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ABSTRACT 

Oil palm fronds (OPF) is an attractive feedstock for levulinic acid (LA) 
production due to its availability and high content of cellulose, but requires a pre-
treatment because of its heterogeneity structure.  This study explored the potential of 
ozonolysis pre-treatment of OPF for LA production.  The suitable design of 
experiment and response surface methodology (RSM) by Statistica software ver. 8.0 
was employed to study the effect of process parameter and to determine the optimum 
condition.  The lignin degradation and total reducing sugar (TRS) recovery were set 
as responses while ozonolysis pre-treatment condition i.e. particle size, moisture 
content, ozone flowrate, reaction time, ozone concentration and part of OPF were set 
as independent parameters.  The multi-response optimization of lignin degradation and 
TRS recovery for ozonolysis pre-treatment were verified by Box-Behnken design with 
four selected independent process parameters.  The physico-chemical properties of 
OPF and treated OPF (ODT) were analysed by thermal gravimetric analysis (TGA), 
Fourier transform infra-red (FTIR), X-ray diffractogram (XRD), N2-adsorption, 
scanning electron microscopy (SEM) and field emission scanning electron microscopy 
with energy dispersive X-ray spectroscopy (FESEM-EDX).  LA was produced by 
conventional acid hydrolysis.  An optimal region of study for lignin degradation was 
recommended at 25–40 wt.% moisture content, particle size bigger than 0.6 mm and 
ozone flow rate faster than 70 mL/min within 60 min. The TRS recovery is 
independent of lignin degradation. 75.8 % of TRS recovery of ODT was attained at 
0.63 mm, 30 wt.%, and 60 mL/min compared to 46.7 % of OPF.  FESEM and SEM 
depicted that the cell wall of OPF was broken, exposing the microfibril and cellulose 
rosette structure during the pre-treatment.  Rising crystallinity index from 36.1 % 
(OPF) to 44.7% (ODT) from XRD confirmed the removal of amorphous lignin and 
hemicellulose component as shown by TGA and FTIR analyses.  The decreasing 
surface area does not hinder the subsequence hydrolysis reaction; reducing crystal size 
up to 60.5%, and increasing pore diameter and volume gave advantage for the reaction.  
The particle size-moisture content interaction is important for lignin degradation while 
the moisture content-reaction time interaction is crucial for the TRS recovery.  Larger 
OPF particle size increases lignin degradation and TRS recovery due to interfacial 
surface tension. The reaction and mass transfer in water film was controlled by 
moisture content and reaction time.  The optimum lignin degradation (84.7 wt.%) and 
TRS recovery (99.9 %) were reached at 0.8 mm particle size, 40 wt.% moisture 
content, 75 min reaction time and 105 mL/min ozone flow rate with 19.5 % ozone 
consumption.  The LA yield of ODT at 180   ºC for 1 h and 4 wt. % H2SO4 increased 
up to 4.72 times than OPF and comparable to commercial microcrystalline cellulose.  
8.7 wt.% of LA recovery was attained by ozonolysis pre-treatment.  The findings from 
this study provide the insight background of the ozonolysis pre-treatment of OPF for 
the further stage of commercialization that could contribute to Malaysia’s economy. 
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ABSTRAK 

