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ABSTRACT

Among the major issues faced by thin film composite membrane used in
nanofiltration (NF) application are the fouling behaviour and the trade-off effect
between water permeability and salt rejection. This study aimed to develop a new type
of nanomaterials-modified thin film nanocomposite (TFN) membrane with enhanced
surface characteristics by employing a new interfacial polymerization (IP) technique
based on the mist method. Particularly, the objectives of this work are to investigate
the effects of different mist-based interfacial polymerization conditions on the
polyamide (PA) selective layer properties of membranes, to evaluate the impacts of
plasma-enhanced chemical vapour deposition (PECVD)-modified graphene oxide
(GO) interlayer on the characteristics of TFN membrane made of optimized mist-based
IP conditions, and to investigate the influences of organic solution temperature during
IP process on the properties of GO-modified TFN membrane for NF applications. The
results show that in addition to forming thinner and looser PA structure, the piperazine
(PIP) solution required in the mist-based IP (MIP) reaction was significantly reduced,
i.e.,, 17 times lower than conventional IP. The microdroplet dispersion approach in
MIP could form a higher crosslinked PA due to the high polymerization interface,
besides forming a higher free volume selective layer due to the disruption in the PA
repeat structure. The newly developed membrane could achieve 9.08 L/m2 hbar pure
water permeability (PWP) and 97.2% Na2SOa4 rejection coupled with complete flux
recovery rate. Following this, a new TFN membrane incorporating GO was fabricated
using the developed MIP technique. GO was surface-functionalized using greener
PECVD approach to improve its dispersibility. Compared to the control GO, acrylic
acid-modified GO (AA/GO) was able to improve PWP of TFN membrane by 6.6%,
reaching 11.34 L/m2hbar. Its PWP was also higher compared to TFC membrane
(~25% enhancement) owing to enhanced membrane hydrophilicity coupled with
formation of thin yet highly crosslinked PA upon AA/GO incorporation. By varying
the temperature of organic solvent (0 to 55 °C) during IP, the TFN 0 membrane with
the thinnest and smoothest PA layer was able to be produced, recording 12.14
L/m2 hbar PWP, 93% Na2SOa4rejection and 16% NaCl rejection. This membrane with
the smoothest surface aided in its low protein adsorption, demonstrating great
antifouling potential. Meanwhile, the TFN 55 membrane achieved a water-salt
permselectivity ratio of 11.0, which was found to be >2 folds compared to the
commercial NF3 membrane (4.88) owing to its enhanced crosslinking. Both TFN 55
and TFN 0 membrane showed great short-term (12 h) stability and retained more than
95% of the AA/GO nanosheets after a 5-day agitation period. Overall, the mist-based
IP fabrication of TFN membrane at low temperature can overcome the limitations of
the conventional IP technique to produce a smooth and defect-free TFN membrane
with improved filtration performance and reduced protein adsorption.
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ABSTRAK

