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ABSTRACT 

 

 

 

 

In this study, hydrogel was prepared by using cellulose extracted from 

pineapple leaf fiber (PALF). PALF has higher cellulose content and better tensile 

properties compared to other cellulosic agro wastes such as sugarcane bagasse. 

However, up to date most of the researches are only focusing on the effect of alkali 

treatment on the properties of fiber regenerated from PALF and none has reported on 

the preparation of hydrogel from PALF. Besides, studies also showed that the cellulose 

concentration affected the properties of hydrogel. In this study, the effects of alkaline 

treatment on the lignin removal to obtain the PALF cellulose and the properties of 

PALF cellulose hydrogel were investigated. Then, the effect of cellulose concentration 

using the selected cellulose obtained from the treatment on the properties of the 

resultant PALF cellulose hydrogel were investigated. For the alkali treatment, PALF 

has been treated with different concentrations of sodium hydroxide (NaOH) (2-10 

wt%) at two different temperatures (room temperature and 80 ℃). Then, PALF was 

dissolved in N,N’-dimethyl acetamide and lithium chloride solvent and underwent a 

phase inversion to change from liquid into a solid cellulose hydrogel. Later, after the 

optimum concentration and temperature for alkaline treatment were obtained, the 

cellulose hydrogel was prepared with different cellulose concentrations (0.5–2.0 wt%). 

From the Fourier transform infrared results, lignin was removed starting at the 

concentrations of 6 wt% NaOH at room temperature and 4 wt% NaOH at 80 ℃, 

respectively. The thermal stability of fiber was increased at higher NaOH 

concentration and the crystallinity of cellulose was also increased (71-79%) after the 

treatment. Higher NaOH concentration and treatment temperature have increased the 

swelling equilibrium of the hydrogel but adversely affected the gel fraction. Besides, 

the ultraviolet-visible spectra showed that the highest transmittance (87.8 %) and the 

lowest intensity of absorbance (at 280 nm corresponding to lignin) were obtained by 

the cellulose hydrogel prepared with cellulose treated at 8 wt% NaOH and 80 °C. 

Later, the designated cellulose was chosen to prepare the hydrogel at different 

cellulose concentrations. It was found that, the swelling and the transparency of 

hydrogel decreased with increasing of cellulose concentration. On the other hand, the 

viscosity of the solution, the gel fraction and the tensile strength of the hydrogel 

increased as the cellulose concentration increased. The highest tensile strength (1 MPa) 

was obtained by the hydrogel at 2.0 wt% cellulose concentration. The increase in these 

properties were most probably due to the increased of entanglement of the cellulosic 

chains due to the formation of the hydrogen bonding at higher cellulose concentration. 

From the rheological measurement, the elastic modulus (Gʹ) of all the hydrogels were 

higher than the loss modulus (Gʹʹ) regardless of the cellulose concentration and both 

parameters were independent to the measured frequency. This showed that the PALF 

hydrogels possessed the ideal rubber characteristics. The mesh sizes of the hydrogel 

decreased with increasing cellulose concentrations. Clearly, this revealed that the 

condition of the alkaline treatment affected the cellulose extraction and the hydrogel 

properties. However, the cellulose concentration has greater effect towards the 

physical and tensile properties of the hydrogel. Ultimately, cellulose hydrogels 

obtained from this study have promising potential to be used as biomaterials in many 

applications. 
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ABSTRAK 

 

 

 

 

Dalam kajian ini, hidrogel telah disediakan menggunakan selulosa yang di 

ekstrak dari serat daun nanas (PALF). PALF mempunyai kandungan selulosa yang 

lebih tinggi dan kekuatan tegangan yang lebih baik berbanding dengan sisa agro 

selulosa lain seperti tebu. Walau bagaimanapun, kajian terkini mengenai PALF hanya 

berfokus kepada kesan rawatan alkali terhadap sifat serat yang diperoleh dari PALF 

dan tiada kajian terhadap penyediaan hidrogel daripada PALF. Selain itu, kajian juga 

menunjukkan kepekatan selulosa boleh mempengaruhi sifat hidrogel yang terhasil. 