Pelepah kelapa sawit (OPF) adalah bahan mentah yang sangat menarik untuk 
penghasilan asid levulinik (LA) kerana ketersediaan dan kandungan selulosanya yang 
tinggi, tetapi memerlukan pra-rawatan disebabkan strukturnya yang heterogen.  Kajian 
ini meneroka potensi pra-rawatan ozonolisis ke atas OPF untuk penghasilan LA.  Reka 
bentuk eksperimen yang sesuai dan kaedah permukaan sambutan (RSM) oleh perisian 
Statistica ver. 8.0 digunakan untuk mengkaji pengaruh parameter proses dan untuk 
menentukan keadaan optimum.  Kemerosotan lignin dan perolehan jumlah gula (TRS) 
ditetapkan sebagai sambutan manakala keadaan pra-rawatan ozonolisis iaitu saiz 
zarah, kandungan lembapan, kadar aliran ozon, masa tindak balas, kepekatan ozon dan 
bahagian OPF ditetapkan sebagai parameter bebas.  Pengoptimuman multi-sambutan 
kemerosotan lignin dan perolehan TRS untuk pra-rawatan ozonolisis disahkan oleh 
reka bentuk Box-Behnken dengan empat parameter proses bebas yang dipilih.  Sifat-
sifat fiziko-kimia OPF dan OPF terawat (ODT) diteliti oleh analisis gravimetri terma 
(TGA), sinaran infra-merah jelmaan Fourier (FTIR), pembelauan sinar-X (XRD), 
penjerapan N2, mikroskop elektron imbasan (SEM) dan medan pelepasan mikroskop 
elektron imbasan dengan spektroskopi penyebaran tenaga sinar-X (FESEM-EDX).  
LA dihasilkan melalui proses hidrolisis asid konvensional.  Kawasan kajian optimum 
untuk kemerosotan lignin disarankan pada kandungan lembapan 25-40 %, saiz zarah 
lebih besar daripada 0.6 mm dan kadar aliran ozon lebih cepat daripada 70 mL/min 
dalam masa 60 minit.  Perolehan TRS tidak bergantung kepada kemerosotan lignin. 
75.8 % perolehan TRS untuk ODT dicapai pada 0.63 mm, 30% kandungan lembapan, 
dan 60 mL / min berbanding 46.7% untuk OPF.  FESEM dan SEM menggambarkan 
dinding sel OPF pecah dan mendedahkan struktur mikrofibril dan roset selulosa 
semasa pra-rawatan.  Peningkatan indeks kristaliniti dari 36.1% (OPF) kepada 44.7% 
(ODT) daripada analisis XRD mengesahkan penyingkiran komponen lignin dan 
hemiselulosa amorfus yang ditunjukkan oleh analisis TGA dan FTIR.  Penurunan luas 
permukaan tidak menghalang tindak balas hidrolisis seterusnya; pengurangan saiz 
kristal hingga 60.5%, dan peningkatan diameter dan isipadu liang memberi kelebihan 
kepada tindak balas.  Interaksi kandungan lembapan zarah penting untuk kemerosotan 
lignin manakala interaksi masa tindak balas kandungan lembapan–masa sangat penting 
untuk perolehan TRS.  Saiz partikel OPF yang lebih besar meningkatkan kemerosotan 
lignin dan perolehan TRS kerana ketegangan permukaan antara muka.  Tindak balas 
dan pemindahan jisim dalam lapisan air dikawal oleh kandungan lembapan dan masa.  
Kemerosotan lignin yang optimum (84.7% wt.) dan perolehan TRS (99.9%) dicapai 
pada ukuran zarah 0.8 mm, 40% kandungan lembapan, masa reaksi 75 minit dan kadar 
aliran ozon 105 mL / min dengan penggunaan ozon 19.5%.  Hasil LA daripada ODT 
pada suhu 180 °C selama 1 jam dan 4 wt. % H2SO4 meningkat hingga 4.72 kali 
daripada OPF dan setanding dengan selulosa mikrokristal komersial. 8.7% perolehan 
LA dicapai dengan pra-rawatan ozonolisis.  Dapatan daripada kajian ini memberikan 
pemahaman tentang latar belakang pra-rawatan ozonolisis OPF untuk tahap 
pengkomersialan selanjutnya yang menyumbang kepada ekonomi Malaysia. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of Research  

The total plantation area in Malaysia for each state in 2016 is pictured in Figure 

1.1.  The oil palm plantation area in Malaysia reached 5.74 M Ha with 453 mills (Din, 

2017a; Leong, 2015).  The largest oil palm planted area is located in Sabah (1.55 M 