Antara isu utama yang dihadapi oleh membran komposit filem nipis yang
digunakan dalam aplikasi nano turasan (NF) adalah tingkah laku pengotoran dan kesan
pertukaran antara kebolehtelapan air dan penolakan garam. Kajian ini bertujuan untuk
membangunkan sejenis membran nanokomposit filem nipis (TFN) terubahsuai bahan
nano baharu dengan ciri permukaan yang dipertingkatkan dengan menggunakan teknik
pempolimeran antara muka (IP) baharu berdasarkan kaedah kabus. Khususnya,
objektif kerja ini adalah untuk menyiasat kesan keadaan pempolimeran antara muka
berasaskan kabus yang berbeza pada sifat lapisan selektif membran poliamida (PA),
untuk menilai kesan pemendapan wap kimia dipertingkatkan plasma (PECVD) grafin
oksida (GO) terubahsuai pada ciri-ciri membran TFN yang diperbuat daripada keadaan
IP berasaskan kabus yang dioptimumkan, dan untuk menyiasat pengaruh suhu larutan
organik semasa proses IP ke atas sifat membran TFN terubahsuai GO untuk aplikasi
NF. Keputusan mendapati bahawa selain membentuk struktur PA yang lebih nipis dan
longgar, larutan piperazin (PIP) yang diperlukan dalam tindak balas IP berasaskan
kabus (MIP) telah berkurangan dengan ketara, iaitu, 17 kali lebih rendah daripada IP
lazim. Pendekatan penyebaran mikrotitisan dalam MIP boleh membentuk PA terpaut
silang yang lebih tinggi disebabkan oleh antara muka pempolimeran yang tinggi, selain
membentuk lapisan selektif isipadu bebas yang lebih tinggi akibat gangguan dalam
struktur ulangan PA. Membran yang baharu dibangunkan boleh mencapai 9.08
L/m2hbar kebolehtelapan air tulen (PWP) dan 97.2% penolakan Na2SOa4 ditambah
dengan kadar perolehan fluks sepenuhnya. Berikutan itu, membran TFN baharu yang
menggabungkan GO telah direka menggunakan teknik MIP yang dibangunkan. GO
telah difungsikan permukaan menggunakan pendekatan PECVD yang lebih hijau
untuk meningkatkan keterserakannya. Berbanding dengan kawalan GO, GO (AA/GO)
yang terubahsuai asid akrilik dapat meningkatkan PWP membran TFN sebanyak
6.6%, mencapai 11.34 L/m2hbar. PWPnya juga lebih tinggi berbanding dengan
membran TFC (~25% peningkatan) disebabkan oleh sifat hidrofilik membran yang
dipertingkatkan ditambah dengan pembentukan PA terpaut silang yang nipis apabila
digabungkan dengan AA/GO. Dengan mengubah suhu pelarut organik (0 hingga 55
°C) semasa IP, membran TFN 0 dengan lapisan PA paling nipis dan licin merekodkan
12.14 L/m2 hbar PWP, 93% penolakan Na2SO4 dan 16% penolakan NaCl. TEN 0
dengan permukaan membran paling licin membantu dalam penjerapan proteinnya
yang rendah, menunjukkan potensi antikotoran yang hebat. Sementara itu, membran
TFN 55 mencapai nisbah permkememilihan air-garam sebanyak 11.0, yang didapati
>2 kali ganda berbanding membran NF3 komersial (4.88) disebabkan oleh
pemautsilangan yang dipertingkatkan. Kedua-dua membran TFN 55 dan TFN O
menunjukkan kestabilan jangka pendek (12 jam) yang hebat dan mengekalkan lebih
daripada 95% helaian nano AA/GO selepas tempoh pengadukan selama 5 hari. Secara
keseluruhannya, fabrikasi IP membran TFN berasaskan kabus pada suhu rendah boleh
mengatasi batasan teknik IP lazim untuk menghasilkan membran TFN yang licin dan
bebas kecacatan dengan prestasi penapisan yang lebih baik dan penjerapan protein
yang berkurangan.
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CHAPTER 1

INTRODUCTION

11 Research Background

Fresh water is vital for human consumption and sanitary purposes. However,
the access to fresh water is limited, giving rise to a major issue known as water scarcity
(NAE, 2017). In the 2015 Global Risk Report, water scarcity is determined to be the
most high-impact risk issue of current times (WEF, 2015). Although water is available
in many forms such as ice, glaciers, rivers and lakes, natural fresh water only makes
up to 0.5 percent of the entire water supply on the Earth (Kucera, 2014). Some major
factors that exacerbate water scarcity are climate change, uneven distribution of
freshwater as well as man-made and natural contamination (Gude, 2017). Desalination
technology is one of the emerging water treatment methods due to its unlimited raw

supply and relatively simple operation.

Membrane desalination is one of the highly focused research areas owing to its
lower operating cost and increased efficiency, compared to other desalination
technologies. Fane etal. (2011) categorized membrane technology into microfiltration
(MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO). RO s
generally used in the desalination technology while NF membranes acts as a pre-
treatment for RO to reduce fouling problems. Thus, NF membranes with high water

permeability, solute/salt rejection and antifouling ability are highly sought after.

For application in water purification or water desalination systems, the most
prominent NF membranes are thin film composite (TFC) and thin film nanocomposite
(TFN) membranes (Xie et al., 2017). TFC membranes are made up of two or more
distinct layers. It generally consists of bottom substrate layer which acts as a support
and top selective polyamide (PA) layer which determines the membrane performance.

On the other hand, TFN membranes are nanomaterial modified-TFC membranes. In



general, TFN membrane exhibits better surface properties and filtration performance
compared to the counterpart TFC membranes as a result of embedment of advanced
nanomaterials. Some desirable characteristics of TFN are high pure water permeability
(PWP) and salt rejection, chlorine resistance, antifouling and antibacterial properties
(Zhao et al., 2019; Tajuddin et al., 2019; Li et al., 2019; Gholami et al., 2019; Wu,
Xie and Mao, 2020).

