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ABSTRACT 

This study was aimed to prepare and characterise a graphene filled 

unplasticised polyvinyl chloride (UPVC) nanocomposite for mining pipe application 

by means of a conventional dry-blending method. A pre-dispersed reduce graphene 

oxide (PDG) in Fischer-Tropsch (FT) wax was prepared by defining a melting method 

with ultrasonic probe. An investigation has been conducted on different types of 

graphene derivatives: graphene oxide (GO), reduce graphene oxide (rGO) and pre-

dispersed rGO (PDG) in Fischer-Tropsch wax (FT wax) filled UPVC nanocomposites. 

The properties such as electrical, mechanical, rheological and thermal properties were 

benchmarked against the commercial carbon black (CB) filled UPVC composites for 

the mining pipe application. The nanocomposites were prepared using the dry-

blending method involving different material formulations. The two-roll milling 

method and the hot press moulding were also employed to produce the test specimens. 

An environmental friendly stabiliser namely calcium-zinc stabiliser was used to 

replace the conventional lead stabiliser. The results showed that the specimen with 1.5 

phr PDG filled UPVC nanocomposites has the lowest volume resistivity, comparable 

or higher tensile strength, tensile modulus and impact strength. The specimen was also 

possessed a wide processing parameter with sufficient heat stability and better cost 

performance efficiency, compared to the commercial CB filled UPVC composites. 

The evidences from the fourier transform infrared spectroscopy and scanning electron 

microscopy images of the surface-fractured specimens showed a well dispersed PDG 

into the PVC matrix and correlated with the impact strength result. The modulus of the 

PDG filled UPVC nanocomposites were simulated using the Halpin-Tsai model. The 

theoretical simulation for the random distribution of PDG supported the results of the 

experimental data. This study confirmed that the best cost performance of graphene 

filled UPVC nanocomposites can be achieved by maximising the dispersibility of 

graphenes within the PVC matrix. This study provides an opportunity for the PDG 

filled UPVC nanocomposites to be used for mining pipe application. 
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ABSTRAK 

Kajian ini bertujuan untuk penyediaan dan pencirian komposit nano polivinil 

klorida tanpa pemplastik (UPVC) isian grafin untuk aplikasi paip perlombongan yang 

boleh dihasilkan melalui kaedah pencampuran kering konvensional. Grafin oksida 

terturun pra-serak (PDG) dalam lilin Fischer-Tropsch (FT) telah disediakan dengan 

menentukan kaedah leburan dengan kuar ultrasonik. Penyiasatan telah dijalankan 

terhadap jenis terbitan grafin yang berlainan: grafin oksida (GO), grafin oksida 

terturun (rGO) dan rGO pra-serak (PDG) dalam komposit nano UPVC isian lilin 

Fischer-Tropsch (lilin FT). Sifat-sifat seperti elektrik, mekanikal, reologi dan terma 

telah dijadikan sebagai penanda aras terhadap komposit UPVC isian karbon hitam 

(CB) komersial untuk penggunaan paip perlombongan. Komposit nano telah 

disediakan menggunakan kaedah pencampuran kering yang melibatkan formulasi 

bahan berlainan. Kaedah pengisaran dua giling dan pengacuan tekanan panas juga 

telah dijalankan untuk menghasilkan spesimen ujian. Satu sistem penstabilan mesra 

alam iaitu penstabil kalsium zink telah digunakan untuk menggantikan penstabil 

plumbum konvesional. Keputusan menunjukkan bahawa spesimen dengan kandungan 

1.5 phr komposit nano UPVC isian PDG mempunyai kerintangan isipadu terendah, 

kekuatan tegangan, modulus tegangan dan kekuatan hentaman setanding atau lebih 

tinggi. Spesimen tersebut juga menghasilkan parameter pemprosesan yang lebih luas 

dengan kestabilan haba mencukupi dan kecekapan prestasi kos lebih baik berbanding 

komposit UPVC isian CB komersial. Bukti-bukti daripada spektroskopi inframerah 

jelmaan Fourier dan imej permukaan spesimen retak dari mikroskopi elektron 

pengimbasan menunjukkan penyerakan PDG yang baik ke dalam matriks PVC dan 

berkorelasi dengan keputusan kekuatan hentaman. Modulus komposit nano UPVC 

isian PDG disimulasikan menggunakan model Halpin-Tsai. Simulasi teori untuk 

taburan rawak PDG menyokong keputusan data eksperimen. Kajian ini mengesahkan 

bahawa prestasi kos terbaik komposit nano UPVC isian grafin boleh dicapai dengan 

memaksimumkan kebolehserakan grafin di dalam matriks PVC. Kajian ini 

memberikan peluang bagi komposit nano UPVC isian PDG untuk digunakan dalam 

penggunaan paip perlombongan. 
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INTRODUCTION 

1.1 Background of Study 

According to Independent Commodity Intelligent Services (ICIS) reports 

2020, the global polyvinyl chloride (PVC) market is growing at a compound annual 

growth rate (CAGR) of 5 % and is projected to reach USD 80 billion by 2024 with the 

volume of 53,000 kmt. 