Ha, 27 %) with followed closely by Sarawak (1.51 M Ha, 26 %).  The remaining 11 

states located in Peninsular Malaysia contributes to 47 % (Din, 2017b).  In 2018, the 

plantation area has been increased up to 5.849 M Ha planted area with 2.7 M Ha in 

peninsula Malaysia and 3.13 M Ha in the Borneo state of Sabah and Sarawak, leave 

0.651 M Ha to be explored without exploring new permanent forest areas or peatland 

(Tan and Ho, 2019).  The main product from the palm oil industry is crude palm oil 

(CPO) by exploited 10 % of palm oil tree (Loh, 2017).  The CPO has been exported to 

India, China, European Union (EU), Pakistan, Turkey, Philippines, and United State 

of American (USA) as Malaysia being largest exporter.  The exportation of CPO has 

ranking the Malaysia as second contributed to Malaysia economy (Ferdous Alam et 

al., 2015; Din, 2017b).  While the remaining 90 % settle as the oil palm waste (OPW) 

which is categorized as lignocellulosic biomass. The fully commercialized the OPW 

for high value product could contribute up to RM 30 billion gross net income (GNI) 

for Malaysia (Aziz, 2015; Agensi Inovasi Malaysia, 2013; Agensi Inovasi Malaysia, 

2011).   

 

 



 

2 

 

Figure 1.1 Oil palm planted area by state  (Adapted from Din, 2017a) 

The OPW is categorized as lignocellulosic biomass since it consists of three 

major components: lignin, hemicelluloses and cellulose. Figure 1.2 illustrates the 

composition of each component in OPW, respectively.  Among of OPW, the OPF 

contains a fair amount of cellulose, hemicellulose and lignin that makes is attractive to 

be a feedstock for biorefinery (Awalludin et al., 2015; Lai and Idris, 2013; 

Kumneadklang et al., 2019; Loh, 2017).  

 

Figure 1.2 The fraction of lignocellulosic component in palm oil biomass 
(Reproduced from Loh, 2017) 
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Furthermore, OPF is identified as the largest biomass produced in Malaysia as 

illustrated in Figure 1.3.  However, the OPF has been reported to be left to rot or burn 

in the plantation for the soil nutrient conservation (Aliyu et al., 2015; Agensi Inovasi 

Malaysia, 2013; Awalludin et al., 2015; Loh, 2017).  These practices could contribute 

to an environmental and public health issue in the form of haze as has happened in 

2015 (France-Presse, 2016; Nash, 2015; Ferdous Alam et al., 2015).  Therefore, 

utilization of the OPF for potentially high-value biomass–product in the downstream 

process is demanded.  The OPF pellets, bio-alcohol, syngas, industrial sugar or 

chemicals, organic compost, biochar, and phytochemicals have been identified as the 

potential biomass-product from the OPF (MIGHT, 2013).  However, optimizing the 

OPF as a raw material is hurdled by mobilization, competition for the other 

applications and the development of the technology (Agensi Inovasi Malaysia, 2013; 

Agensi Inovasi Malaysia, 2011; Aziz, n.d.; MIGHT, 2013).  Instead of these factors, 

the biomass constituents are a major factor in the selection of profitable technology for 

commercialization purposes.  

 

Figure 1.3 Total projected annual biomass availability in Malaysia (Million 
Metric Tonnes) (Reproduced from MIGHT, 2013)  
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Lignin is a resin-like polymer matrix with various phenolic compounds 

present. It is valuable for the production of surfactant, phenolic formaldehyde resin, 

antacids, and fertilizers.  On the other hand, holocellulose layers consisting of 

hemicellulose and cellulose are carbohydrate-based polymers that can be degraded to 

sugar monomer by hydrolysis; such as xylose, arabinose, glucose, and fructose (Lima 

et al., 2009).  The sugars can be converted into a number of the high-value bio-based 

chemical as illustrated in Figure 1.4.  The bio-based derived chemicals such as furfural 

and its derivative, 5-hydroxymethylfurfural (5-HMF) can be produced by partial 

dehydration of the monomer sugar.  Furfural is produced from xylose or arabinose, 

while HMF is synthesized from fructose and glucose (Wang et al., 2019; Lima et al., 