Dalam kajian ini, kesan rawatan alkali terhadap penyingkiran lignin untuk 

memperoleh PALF selulosa dan terhadap sifat PALF selulosa hidrogel telah disiasat. 

Kemudian, kesan kepekatan selulosa menggunakan selulosa yang terpilih selepas 

rawatan terhadap sifat PALF selulosa hidrogel yang terhasil disiasat. Untuk rawatan 

alkali, PALF telah dirawat dengan kepekatan natrium hidroksida (NaOH) yang 

berbeza (2-10 wt%) pada dua suhu yang berbeza (suhu bilik dan 80℃). Kemudian, 

PALF telah dilarutkan dalam pelarut N, N'-dimetil asetamida dan litium klorida dan 

mengalami penyongsangan fasa untuk berubah dari cecair kepada pepejal hidrogel 

selulosa. Kemudian, setelah kepekatan dan suhu optimum rawatan alkali diperoleh, 

hidrogel selulosa telah disediakan dengan menggunakan kepekatan selulosa yang 

berbeza (0.5-2.0 wt%). Dari hasil inframerah transformasi Fourier, lignin akan mula 

disingkirkan masing-masing pada kepekatan 6 wt% NaOH pada suhu bilik dan 4 wt% 

NaOH pada 80 ℃. Kestabilan terma serat meningkat apabila dirawat dengan 

kepekatan NaOH yang lebih tinggi dan penghabluran selulosa juga meningkat (71-

79%) setelah rawatan. Kepekatan NaOH dan suhu rawatan yang lebih tinggi telah 

meningkatkan keseimbangan pembengkakan hidrogel yang dihasilkan namun 

memberi kesan yang sebaliknya terhadap pecahan gel. Selain itu, spektra 

ultralembayung-nampak menunjukkan transmitans tertinggi (87.8%) dan intensiti 

keserapan terendah (pada 280 nm sepadan dengan lignin) dihasilkan oleh hidrogel 

selulosa yang disediakan pada 8 wt% NaOH pada 80°C. Selulosa yang terpilih ini, 

kemudian digunakan untuk penyediaan hidrogel pada kepekatan selulosa yang 

berbeza. Keputusan menunjukkan bahawa, pembengkakan dan ketelusan hidrogel 

telah menurun dengan peningkatan kepekatan selulosa. Sebaliknya, kelikatan larutan, 

pecahan gel dan kekuatan tegangan hidrogel meningkat apabila kepekatan selulosa 

meningkat. Kekuatan tegangan yang tertinggi (1 MPa) telah diperoleh melalui hidrogel 

dengan 2.0 wt% kepekatan selulosa. Peningkatan sifat-sifat ini adalah disebabkan 

meningkatnya penggabungan rantaian selulosa disebabkan pembentukan ikatan 

hidrogen pada kepekatan selulosa yang tinggi. Melalui pencirian pengukuran reologi, 

modulus elastik (Gʹ) semua hidrogel lebih tinggi daripada modulus kehilangan (Gʹʹ) 

tanpa mengira kepekatan selulosa dan kedua-dua parameter ini tidak bergantung 

kepada ukuran frekuensi yang digunakan. Hal ini membuktikan bahawa, hidrogel 

PALF mempunyai sifat getah ideal. Saiz jaringan hidrogel didapati menurun dengan 

peningkatan kepekatan selulosa. Kajian ini jelas menunjukkan bahawa rawatan alkali 

memberikan kesan kepada pengekstrakan selulosa dan sifat hidrogel. Namun, kesan 

kepekatan selulosa adalah lebih besar terhadapat sifat fizikal dan kekuatan tegangan 

hidrogel. Hidrogel selulosa yang diperoleh dalam kajian ini terjamin berpotensi untuk 

digunakan sebagai biomaterial dalam banyak aplikasi. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study  

 

 

Hydrogel can be defined as a material that consists of a three-dimensional 

network of polymer chains and water that fills the space between the networks 

(Ahmed, 2015). Hydrogels are made up of hydrophilic polymers and do not dissolve 

when cross-linked. The ability of the hydrogels to retain a large amount of water or 

biological fluids make it similar to living tissues (Ullah et al., 2015). Due to this unique 

characteristic of the hydrogel, many research and exploitation on hydrogel have been 

done. 