PVC is the third most widely produced synthetic plastic polymer after 

polyethylene (PE) and polypropylene (PP) [14]. It has been extensively used in many 

industries such as building and construction, electrical and electronics, automotive, 

packaging, footwear, and others due to its low cost, ease of processing and blending, 

high tensile strength, and flame-resistant properties [1]. 

PVC is mainly available in two forms, namely, plasticised PVC (PPVC) and 

unplasticised PVC (UPVC). The UPVC is a typical insulating material primarily used 

in construction application such as windows, doors and pipes. The stabilisation of PVC 

pipes is commonly done using lead-based salts such as lead sulphate or lead stearate. 

Lead (Pb) is a heavy metal and it is classified as toxic, whereas calcium zinc (Ca-Zn) 

stabilisation is recognised as an eco-friendly process, hence, pavinges the way in 

replacing Pb-based stabilisation. For instance, Europe has successfully phased out Pb 

in year 2015. Asia followed the trend towards Pb-free and predicted realising it in the 

year 2025. 

Typically, Ca-Zn stabiliser has slight inferiority in thermal heat stability and 

narrower processing window in comparison with conventional Pb-based stabiliser. 

Under-loading or over-loading of Ca-Zn stabiliser will reduce its performance. 

Therefore, rheology adjustment is more critical. Practical experience confirm that heat 
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stability of Ca-Zn stabiliser is sufficient for both extrusion and recycling. Compound 

or dry-blend formulations together with processing parameter need to be optimised in 

order to be cost effective. 

Mining industry involves the transportation of clean water, fresh air, slurries, 

muds, as well as other infrastructures in and out from the quarry. Harsh surroundings 

in mining areas increase the chance of the piping network to be damaged. In the event 

of tunnelling or underground mining operation, the ventilation system must be suffice 

to dilute harmful exhaust pollutants where a single spark can lead to serious fire 

disasters. In certain circumstances, fire disasters might be triggered by electric charges 

and accumulate on pipe surfaces, resulting in static electric spark [2]. Due to this 

particular reason, considering the possibility for corrosion, impact, abrasion and 

ensuring electrical conductivity have been a challenge in designing mining pipe system 

with low cost.  

UPVC pipes have high impact strength and flexibility together with the 

abrasion resistance required in slurry lines which make it an ideal material for the 

mining industry. Several methods had been developed over the years to enhance 

electrical conductivity of PVC materials [3-7], such as coating PVC with conductive 

layers and producing conductive polymer blend through the incorporation of 

inorganic/liquid anti-static. PVC coated with conductive layers is easily peeled off due 

to poor interfacial bonding. 

Carbon black (CB) is one of the most extensively used conductive fillers due 

to its blending compatibility with PVC matrix and low production cost [8]. In order to 

achieve acceptable antistatic properties for mining pipe application, loading level up 

to 20 weight percent (wt. %) is required which reduces the mechanical strength and 

processing performance of the CB filled UPVC composites. Carbon Nanotube (CNT) 

was first introduced to replace CB as conductive filler in PVC. CNT greatly improve 

electrical conductivity of PVC nanocomposites with loading level as low as 0.1 wt. % 

due to its high intrinsic electrical conductivity and large aspect ratio [9]. However, 

issues of poor dispersion and much higher production cost restrict commercial 

application of the CNT filled UPVC nanocomposites. 
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Graphene exhibits exceptional properties of high electrical and thermal 

conductivity; high modulus could be used as a viable and better cost performance 

alternative to substitute CNT [11-13]. Researchers had came up with different methods 

for the production of graphene, which include bottom up and top down methods such 

as: mechanical/chemical exfoliation, graphene oxide (GO) and reduction, arc 

discharge, epitaxial growth, chemical conversion, chemical vapour deposition (CVD) 

etc. [7]. 

Graphene derivatives such as graphene oxide (GO), reduced graphene oxide 

(rGO), modified graphene oxide (MGO), graphene nanoplatelets (GNP) and multi-

layer graphene (MLG) are widely used as functional fillers for polymer 

nanocomposites. Garmor, a company based in Florida relies upon new advances 

mechanochemical technology to yield edge-oxidised graphene oxide (GO) composed 

of a few layers of graphene. Later, the GO undergoes a reduction step using a suitable 

thermal, chemical and electrochemical route which is via microwave process. The rGO 

has an immaculate surface with almost no residual oxidation and no corrugation or 

damaged sp2 orbital and hence conserves graphene’s highly prised electrical, thermal 

and mechanical properties. 