2009).  HMF can then be converted to a platform chemical known as levulinic acid 

(LA) by acid hydrolysis.  The valuable intermediate products, LA are very useful for 

fuel industries (Jeong, 2014; Jeong et al., 2018). Besides, LA can be used as coating 

material, solvent, fragrant, and food flavouring agent (Ramli and Amin, 2014). 

 

Figure 1.4 Possible pathways and products of hydrolysis of a typical 
lignocellulosic material (Modified from Girisuta et al., 2006) 
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However, the presence of lignin hindered many of the biomass conversion 

processes as it trapped the sugar monomer.  A layer of lignin functions as a support 

and can protect the plants against microbial attack (Conde-Mejía et al., 2012; Kumar 

et al., 2009).  Therefore, the deconstruction of biomass to remove the lignin layer is 

needed so that the holocellulose layer would be exposed for the next processing step 

(Figure 1.5).  The process of biomass deconstruction is known as a pre-treatment.   

 
Figure 1.5 Schematic of role biomass pre-treatment (Reproduced from Kumar et 
al., 2009) 

Biomass can be pretreated by physical (milling and grinding), physicochemical 

(steam pre-treatment/autohydrolysis, hydrothermolysis, and wet oxidation), chemical 

(alkali, dilute acid, oxidizing agents, and organic solvents), biological, electrical or a 

combination of these techniques (Kumar et al., 2009; Taherzadeh and Karimi, 2008; 

Wang et al., 2019).  However, the thermal chemical pre-treatments are necessary to 

degrade the lignin and expose the plant cell wall microfibrils to open an access into 

cellulose for LA production.  
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Some of biomass pre-treatment method known as ammonia fiber explosion 

(AFEX), acid and alkaline hydrolysis, and organosolv can degrade/remove the lignin 

(Kumar et al., 2009; Taherzadeh and Karimi, 2008).  However, the drawbacks of this 

method deter the commercialization process.  AFEX is not efficient for biomass with 

high lignin content.  Alkaline hydrolysis requires long residence time besides forming 

irrecoverable salts and incorporates into biomass.  Acid hydrolysis presents a very high 

capital cost due to the need corrosiveness of the reagent, not to mention the toxic by-

products coming out of the process, an issue also shared by the organosolv methods.   

Recently, the emerging technologies for biomass processing such as non-

ionizing radiation (microwaves), ionizing radiation (gamma-ray, electron beam), 

pulsed-electric field, high-pressure (high hydrostatic pressure, high-pressure 

homogenization) and ultrasound are promising for commercial purpose.  However, the 

technologies are a relatively high cost for development in biorefinery (Hassan et al., 

2018).  Besides the cost and environment issues, the physico-chemical properties of 

biomass are affected negatively or positively during the treatment process.  Some of 

the pre-treatment methods could reduce the crystallinity of cellulose and increase the 

porosity of the lignocellulosic biomass, which is advantageous for the next biorefinery 

process (Kumar et al., 2009). 

Among the green chemistry pre-treatment method, ozonation of biomass has 

appeared as the most promising method for pre-treatment.  The ozonation of biomass 

can degraded the lignin by giving only a slight effect on hemicellulose and almost no 

effect on cellulose at all (Hendriks and Zeeman, 2009; Kumar et al., 2009; Pandey et 

al., 2015).  Most of studied reported that the sugar yield increased after ozonolysis pre-

treatment (Pereira et al., 2013; García-cubero et al., 2012; Mardawati et al., 2019). In 

addition, Perrone et al. (2017) stated the ozonolysis pre-treatment of sugar cane 