To date, most TFN or TFC membranes are fabricated using the conventional
interfacial polymerization (IP) technique. The conventional IP method uses a rubber
roller or airbrush to remove any excess aqueous and/or organic solution. Recent studies
have shown novel techniques such as filtration IP (Wu et al., 2017; Lai et al., 2019a),
spin-assisted IP (Jimenez-Solomon et al., 2016) and spray-assisted IP (Shan et al.,
2017; Morales-Cuevas et al., 2019) method to replace the rubber rolling step. These
studies have shown that novel techniques indeed are more advantageous compared to
conventional IP method. As such, the mist-based IP technique in this study works by
distributing monomer solutions as fine mist particles using ultrasonic atomization
technology (Shehata et al., 2019). The method is also able to significantly reduce
chemical wastage. The physicochemical property of PA layer is largely affected by its
reaction temperature. Ali etal. (2019) reported that a lower reaction temperature could
form a smoother membrane surface in TFC RO membrane fabrication. Therefore,
besides the use of mist-based IP technique, the temperature of organic solution will be
varied in this study to investigate its effect on PA layer properties in a bid to produce

TFC/TFN NF membrane with enhanced filtration and antifouling performance.

Some of the nanomaterials that have been incorporated in TFC NF membranes
are carbon-based nanomaterials such as graphene oxide (GO) (Shao etal., 2019; Kang
etal., 2019), metal oxide such as titanium oxide (TiO2) (Ng et al., 2019; Ahmad et al.,
2020) and hybrid nanomaterials such as ZIF-8/CNT and TiO2/GO (Sirinupong et al.,
2017; Lee et al., 2019b). In particular, GO is an attractive nanomaterial to study due
to its high hydrophilicity and negative charge owing to the presence of multiple
oxygen-containing functional groups. Additionally, the high aspect ratio could
increase the active surface area as well as minimise leaching issues. Incorporation of

this nanomaterial has been shown to improve membrane pure water permeability



(PWP) while maintaining high salt rejection (Lai et al., 2018; Zhao et al., 2018;
Abbaszadeh, Krizak and Kundu, 2019; Saeedi-Jurkuyeh et al., 2020). However,
nanomaterial agglomeration and compatibility issues are still the major concerns of

TFEN membrane fabrication.

GO maodified by hydrophilic functional groups or coatings can help reduce
agglomeration in TFN membranes (Shukla et al., 2018). However, current liquid-
based surface modification methods are less likely to produce uniform layer on the
surface of nanomaterials and are associated with the use of hazardous solvents (Lai et
al., 2019b). As such, the rapid yet solvent-free plasma-enhanced chemical vapour
deposition (PECVD) is selected in this study. PECVD technique used in this study will
form pure thin films on a substrate through the vaporization and polymerization of
monomers without any carrier gas, eliminating any contaminants. There are several
studies which performed nanomaterial modification using PECVD method
(Subramaniam et al., 2019; Ng et al.,, 2019; Lai et al., 2019b). Nevertheless,
hydrophilic acrylic acid (AA) and hydrophobic methyl methacryate (MMA) are yet to
be used to modify GO. In this study, two different monomers (AA and MMA) will be

coated on the GO to examine its effect on membrane properties.

Here, the characterization of GO nanosheets will be carried out to determine
their chemical composition, crystallinity, dispersibility and structural morphology.
Then, the resultant composite membranes will be analysed based on their structural
morphology, wettability, chemical composition and cross linking degree. Finally, the
evaluation of membrane performance will be conducted with respect to water
permeability, salt rejection, water-salt permselectivity, stability, leaching and

antifouling properties.

1.2 Problem Statement

The commonly used methods to fabricate TFC NF membranes are phase
inversion for microporous substrate fabrication and IP technique for selective PA layer

synthesis. However, there are difficulties in forming membranes with good monomer



distribution using these conventional techniques. As such, modified IP techniques
have been implemented in fabricating TFC/TFN membranes with superior
performance (Morales-Cuevas et al., 2019; Shen et al., 2019; Kang et al., 2020).
Although many innovative IP approaches have been discovered, they typically involve
complex fabrication procedures and are difficult to implement into existing
manufacturing process. Additionally, they face major the chemical wastage issues, not
unlike the conventional IP procedure, which presents itselfin the form of contaminated
aqueous and organic monomers. Therefore, this study proposes a novel mist-based IP
technique which has not been reported in any work. Compared to conventional IP, the
chemical used in mist-based IP will be dramatically reduced through the deposition of

fine mist on the substrate surface.