 

 

In recent years, researchers have contributed much attention to the study of the 

natural polymers such as chitosan (Ahmadi et al., 2015), gelatin (Bakravi et al., 2018), 

starch (Ismail et al., 2013) and cellulose (Dutta et al., 2019) as the resources for the 

hydrogel synthesis. Cellulose is one of the most abundant natural polymers and it has 

attracted many scientists because of their unique properties such as biodegradability, 

low toxicity, and biocompatibility. Furthermore, cellulose is available worldwide and 

it has combination of hydrophilicity with good mechanical properties. (Navarra et al., 

2015). Therefore, cellulose can be classified as a special and interesting materials to 

be used as the resource for the preparation of hydrogel.  

 

 

There are several methods to extract cellulose from a plant which can be 

classified as physical, chemical and physicochemical methods. Acid treatment is one 

of the methods for fibers pre-treatment. Dilute acid treatment is used to break the rigid 

structure of the lignocellulosic materials while removing the hemicellulose only 

(Brodeur et al., 2011). Alkaline treatment is notorious for providing the efficient 

delignification of lignocellulose and is generally more effective on herbaceous crops 

and agricultural residues (Yamashita et al., 2010). Alkaline treatment eliminates the 
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non-cellulosic content that covers the external surface of the fiber cell wall, thus 

increase the amount of exposed cellulose on the fiber surface (Zin et al., 2018). 

Therefore, some researchers have reported on the extraction of cellulose using acid 

treatment followed by alkaline treatment for more effective extraction of cellulose 

(Tovar-carillo et al., 2013). In addition, it can degrade the ester bonds and cleavage of 

glycosidic linkages in the lignocellulosic cell wall matrix, thus modify the lignin 

structure, reduce the lignin–hemicellulose complex, and leading to cellulose 

decrystallization (Cheng et al., 2010).  

 

 

Many researchers have synthesized hydrogels from various cellulose resources 

such as sugarcane bagasse fiber, bamboo fiber and agave tequilana weber bagasse fiber 

(Nakasone, 2015; Tovar-Carrillo et al., 2014; Tovar-carrillo et al., 2013). Pineapple 

leaf fibers (PALF) is another source of cellulose which has not yet been used for the 

preparation of cellulose hydrogels. The total production of pineapple in Malaysia for 

2019 is about 357,805 metric tonnes (Department of Agriculture, 2019). However, 

there is no appropriate method in handling residue produced from pineapple planting. 

The abundance of pineapple residues opens many doors for new research to be 

explored. According to Asim et al. (2015), PALF contains higher cellulose content 

(67-85%) and extraction of cellulose from PALF can be carried out at relatively mild 

condition. Therefore, the cellulose in PALF is suitable to be extracted for the usage in 

the preparation of cellulose hydrogels since it is available in abundance in Malaysia.  

  

 

Hydrogels are physically cross-linked when there are no cross-linkers during 

synthesis (Akhtar et al., 2016). After the extraction process, cellulose need to be 

dissolved in an appropriate solvent before it can be made into hydrogel. In a recent 

study, N,N’-dimethyl acetamide (DMAc) with lithium chloride (LiCl) was used as the 

solution for cellulose dissolution as it is one of the best solvent used for high-

molecular-weight cellulose (Nakasone, 2016; Zhang et al., 2014). Then, phase 

inversion method is used for the formation of cellulose hydrogel from a cellulose 

solution. It is a process where, polymer transforms from a liquid phase into the solid 

phase. In recent years, Tovar-Carillo et al. (2014) had successfully prepared cellulose 

hydrogel from Agave tequilana Weber bagasse fibers. In their study, besides acid and 

alkaline treatments, they had to perform bleaching at various sodium hypochlorite 
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concentrations (0-10 vol% NaOCl) as alkali treatment alone was not effective enough 

to remove the non-cellulosic part in the fibers. In another study, three steps of treatment 

process were also required to obtain the cellulose from sugarcane bagasse fibers as the 

raw material for the preparation of cellulose hydrogel (Nakasone, Ikematsu and 

Kobayashi, 2016). As for their study, bleaching treatment as the third treatment step 

was conducted at 40 and 50 C, while for alkaline treatment, they had kept it constant 

at 10 wt% NaOH, 80 C and 12 hours treatment. 

