhan kesihatan sedunia (WHO) dan perundangan kebangsaan di 
Malaysia. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Water is vital to life and there is limited amount of clean water on earth 

(Fenner, 2017). Evidently in 2025, half of the world’s population is predicted to be 

facing serious water scarcity (Boretti and Rosa, 2019). This is alarming since water is 

basic necessity for human, also both in industry and agriculture consumption. The 

world dependence on water might be risky due to the water contamination affected 

by man-made rapid industrialization and deforestation (Ukaogo et al., 2020). Many 

literatures have reported that there are several contaminants found in industrial 

wastewater and surface water, which include heavy metals. Presence of heavy metals 

in water body is harmful to the environment and their consequences are well stated in 

many research study (Kulkarni et al., 2014).  

Globally, the natural contamination of As has been reported in drinking water 

supplies in more than 70 countries and the majority of these nations belong to South 

Asian and Southeast Asian regions (Ravenscroft et al., 2009). The elevated levels of 

As > 50 µg/L in water have been reported in different countries of the world like 

Argentina, Bangladesh, China, Chile, Hungary, India, Pakistan, Mexico, Vietnam 

and as well as in many parts of the USA (Smedley and Kinniburgh, 2002). The 

presence of As in environment has gained considerable attention in the last decade 

because studies have reported alarming contamination levels of As in West Bengal of 

India and neighboring locations in Bangladesh (Nickson et al., 2000; Das et al., 

2004). Similar to the other developing nations, Pakistan is also facing serious issues 

of water shortage and contamination in the available water resources. Previous 

reports showed that Pakistan has mostly exhausted its available freshwater resources 

due to low water storage capacity (Azizullah et al,. 2011). Now the country included 

in water stressed nations and if this scenario continues, it will likely to declare as 
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water scarce nation (Hashmi et al., 2009). Worldwide, approximately 1.1 billion 

people have no access to clean water for drinking, about 2.5 billion people have lack 

of proper sanitation facilities, and waterborne disease-mediated annual death toll has 

been exceeded more than 5 million (Hinrichsen and Tacio, 2002). According to 

national survey, only 56% households in Pakistan have access to clean and safe 

drinking water (Farooq et al., 2008; Ullah et al., 2009). This situation is more worse 

in the eye of the international standards for safe and drinkable water, because as per 

international standards only 25.61% people in Pakistan have access to safe drinking 

water and this population includes 23.5% rural and 30% urban masses (Rosemann, 

2005). Anthropogenic activities are mainly responsible for contamination of drinking 

water in densely populated areas of Pakistan, and authorities have declared 

groundwater as not drinkable. 

The increasing reported incidences of arsenic (As) contamination in our food 

and water has seen As becoming a top priority toxicant for risk assessment and 

exposure reduction/mitigation (ASTDR, 2011). Prolonged consumption of As-

contaminated food and drinking water can invoke a plethora of severe health 

complications, typically manifested as multiple organ disorders. Among other 

complications include different forms of cancers, skin problems, cardiovascular 

diseases, and conceivably respiratory, as well as kidney diseases (Steinmaus et al., 

2014; Quddus et al., 2016; Kuo et al., 2017), due to variations in interindividual 

metabolism of the inorganic As. Most environmental problems associated with As 

contamination are related to the mobilization of two forms of ionized As in natural 

water environment, namely As(III) and As(V). In conjunction to being more toxic, 

As(III) is more mobile and its elimination from water sources is more challenging 

than As(V). Nonetheless, their removal ability remains limited, and there is still much 

to be done to improve current methods for removing As in water environments.  

The past two decades have witnessed rapid advancements in membrane 

technology, which leads to the development of an array of membrane-based 

adsorbents for trapping arsenic from water. Such adsorbents have garnered 

considerable interests in the scientific and industrial community because of their low 

energy consumptions (Kumar et al., 2019) alongside with the high water quality of 
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permeate (Wang et al., 2019). Similarly, ceramic membranes are increasingly being 

used in water treatment owing to their reliability, long life span, high hydrophilicity, 

and thermally, chemically, and mechanically stable, in addition to the high permeate 

flux at low operating pressures (Dong et al., 2018). Nonetheless, the introduction of 

ceramic membranes to a water treatment plant warrants a serious economic 

feasibility evaluation due to their relatively high initial investment cost compared to 

polymeric membranes (Hubadillah et al., 2018; Saja et al., 2018). Thus, there is a 

growing need to develop inexpensive and greener ceramic membranes for 

decontamination of heavy metals in water.  