Another concern is the trade-off relationship between water permeability and
membrane selectivity that have halted the advancement of conventional TFC NF
membranes for industrial applications (Akther et al., 2019). In terms of performance,
the commercial TFC NF membranes (e.g., NF3 and NF270) were reported to exhibit
~15 L/m2h bar PWP and ~97% MgSOu4 rejection. To resolve this complication,
research on the integration of nanomaterials or nanofillers have been conducted on
TFC membranes. The incorporation of nanomaterials can help to alter the membrane’s
physicochemical properties such as its hydrophilicity, surface charge, structure and
strength. Therefore, the suggestion of incorporating GO into NF membrane to
minimize this trade-off effect is a valid approach owing to its high aspect ratio and

hydrophilic characteristics.

Although GO is highly hydrophilic, it is difficult to fully disperse the nanomaterial
without prior modification. As such, many studies have performed modification to
increase the hydrophilic functional groups on GO (Li et al., 2017; Kang et al., 2019).
However, these methods typically involve multi-step synthesis procedures and
hazardous chemicals. Therefore, this study suggests to modify GO nanosheets using
hydrophilic AA and hydrophobic MMA via surface coating by a rapid approach based
on PECVD method. Besides being able to form uniform and thin layer to improve GO

dispersability, PECVD technique is also more environmentally friendly compared to



other coating methods as it does not require any organic solvents during synthesis and

post-treatment.

Previous studies on RO membranes have shown that a lower organic solution
temperature results in a smoother, looser and thinner PA layer due to the lowered
reaction volatility (Ali et al.,, 2019). The thinner PA layer could enhance water
permeability while membrane smoothness have been closely regarded as a desirable
property for good antifouling performance, since foulants would not be entrapped on
the membrane surface (Zhu et al., 2020; Le et al., 2021). Importantly, temperature-
controlled IP process could be integrated into existing manufacturing processes with
ease. However, there is limited literature on the effect of IP reaction temperature for
TFC/TFN NF membranes in particular. As such, the fabrication of PA layer at low
temperature for TFN NF membrane in this study is most likely to obtain a smoother

membrane that could significantly improve its antifouling property.

This study aims to improve the performance of nanomaterial-modified
membrane in terms of separation performance and antifouling ability. To the best of
my knowledge, no study has shown the performance of PECVD-modified GO TFN

membrane that is fabricated using mist-based IP method for NF applications.

1.3 Objectives of Study

The aim of this research is to develop a novel PECVD-modified TFN GO NF
membrane with high performance using mist-based IP technique for NF process. In

particular, the objectives of this work are:

1 To determine the filtration performance of TFC NF membranes made of novel
mist-based IP technique by varying fabrication conditions including piperazine
(PIP) misting time and trimesoyl chloride (TMC) concentration.

2. To evaluate the impact of different coatings (hydrophilic AA and hydrophobic

MMA) on the surface of GO and its loading on the surface properties and
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filtration performance of TFN NF membranes made via optimized mist-based
IP conditions obtained from Objective 1
To analyse the effects of organic solution temperature during IP process on the

surface properties and separation performance of TFN NF membranes.

Scopes of Study

In order to successfully achieve the objectives of this research, the following

scopes are determined:

Scopes for Objective 1

b)

d)

f)

Determining the fundamental mechanism of conventional IP and mist-based IP
PA formation based on interfacial free energy driving force.

Developing anovel IP technique based on misting to optimize the performance
of TFC membrane using commercial PS20 substrate [aqueous phase: 2 w/v%
PIP; organic phase: 0.2 w/v% TMC] by varying misting time of aqueous
solution only (1, 2, 3 and 4 min).

Developing novel IP technique based on obtained optimum misting time
[aqueous phase: 2 w/v% PIP; aqueous misting time: 3 min] by varying
concentration of organic solution (0.05, 0.10, 0.15 and 0.20 w/v% TMC).
Characterizing morphological and chemical properties of TFC membranes
through field emission scanning electron microscopy (FESEM), energy
dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM),
transmission electron microscopy (TEM), attenuated total reflectance-Fourier
transform infrared spectroscopy (ATR-FTIR), contact angle (CA)
measurement and X-ray photoelectron spectroscopy (XPS).