bagasse increase the crystallinity and surface area.   
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Moreover, the ozonolysis process is an energy-efficient because it operates 

under ambient temperature and pressure (Galletti and Antonetti, 2012; Travaini, 

Martín-Juárez, et al., 2016; Travaini, Barrado and Bolado-Rodriguez, 2016; García-

cubero et al., 2012).  Furthermore, the reaction uses a non-corrosive chemical, and the 

excess of ozone is converts into oxygen before discharged into the atmosphere.  This 

led to a zero-waste production system.  Herein, the ozonolysis treatment is 

acknowledged as a green technology.  Therefore, the possibility to employ the 

ozonolysis method for pre-treatment of OPF for LA production is prominent.  

1.2 Statement of Problem  

As the second-largest palm oil plantation in the world, the amount of biomass 

produced has reached 123 M tonnes per year and assumed to increase more in 2020 

(Agensi Inovasi Malaysia, 2013; Awalludin et al., 2015).  The bulk of the biomass is 

undergoing substandard management by converted into a low-value product such as 

medium density fibreboard (MDF), plywood, briquettes, and torrefied pellet in 

addition to burning for soil nutrient or electricity generation (Aziz, n.d.; MIGHT, 

2013).  An alternative and sustainable energy and chemicals derived from OPW by 

biorefinery could be a potential key to overcome the waste management crisis and 

creates an opportunity for Malaysia to generate income in this sector.  One of 

promising chemical product is LA that produces from glucose conversion (Kang et al., 

2018; Ramli et al., 2014; Ramli and Amin, 2016).  The first pilot commercial-scale for 

2G-Sugar biomass conversion plant is developed in Segamat, Johor and is scheduled 

to be operational by 2021 (Agensi Inovasi Malaysia, 2013).  This pilot plant will 

provide the most economic route to produce cellulosic sugars and convert it into LA 

from biomass.  But, it is still challenging to reduce the cost of production and increase 

the sustainability since the rigid and complex structure of OPF unfavorably obstructs 

the conversion into valuable chemical products (Figure 1.6).  Thus, the pre-treatment 

process is required to assist OPF dissolution and conversion processes by deconstruct 

the OPF constituents to be efficiently feedstocks for downstream biorefinery 

processing.   
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One of the promising pre-treatment methods of biomass is the ozonolysis.  To 

date, the feasibility of ozonolysis pre-treatment of biomass was carried out for sugar 

release by enzymatic hydrolysis for ethanol production.  The ozonolysis method has 

been proven to obtain the high sugar yield by enzymatic hydrolysis and the lignin is 

degraded by the previous study. (Bhattarai et al., 2015; Travaini et al., 2014; Eqra et 

al., 2014; Panneerselvam, Sharma-Shivappa, et al., 2013; Panneerselvam, Sharma-

shivappa, et al., 2013; Travaini, Barrado and Bolado-Rodríguez, 2016; García-cubero 

et al., 2012).  Besides, the effect of washing prior to subsequent step investigated by 

Al jibouri et al., (2015) explained that the ozonolysis could separate the lignin from 

biomass component.  However, the method has not yet been explored for Malaysia’s 

biomass such as OPF.  Besides, the efficacy of the ozonolysis pre-treatment on 

thermochemical conversions, such as acid hydrolysis as an alternative pathway for 

glucose production is not yet investigated.  Hence, the potential of ozonolysis pre-

treatment of OPF for LA production by acid hydrolysis is highly encouraged to be 

investigated. 