Despite the wide availability of natural polymers, many studies explore the 

feasibility of the silica-rich oil palm agricultural waste as adsorbent material for the 

aforementioned application remain relatively scarce. As a matter of fact, oil palm 

agricultural biomass is a promising renewable source of silica-based adsorbent 

material, especially for palm oil producing countries like Malaysia and Indonesia. In 

Malaysia alone, an enormous amount of oil palm biomass is generated all year round 

by the palm oil industry, but only a small fraction is converted into value-added 

products (Onoja et al., 2017) while the remaining is discarded. Approximately 4.5 

million tons of oil palm solid waste, in particular, palm oil fuel ash (POFA) is 

produced per year (Yusof et al., 2018), thus implying the potential of POFA as a raw 

material for preparing adsorbents to clean up As contaminated water. The approach 

seems quite feasible as well as attractive since untreated POFA contains as much as 

68% of SiO2 (73). Moreover, waste material is cheap (Tai et al., 2018; Hubadillah et 

al., 2020), biodegradable and renewable source, and show low carbon dioxide 

release. The naturally abundant surface polar groups, i.e., silanols (Si–OH) and 

siloxanes (Si–O–Si) on POFA are easily tunable (Elias et al., 2017; Elias et al., 

2018) in order to attract and adsorb As ions in water. In fact, POFA was successfully 

used as adsorbent to remove chromium (Cr6+) in a batch distillation column study 

(Aziz et al., 2013). 

While silica-based adsorbents have been extensively tested as adsorbents of 

cationic pollutants in water (Xiong et al., 2019; Yue et al., 2019), membrane fouling 

remains a bottleneck in wastewater treatment applications, as it decreases the flux 
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permeability. Consequently, the operational cost has become costly due to an 

increasing energy consumption and higher quantity of chemicals required to 

regenerate the ceramic membranes (Gao et al., 2018; Shoener et al., 2016).  To 

mitigate the impacts attributed to this bottleneck, suitable desorption techniques need 

to be developed in order to enhance membrane performance, so that the systems 

become affordable and reliable. The integration of adsorptive ceramic membrane and 

catalytic ozonation process has gained popularity in recent year due to its 

effectiveness to mitigate membrane fouling, as well as to degrade organic 

pollutants during water treatment (Song et al., 2018). The fouling control 

mechanisms of the integrated ozonation and ceramic membrane filtration process 

include direct molecular ozone oxidation and hydroxyl radical oxidation of feed and 

foulants deposited on the membrane surface and within the membrane pores (Wei et 

al., 2016).  

Ozone is a powerful oxidant that preferentially oxidises electron-rich moieties 

containing carbon–carbon double bonds and aromatic alcohols. Therefore, the same 

process may adequately alleviate fouling in the ceramic membrane filtration system, 

considering that the method is effective for periodic cleaning of membranes in 

chemical processing (Kim et al., 1999). Envisioning possible synergistic interactions 

between ozonated Si–OH and Si–O–Si-rich surface on the POFA hollow fibre 

ceramic membrane (PHFCM), the treated material may produce a surplus of free 

radicals, i.e., reactive oxygen species that would interact with As and improve the 

sorption of As(III) and As(V) from water, as well as achieve rapid desorption of the 

trapped As.  In view of the promising results seen in the previous study (Yusof et al., 

2018), another seminal study, which investigates the technological values of PHFCM 

for removal of As in aqueous solutions becomes mandatory to further uncover its 

novelty for water treatment applications. 

In spite of their promising potentials, reports on the use of ozonation on an 

inorganic ceramic membrane for improving adsorption efficacy and regenerability of 

the adsorbent, is sparse in the body of literature. Herein, the study proposed the use 

of a modified POFA suspension as adsorbent to recover As(III) and As(V) in water. 

The best optimum conditions were then being applied in further study of POFA 
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suspension modified to hollow fibre configuration. To the best of our knowledge, a 

hollow fibre ceramic membrane from a POFA powder has yet to be tested for 

decontamination of As in water. The most stable route of adsorption mechanism by 

the developed POFA suspension was verified by a molecular modeling approach 

using the density functional theory. In this study also, we investigated the effect of 

pre- and post-ozonation on the modified POFA hollow fibre ceramic membrane 

(PHFCM) for removing two forms of arsenic, i.e., As(III) and As(V), from water. The 

best treatment conditions to maximize sorption/diffusion of As by the PHFCM were 

studied. In addition, the adsorption/desorption behaviour of this contaminant on pre- 

or post- ozonated Si-O in POFA was studied to determine its effect on the adsorption 

capacity of the adsorbent for the two As species. The World Health Organization 

(WHO) and the United States Environmental Protection Agency (EPA) have 

stipulated that 10 μg∙L−1 is the maximum contaminant level (MCL) for As in safe 

drinking water. Pertinently, this work firmly supports the “Zero Waste” initiative by 

the Malaysian government for which to maximize the use of oil palm biomass. The 

study advantageously transforms the widely available but discarded POFA into a 

functional material to solve an environmental problem. 