 

 

In this study, cellulose hydrogel from PALF was prepared via the phase 

inversion method. Cellulose was extracted from PALF using alkaline treatment 

method at various NaOH concentrations. Since there is no study has been done on the 

cellulose from PALF, the best treatment parameter was identified to get pure cellulose 

for the hydrogel preparation. This study emphasis on the effect of the alkaline 

treatment on the lignin removal from PALF and resultant hydrogel properties produced 

from PALF cellulose. The hydrogel produced was characterized based on equilibrium 

swelling ratio, gel fraction and transparency. The cellulose concentration also can 

affect the properties of the cellulose hydrogel. Therefore, the effect of cellulose 

hydrogel concentrations towards the cellulose hydrogel properties also was analysed 

so that hydrogel with the best properties in terms of gel fraction, swelling, 

transparency, tensile properties, viscosity and rheological properties can be produced 

and identified. 

 

 

 

 

1.2 Problem Statement  

 

 

Cellulose is the most abundant resources on earth among all biopolymers. The 

unique properties of cellulose make it suitable to be utilized as raw material for 

hydrogel preparation. The properties of biopolymer-based hydrogel such as 

biocompatible and biodegradable cannot be found in the synthetic based hydrogel. 

Thus, it has acquired increasing attentions from researchers. Biopolymer-based 
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 hydrogel components are mostly non-toxic and bio-inert; these properties contribute 

to the overall biocompatibility of hydrogel matrices with surrounding tissue (Reddy et 

al., 2021). Nevertheless, very limited research has been performed on using cellulose 

fiber for the preparation of hydrogel film.   

 

 

Currently, the utilization of cellulosic agro-waste as the raw materials for hydrogel 

preparation only focused on several fiber resources such as from Agave tequilana 

Weber bagasse, bamboo and sugarcane bagasse. However, the cellulose content for all 

those fibers are low; i.e., 43% (Li et al., 2012), 33-51% (Wahab et al., 2013) and 40-

50% (Nakasone et al., 2016) for Agave tequilana Weber bagasse fibers, bamboo fibers 

and sugarcane bagasse fibers, respectively. PALF contains higher cellulose content 

which is 67-85% (Asim et al., 2015) and no study has been reported yet on the 

preparation of hydrogel from PALF cellulose. The preparation of hydrogel from PALF 

cellulose will be more efficient as high cellulose content of PALF provides more 

cellulose compared to fibers with lower cellulose content. Besides, the tensile strength 

(350-700 MPa) (Malou et al., 2017) of PALF was reported to be higher than the tensile 

strength of sugarcane fibers (249-468 MPa) (Fiore et al., 2015), bamboo fibers (100-

350 MPa) (Sugiman et al., 2019) and agave bagasse (41-58 MPa) (Kestur G. et al., 

2013).  

 

 

The temperature and concentration of the treatment of sugarcane and agave 

bagasse reported to affect the properties of cellulose hydrogel (Nakasone et al., 2016; 

Tovar-Carillo et.al, 2014). In those studies, the increase in temperature during 

treatment has decreased the molecular weight of the cellulose and mechanical 

properties of the resultant hydrogels but has increased the crystallinity and the lignin 

removal of the cellulose fibers. On the other hand, the mechanical properties of the 

resultant hydrogels increased with increasing NaOCl concentration. Over the decades, 

there are many studies have been reported on the effect of the alkaline treatment onto 

the properties of fiber regenerated from PALF (Asim et al., 2018; Fareez et al., 2018; 

Malou et al., 2017). Particularly, about 2 to 6 wt% of NaOH concentration was used 

for the alkaline treatment of PALF. Besides, there are also studies reported on the 

effect of the alkaline treatment onto the PALF to be used as reinforced in composites 

(Motaleb, 2018; Zin et al., 2018; Siregar et al., 2010). The NaOH concentration used 
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was in the range of 2-8% and the best treatment parameters reported depends on the 

properties of the composites obtained. However, up to date, there are still no studies 

reported on the effects of alkali treatment on the properties of cellulose based hydrogel 

regenerated from PALF. Thus, it is compulsory to evaluate the best alkaline treatment 

parameters that can result in the best properties of cellulose hydrogel obtained from 

PALF. Poor treatment conditions can result in un-pure cellulose obtained as lignin is 

still presence in the fibers. The presence of lignin in the fibers also will result in poor 

dissolution of cellulose. On the other hand, too harsh treatment can result in 

degradation of cellulose thus will affect the properties of the hydrogel obtained 

(Nakasone and Kobayashi, 2015). 