Up till now, the study of ozonation is mostly done in a slurry semi-batch or 

fixed bed reactor.  The slurry semi-batch reactor was usually employed for the slurry 

mixing of biomass and ozone.  Therefore, the reactor is not suitable for biomass with 

low moisture content (20-40 wt.%).  Meanwhile, the distribution of ozone was 

reportedly not scattered uniformly in fixed bed reactor according to García-Cubero et 

al. (2012) which led to loading the biomass on plate bed with 1 cm thickness (Bhattarai 

et al., 2015).  However, the plate bed reactor also unrealizable to be commercialized 

since it need a bigger scale.  One of the most common reactors, continuous stir tank 

reactor (CSTR) concept are applied in this study.  Whereas, the OPF sample is loading 

to the reactor that equipped with stirrer prior to the reaction. The ozone is then supplied 

into the reactor within the time desired.  This semi-batch reactor type could promise 

the ozone is distributed evenly in the reactor. 
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Figure 1.6 The bottleneck of LA production from lignocellulosic biomass 
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On the other hand, there report on effect of parameter on ozonolysis reaction 

is limited to foreign local type feedstock such as rye straw, wheat straw, sugar cane 

bagasses, and grass which had low lignin content and categorized as softwood.  Since 

OPF is quite different than this softwood biomass, the investigation on process 

parameter is need to be carried out.  Despite that, the crucial discussion of the process 

parameter on lignin degradation is scarcely explained since most of researcher focus 

on the effect of pre-treatment on sugar release yield and bioethanol production (García-

Cubero et al., 2009; Travaini et al., 2014; Perrone et al., 2017).  In addition, mostly 

the researcher used one factor at the time (OFAT) approach to carried out the 

experiment.  The approach requires large number of homogenous feedstocks and 

consumes a lot of time.  Herein, the design of experiment (DOE) by applied factorial 

design (FD) is suggested to investigate the effect of the process parameter on lignin 

degradation due to feedstock limitation.   

In addition, the effect of pre-treatment on physico-chemical properties of 

biomass is also barely reported (Perrone et al., 2016; Orduña Ortega et al., 2019; Bule 

et al., 2013; Perrone et al., 2017).  Perrone et al. (2017, 2016) reported and discussed 

the effect of ozonolysis and combination with ultrasonic on functional group, 

crystallinity, and morphology of treated sugar bagasse. Meanwhile, Orduña Ortega et 

al., (2019) focused on effect of soaking and ozonolysis of sugar cane straw on FTIR 

study. On the other hands, the characterization of lignin is analyzed by Bule et al. 

(2013). Thus, the effect of ozonolysis pre-treatment on oil palm waste physico-

chemical properties should be investigated to understand the mechanism of the 

reaction. 

Moreover, no report on the optimization of the ozonation condition using 

optimization tools such as response surface methodology (RSM) has been found until 

recently (Al jibouri et al., 2015; Mardawati et al., 2019).  Al Jibouri et al. (2015) 

investigated the effect of two stage of ozonolysis treatment on enzymatic hydrolysis 

for bioethanol production from wheat straw.  While, Mardawati et al. (2019) inspected 

the effect of pre-treatment condition on sugar production by enzymatic production 

from EFB.  Herein, optimization of OPF ozonolysis pre-treatment on lignin 

degradation and TRS recovery needs to carried out to explore more on the reaction. 
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Consequently, the details investigation on the feasibility of ozonolysis pre-

treatment on OPF before acid hydrolysis for sugar and LA production needs to be 

performed due to limited knowledge on the reaction.  The study should include the 

process screening and effect on the physico-chemical properties of OPF in order to 

understand the reaction as a fundamental knowledge prior to further optimization.  The 

optimization of the ozonation pre-treatment condition is advantageous to minimize the 

cost of production for commercialization purpose. 

1.3 Hypothesis of Research  

The ozonolysis pre-treatment would appear as a new promising pre-treatment 

method for the delignification of OPF and enhance total reducing sugar (TRS) 

recovery and LA production.  The ozonolysis pre-treatment of OPF would be 

successfully carried out in the semi-batch process by introducing the ozone into the 

moist OPF.  During the process, the ozone would attack the lignin without affecting 

the cellulose component.  The particle size, moisture content, ozone flow rate, ozone 

concentration, and reaction time would be recognized as the important process 

parameters that induce lignin degradation.  The fractional factorial design (FFD) would 

suffice to elucidate the activities of the process.   