1.2 Problem Statement  

The presence of arsenic in natural waters is critical at a global scale, and its 

removal is vital importance. While adsorption is the most adopted method for arsenic 

removal, coagulation, flocculation, precipitation, ion exchange, and membrane 

filtration are also used. Despite their simplicity, cost effectiveness and higher 

removal efficiency, adsorption however facing a serious adsorbent requirement. An 

ideal adsorbent should has high adsorption capacity, affinity for both the inorganic 

arsenic species (As(III) and As(V)) and should be effective under relevant 

environmental conditions.  
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For years, a porous structure polymeric membrane has been a promising 

technology for water treatment. While the role of polymer membranes as sorbents 

resides in their high porosity and ease of functionality compared to other membrane 

forms, adsorptive polymeric membrane such as PVDF and PTFE are vulnerable to 

chemical attack beside the extreme conditions of high temperature and pressure. 

Other drawbacks include the prohibitive cost due to constrains in sources, high 

energy consumption during manufacture, lower surface area due to covering of 

polymer on the adsorbent surface as well as prone to reduce membrane lifetime due 

to frequent regeneration/desorption process using chemicals. Thus ceramic 

membrane derived directly from adsorbent material like POFA is the way forward. 

The abundance alongwith easy availability and appropriate chemical composition 

suggest the POFA as the suitable low cost and greener source for preparing ceramic 

membrane. But mechanism properties and ideal formulation of ceramic membrane 

from POFA are still not reported in the literature. 

Previously, commercialized silica adsorbent has been extensively showed a 

remarkable performance in adsorbing cationic arsenic species (As+) in water because 

of the presence of SiO-, however hindered by their need in a high volume scale and 

not in favourable immobilize compact module. Silica-rich POFA could be an 

alternative of silica sources due to less leaching problem and may contribute as a low 

cost arsenic adsorbent. Other than well-known high silica composition, a detailed 

characterization study is vital to be conducted in order to investigate the influence of 

other properties possessed by POFA that may contribute in their adsorption 

performance. Due to the novel silica source material, a research on POFA as an 

adsorbent is minimal and there is only scanty study proven their molecular 

interaction with contaminant As. 

A hollow configuration could offer a high surface area to volume ratio of 

hollow fibre membrane, asymmetric structures with finger-like voids and sponge-like 

pores and a single step fabrication which delivers a higher adsorption capacity. 

Despite their excellent features, ceramic hollow fibre membrane showed severe 

membrane fouling cases because a thick and compressed cake layer, containing 

relatively large amounts of organic and inorganic matter was formed. It was very 
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hard to remove, especially under high-turbidity conditions without any treatment. 

This phenomenon could hinder their performance and might shorten their life cycle. 

Cleaning of ceramic membrane with ozone treatment and study their behaviour 

towards before and after ozonation are still deficient. Previously, extensive backwash 

method has been utilized however facing implementation problem such as low 

efficiency and high chemical usage. Research focusing on the cleaning parameters by 

ozonation should be carried out in order to utilize the ceramic membrane 

performance. To overcome the above mentioned problems, silica-rich POFA 

fabricated as a low cost material for hollow fibre ceramic hybrid membrane 

(adsorption + filtration) can enhance the removal of arsenic in water by providing 

more active site due to the high surface area, a mullite structure and deliver a new 

insight of SiO-As molecular interaction as well as a fouling mitigation under an 

additional ozonation treatment which further enhance their performance as an 

adsorptive membrane. 

1.3 Objectives of Study 

Objective of this study is to produce a high performance adsorptive hollow 

fibre ceramic membrane from agricultural waste material to remove arsenic in water. 

The objective of this study could be specified as follows: 

1. To investigate their arsenic removal performance under effects of particle 

size, adsorbent dosage, initial pH solution, powder calcination temperature, 

and competing anions. 

 

2. To optimize the adsorption parameter towards the arsenic removal of POFA 

powder via Response Surface Methodology (RSM) and model the interaction 

and energy pathway of arsenic adsorption mechanism in a computational 

study. 
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3. To fabricate POFA hollow fibre ceramic membrane (PHFCM) and evaluate 

the effect of sintering temperature on their physicochemical properties, 

mechanical strength, water flux and arsenic adsorption performance. 

 

4. To investigate the effect of pre and post-ozonation technique in different 

exposure time on the mitigation of the fouling problem and enhancement of 

the adsorption capacity of PHFCM. 