 

 

According to Navarra et al., (2015) the swelling capabilities and mechanical 

properties of hydrogel can be affected by the cellulose concentration. Ishii et al. (2006) 

reported that, cellulose concentration effects the dissolution state of cellulose in 

LiCl/DMAc. Besides, Mendoza et al. ( 2018), Qiao et al. (2016) and Wu et al. (2014) 

reported on the effects of cellulose concentration on the rheological properties of 

hydrogel. Current study only reported on the effect of cellulose concentration obtained 

from commercial cellulose. Besides, different cellulose resources might result in 

difference of hydrogel properties as the properties of cellulose itself is varied 

depending on its resources. Therefore, it is essential to evaluate the effect of cellulose 

concentration from PALF onto the properties of cellulose hydrogel generated since 

this is the first research reported on the preparation of cellulose hydrogel from PALF.  
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1.3 Objective of Study 

 

 

The aim of this research is to synthesize cellulose hydrogel from renewable bio-

waste of PALF.  The aim can only be achieved by following these few objectives 

which are:  

 

 

1) To investigate the effect of alkali treatment on the removal of lignin from 

PALF based on FTIR, TGA and XRD and resultant properties of cellulose 

hydrogel in terms of gel fraction, swelling, transparency and lignin content.  

 

 

2) To investigate the effect of different cellulose concentrations on the viscosity, 

swelling, gel fraction, transparency, mesh size, tensile and rheological 

properties of cellulose pre-gel solutions and cellulose hydrogels.  

 

 

 

 

1.4 Scope of Study 

 

 

In this study, cellulose hydrogel was prepared from PALF. The PALF has 

undergo treatment process which consists of acid treatment and alkali treatment. For 

acid treatment, PALF was treated with 4 vol% of 300 ml sulphuric acid solution at 80 

°C for 1.5 hrs. Next, PALF was treated with different concentration of sodium 

hydroxide solution (2-10 wt%) for 6 hrs at room temperature (RT) and 80 °C. The 

obtained cellulose after each treatment was further characterized with Fourier 

Transform Infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA) and X-

ray Diffraction (XRD).  

 

 

Then, treated PALF (6-10 wt% NaOH) was dissolved in DMAc/LiCl solvent 

under stirring condition at RT until all the cellulose had dissolved. The last part was 

the preparation of cellulose hydrogel by phase inversion method using cellulose 

solution. For phase inversion method, cellulose solution was poured into a petri dish 

and was left in a container containing ethanol. The cellulose solution was solidified 

and become hydrogel. 
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The optimized treatment conditions that was used to investigate the effect of 

cellulose concentration on the hydrogel properties was determined based on the gel 

fraction, swelling, transparency and lignin content in the hydrogel. Then, cellulose 

hydrogels were prepared with different cellulose concentrations (0.5-2.0 wt%). 

 

 

The scope of the work also included characterization of physical and functional 

properties of cellulose solution and cellulose hydrogels. The cellulose solutions were 

prepared with different cellulose concentrations (0.5-2.0 wt%). Then, cellulose 

hydrogels were obtained by phase inversion. Viscosity test was done for the 

characterization of the cellulose solution. Cellulose hydrogel was characterized by 

using gel fraction, equilibrium swelling ratio and transparency. Mechanical properties 

of cellulose hydrogels were studied by using texture analyser and oscillatory 

rheometer. Texture analyser was used to characterize the tensile properties of cellulose 

hydrogel. Rheology test was done to determine the hydrogel viscoelasticity and 

microstructure. Mesh sizes of the hydrogels were calculated from rheology 

measurement.  
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