Furthermore, the physical properties of biomass such as crystallinity and 

porosity would change in the way that gives advantages for subsequent hydrolysis 

reaction for sugar monomer yield and TRS recovery.  The thermal gravimetric analysis 

(TGA) and fourier transform infrared (FTIR) could prove the component of OPF after 

the pre-treatment.  On the other hand, X-ray diffractometer (XRD), scanning electron 

microscopy (SEM) and field emission scanning electron microscopy (FESEM) would 

show how the ozonolysis pre-treatment changes the physical structure of OPF.  In 

addition, the sugar yield and TRS recovery would increase after pre-treatment due to 

the physical changes of OPF. 
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Moreover, the response surface methodology (RSM) is an efficient tool for 

optimization.  The Box-Behnken design (BBD) would design a sufficient set of a run 

for optimization of the lignin degradation and TRS recovery simultaneously.  The 

RSM would predict the optimum condition that could maximize the lignin degradation 

and TRS recovery simultaneously by using the desired probability function.  

Moreover, the RSM approach could describe the influence of each process parameters 

and their interaction meticulously.  Besides, the treated OPF is ready for subsequent 

biorefinery processes i.e LA production.  The LA yield would increase after pre-

treatment. The ozonolysis is expected to increase the sustainability of feedstock 

supply. 

1.4 Objective of Research 

This research is carried out to reach the following objectives: 

1. To screen the process parameters (i.e: particle size, moisture content, ozone 

concentration, ozone flow rate, reaction time and part of OPF) on lignin 

degradation of oil palm frond (OPF) and to evaluate the effect of the pre-

treatment on physico-chemical properties of biomass. 

2. To find and investigate the optimum process parameters during ozonolysis pre-

treatment of OPF for sugar monomer production by response surface 

methodology (RSM) approach. 

3. To inspects the potential of ozonolysis pre-treatment for levulinic acid (LA) 

production. 

 

 



 

13 

1.5 Scope of Research 

In scope 1, the preliminary study of ozonolysis pre-treatment is carried out to 

screen the process parameters on lignin degradation of OPF.  Figure 1.7 illustrated the 

flow of study within the scope.  The parameters i.e. particle size, moisture content, 

ozone concentration, ozone flow rate, reaction time, and part of OPF are considered.  

The two-level fractional factorial design with resolution III is employed to design the 

experiment matrix.  The lignin degradation of treated OPF, known as ODT samples is 

analysed by the Kappa number test.  Meanwhile the physical properties of OPF and 

ODT such as crystallinity, BET surface area, and functional group are investigated 

using XRD, BET, and FTIR.  In addition, the image of morphological of OPF and 

ODT are captured by SEM.  The composition of lignin, hemicelluloses and cellulose 

of the OPF and ODT samples are measured using standard gravimetric methods.  

 

Figure 1.7 Preliminary study of ozonolysis treatment on lignin degradation and 
physical properties of OPF process flow 
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The parameter screening of ozonolysis pre-treatment on lignin degradation of 

OPF is re-investigated in order to determine the optimum region.  The parameters i.e. 

particle size, moisture content, ozone flow rate, reaction time, and part of OPF as 

blocking parameter are considered.  The two-level factorial design with resolution IV 

is employed to design the experiment matrix.  Kappa number test is performed to 

determine the lignin degradation.  In addition, the effect of ozonolysis on total reducing 

sugar (TRS) recovery is investigated. The TRS is produced from two-step acid 

hydrolysis and analysed by DNS method.  Meanwhile the crystallinity, BET surface 

area, functional group and thermal stability of OPF and treated is scrutinized for more 

detail investigated using XRD, BET, FTIR and TGA. In addition, FESEM-EDX is 

using to capture the morphological of OPF and ODT.  Moreover, the physical 

properties of OPF and ODT is tested by swelling properties.  The summary of the 

research activities in this scope is show in Figure 1.8. 