1.4 Scopes of Study 

The scope of this study consist of four parts namely; characterization and 

adsorption performance of POFA powder, optimization and interaction mechanism 

of POFA powder towards arsenic adsorption, fabrication and adsorption performance 

of POFA hollow fibre ceramic membrane and last but not least, the effect of pre- and 

post-ozonation treatment onto POFA hollow fibre membrane. In the first part, the 

characterization of POFA and their adsorption performance were conducted by 

drying at 24 hours followed by grinding and sieving to fine particles sizes based on 

varying scale (30, 50, 60, and 125 μm). The powder POFA using experimental set up 

under various parameters effect (initial pH solution (pH 3 to 13), adsorbent loading 

(0.2-1.2 g), calcination temperatures (500 -1150 °C) and particle sizes (30, 50, 60 

and 125 μm)). Next, the optimization study and interaction mechanism between 

POFA-As contaminants was optimized via response surface methodology (RSM) 

using a central composite design (CCD) model which composed of dosage (A), 

solution pH (B), particle size (C) and calcination temperature (D) and as factors with 

16 runs.The optimize model of SiO2 was calculated under density functional theory 

(DFT) calculations using Gaussian09 suite of programs to study the interaction of 

SiO2 and As ion species.  

In the third stage, the fabrication of POFA hollow fibre membrane (PHFCM) 

was conducted by preparing the ceramic suspension dope containing 40wt % POFA 

powder, N-methyl pyrrolidone (NMP) as a solvent, Arlacel P-135 the dispersant and 

Polyethersulfone (PESf) to act as a binder. The ceramic suspension into a hollow 
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fibre ceramic membrane was fabricated via phase inversion/sintering technique in a 

single spinneret by using tap water both as an internal and external coagulant. The 

effect of sintering temperature (1100, 1150 and 1200 °C) towards their 

physicochemical properties, mechanical strength, water flux permeation and arsenic 

removal performance was analysed. The mechanical strength of PHFCM was 

conducted via three-point bending analysis while water flux was tested through 

permeation system.  

The excellent properties and removal performance of POFA hollow fibre 

ceramic membrane (PHFCM) was further treated under ozonation approach. The 

PHFCM was tested in post- and pre- ozonation setup with different exposure time (1, 

3 and 5 min) under 600-800 mV of oxidation-reduction potential (ORP) values. Post-

ozonation test performed in this study involved the ozonation of PHFCM-1150 after 

the batch adsorption study, where the As-loaded PHFCM was ozonated under 

different exposure time (1, 3 and 5 min) as a cleaning step of the fouling problem. 

While, pre-ozonation was done on PHFCM-1150 before the adsorption study to 

examine its effect on the adsorption capacity of the adsorbent for the two As species.  

1.5 Significance of Study 

In this study, low cost POFA is a new and emerging material in fabricating a 

hollow fibre configuration membrane for arsenic adsorption in water. As compared 

to conventional silica adsorbent, abundance waste POFA has major composition of 

silica which is among contributing factor in trapping arsenic onto the membrane 

surface. POFA hollow fibre configuration was constructed with two concentric rings 

providing more active sites for adsorption to occur. The pores of the inner ring 

showed pores that were finger-like voids, whereas the outer PHFCM ring was 

constructed of asymmetrical pores of three distinct voids (i.e. macro-, meso-, and 

microvoids). All these unique features were proven in contributing towards excellent 

adsorption performance. Detailed molecular study on the interaction between silica 

in POFA with As species in water were giving a new insight in optimizing the 

adsorption in molecular level. Besides, the proposed pathway energyfrom molecular 
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study, promoted a selection of lowest energy consumption in the permeation system. 

Additionally, new approaches of ozonation technique onto POFA inorganic 

membrane delivering a promising solution on fouling problem and in same time 

increase the adsorption capacity. 

1.6 Thesis Outline 

This thesis begins with Chapter 1 describing the research background, 

problem statement, objectives, scope and significant of this research. Chapter 2 

reviewed the literatures related to the POFA material, others low cost adsorbent, 

conventional silica adsorbent, the ozonation technique, fabrication of hollow fibre 

membrane configuration and molecular modelling approach. Chapter 3 described the 

experimental and characterization of the adsorbent. Chapter 4 discusses the findings 

from stage 1 of the study which involved POFA powder characterizations and 

adsorption performance, as well as molecular computational approach and 

optimization study. Chapter 5 is the stage 2 of this study, involved the deliberating 

on fabrication of POFA as hollow fibre membrane and their adsorption performance 

towards As species. The effect of pre and post-ozonation, regeneration and 

performance on waters sampling were further discussed throughout the chapter. The 

conclusions and recommendation for future studies were stated in Chapter 6. 
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