Performing filtration performance tests at 8 bar pressure to measure PWP and
salt rejection using Na2SO4 and NaCl at 1000 ppm.

Performing antifouling tests using 1500 ppm bovine serum albumin (BSA)
solution for 3.5 h to measure normalized permeability and flux recovery ratio
(FRR)



9)

Identifying the best mist-based IP conditions based on the filtration
performance of TFC membrane with respect to the optimum PIP misting time

and TMC concentration.

Scopes for Objective 2

f)

9)

h)

j)

K)

Synthesizing poly-AA and poly-MMA films using PECVD method.
Performing FTIR analysis on poly-AA and poly-MMA films.

Synthesizing GO using modified-Hummers’ method.

Performing 5-min PECVD modification using AA and MMA on synthesized
GO nanosheets.

Determining physicochemical properties of PECVD-modified GO using FTIR,
X-ray diffraction (XRD), Tyndall effect, TEM and XPS.

Fabricating TFN membranes by incorporating 0.03 g/m2 of GO, AA/GO or
MMA/GO as an interlayer using vacuum filtration method, followed by PA
synthesis via optimized mist-based IP conditions.

Characterizing the morphology and chemical properties of fabricated
membranes through FESEM, AFM, CA measurement, ATR-FTIR, and XPS
Performing filtration performance tests at 8 bar pressure to measure PWP, and
salt rejection using NaSO4 and NaCl at 1000 ppm.

Identify the best TFN membrane based on the filtration performance with
respect to the surface modification of GO.

Fabricating TFN membranes by incorporating 0, 0.02, 0.03 and 0.04 g/m2 of
AA/GO as an interlayer using vacuum filtration method, followed by PA
synthesis via optimized mist-based IP conditions.

Characterizing the morphology and chemical properties of fabricated
membranes through FESEM.

Performing filtration performance tests at 8 bar pressure to measure PWP and
salt rejection using NaSO4 and NaCl at 1000 ppm.

Identifying the best TFN membrane based on the filtration performance with

respect to type of GO functionalization and its loading.



Scopes for Objective 3

f)

9)

h)

15

Varying IP reaction temperature of the best TFN NF membrane fabricated
using optimized mist-based IP conditions by varying the organic TMC solution
temperature (0, 25, 35 and 55 °C).

Characterizing morphological and chemical properties of TFC membranes
through AFM, FESEM, ATR-FTIR, XPS and CA measurement.

Performing filtration performance tests at 8 bar pressure to measure PWP, and
salt rejection using Na2SO4 and NaCl at 1000 ppm.

Performing short-term stability test up to 12 h for selected TFN membranes
using concentrated salt (Na2SQOa4) solution.

Analyzing the AA/GO leachate from TFN membranes for a 5-day agitation
period.

Determining the antifouling performance of selected TFN membranes using
static protein adsorption test and imaging membrane after 12 h fouling with
confocal laser scanning microscope (CLSM, Leica TCS SP5 II). 3D images of
the surface adhesion were generated using LAS AF Leica software.
Benchmarking the performance of self-developed TFN membranes with
commercial NF membrane (NF3).

Identifying the best TFN membrane based on its filtration, stability, leaching

and antifouling performance.

Significance of Study

Previous literature has shown that TFC/TFN membranes play a major role in

desalination processes. Developing novel fabrication techniques is still crucial as it can

further improve the structural morphology of TFC/TFN NF which leads to enhanced

separation performance. Thus, a novel method to form looser PA layer with high free

volume is highly sought after to enhance the membrane water permeability while

maintaining high salt rejection. Although GO is a highly studied nanomaterial, there

is still limited research on the surface modification of GO nanosheets using AA or

MMA coating, in particular using rapid yet environmentally friendly PECVD



approach. GO nanosheets with enhanced dispersibility could lead to enhanced
filtration performance by preventing nanomaterial agglomeration issues. Finally, there
is limited study on the effect of IP temperature in TFN NF membrane fabrication. By
understanding the effect of temperature on membrane physical and chemical
properties, NF membranes with desired properties could be fabricated by simply fine-
tuning its fabrication temperature. The results from this study proved that a new
technique can be used to overcome the disadvantages brought by conventional IP

fabrication method to form TFN NF membrane with superior membrane integrity.
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