 

Figure 1.8 Parameter screening and effect of ozonolysis treatment on sugar 
production and physical properties of OPF process flow 
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Next, the process parameters during ozonolysis reaction for lignin degradation 

and TRS recovery are optimized by the response surface methodology (RSM).  Figure 

1.9 shows a summary of the process flow.  The important parameters that have been 

determined in the preliminary study i.e particle size, moisture content, ozone flowrate 

and reaction time are re-investigate using Box-Behnken design (BBD) at different 

region of study.  Desirability function is used for the simultaneous optimization of 

lignin degradation and TRS recovery.  STATISTICA software is employed as a tool in 

this part.   

 
Figure 1.9 The process flow of the optimization of ozonolysis pre-treatment 

The feasibility of the ozonolysis pre-treatment on acid hydrolysis reaction for 

levulinic acid (LA) synthesis is studied in next scope.  The selected ODT from Phase 

2 and the OPF is used as a feedstock for acid hydrolysis (Figure 1.10).  Also, 

commercial cellulose is used as a benchmark for the study. LA is produced by acid 

hydrolysis at 180°C for 1 h.  LA concentration is analysed using HPLC. 

 

Figure 1.10 Study the effect of ozonolysis of OPF on LA production 
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1.6 Significant of Research 

In general, the research provides fundamental information for the ozonolysis 

pre-treatment of Malaysia’s biomass especially OPF.  The implementation of the 

ozonolysis as the pre-treatment method in Malaysia’s biorefinery could contribute to 

Malaysia’s economy as elucidated in the National Biomass Strategy (Agensi Inovasi 

Malaysia, 2013; Agensi Inovasi Malaysia, 2011). 

1.7 Outline of the Thesis 

This dissertation consists of seven chapters including introduction, literature 

review, research methodology, results and discussions, which are divided into three 

main chapters, and lastly conclusion and recommendation.   

Chapter 1 introduces the background of the research as the guideline of the 

work.  The detailed information of the background knowledge related to the research 

is discussed in Chapter 2.  Then, Chapter 3 provides the detail of the method for each 

procedure including the diagram of each set up for each process.  

The results and discussion are reported in Chapters 4, 5 and 6 for each scope 

of the study, respectively.  In Chapter 4, the fundamental of the ozonolysis reaction is 

reported and discussed.  The discussion included the observation made during the 

experiment as well as process screening to find the significant parameters and the 

region of each parameter for optimization study.  Meanwhile, Chapter 5 discusses 

more details on process screening.  The effect of the pre-treatment on sugar recovery 

is reported in this chapter.  Besides that, the effect of the pre-treatment on the physico-

chemical properties of OPF is scrutinized and supported by investigation on swelling 

activity.  The finding in Chapter 4 and 5 would give a fundamental knowledge of 

technology and would be a great help for the next stage of the study. 
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Chapter 6 reports and discusses the optimization study of the ozonolysis pre-

treatment by the RSM approach to maximize the lignin degradation and sugar 

recovery.  The influence of particle size, moisture content, reaction time, and ozone 

flow rate, and their interactions in the ozonolysis pre-treatment of OPF on lignin 

degradation and sugar recovery are carefully investigated and reported.  The empirical 

mathematical model is developed from the RSM approach.  The model would 

elucidate the effect of the process parameters on the response.  Meanwhile, multi-

objective responses for lignin degradation and TRS recovery of OPF for the ozonolysis 

pre-treatment are optimized simultaneously using desirability function in STATISTICA 

software tools.  The recommended optimum condition for the ozonolysis pre-treatment 

of OPF is verified experimentally.  Additionally, the application of ozonolysis product 

for bio-based chemical product i.e. levulinic acid (LA) is assessed in this chapter.  

Lastly, Chapter 7 give the overall conclusion and recommendation for future study.
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