However, pristine graphene is not compatible with organic polymers and does 

not form homogeneous composites resulting in inferior properties. In order to improve 

the properties, the dispersion of graphene in polymer matrices and the graphene-

polymer interaction need to be improved [8]. 

The improvement in electrical, mechanical and thermal heat stability properties 

of PVC matrix with graphene derivatives has recently been reported in various 

literatures [5, 15-19]. Solution blending method had been used to prepare graphene 

filled PVC nanocomposite films. In the works of Vadukumpully et al. [5], it was 

reported that graphene filled PVC nanocomposites have high mechanical strength, 

thermal stability and good conductivity. Deshmukh and Joshi [19] prepared GO filled 

PVC nanocomposites films using colloidal blending method and reported an 

augmentation in the thermal stability because of the strong inter-linkage between PVC 

and GO. Pham et al. [15] produced graphene filled PVC nanocomposites using 
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colloidal blending methods which exhibit a low percolation threshold of 0.4 wt. % and 

an electrical conductivity as high as 46.5 S/m corresponding to 4.0 wt. % of graphene 

loading. The Colloidal blending method is used to fabricate graphene filled PVC 

nanocomposites as done by Dang et al. [16] and achieved a threshold of 0.3 wt. %. 

while the best conductivity value obtained was as high as 38.5 S/m corresponding to 

4 wt. % graphene loading. Ma et al. [17] observed an augmentation in electrical 

conductivity of graphene grafted with polyaniline filled PVC nanocomposites, and the 

works of Joshi et al. [18] confirmed that graphene filled PVC nanocomposites prepared 

using solution blending showcased high electrical conductivity properties.  

1.2 Problem Statement 

Notably, with the breakthrough of various graphene derivatives availability in 

the market with low costs [19], the method of preparing graphene filled polymer 

nanocomposites in a cost-effective way has been a critical issue to be explored and 

pushing its practical application forward. A more attractive and cost effective, GO has 

oxygenated groups (epoxy, hydroxyl, carboxyl) that can, in principle interact with the 

chlorine atoms in the PVC through halogen bonding, which serves as active sites to 

anchor functional groups to ensure GO compatibility with PVC. However, GO is 

electrically insulating which limits its application as conductive polymers. GO is 

electrically insulating, but becomes conductive by the chemical reduction of GO into 

reduced graphene oxide (rGO), presumably by restoring the graphitic network sp2 

bonds. Nevertheless, rGO will easily aggregate due to high cohesive interaction 

making it difficult to disperse. This lack of homogeneous dispersion limits its ability 

to enhance electrical conductivity of graphene filled UPVC nanocomposites intended 

to be use for mining pipe application. To achieve optimum conductive pathways of 

graphene filled UPVC nanocomposites the dispersability of graphene should be 

maximised within the PVC matrix.  
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When it comes to the dispersion of graphene into PVC matrix, Renteria et al. 

[20] in their graphene dispersion research have selected a specific paraffin wax as a 

composite matrix medium for graphene dispersion which is intended to be used 

specifically in thermal phase change materials (PCMs) application. Fischer-Tropsch 

(FT) derived wax is a synthetic paraffin which consists largely of straight chain alkanes 

with a wide range of melting points and boiling points. The use of FT wax with low 

viscosity type SX 60 S is expected to have better compatibility, interaction, volume 

loading and degree of dispersion with rGO surface.  

1.3 Significance of Study  

Referring to the several literature reviews [5, 15-19], it is worth pointing out 

that most graphene filled polymer composites are mainly prepared using solvent or in-

situ process for conductive film application inevitably resulting in complicated 

procedures, high cost, and environmental pollution. Furthermore, this solution method 

is extremely difficult to be applied for large-scale production of nanocomposites.  

Dry-blending method is a conventional way to produce PVC pipe in a large-

scale. Bearing in mind the above mentioned, there’s a need to prepare and characterise 

a graphene filled UPVC nanocomposite which is expected to be a promising material 

for mining pipe application and can be manufactured using conventional dry-blending 

method. This research is expected to fill up the academic deficiencies in the current 

UPVC nanocomposites development. 

1.4 Objectives 

The aim of this study is to prepare and characterise a graphene filled UPVC 

nanocomposites which is expected to be a promising material for mining pipe 

application and can be manufactured by conventional dry-blending method. In order 

to achieve this aim, the following objectives are identified: 
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1. To prepare pre-disperse rGO in Fischer-Tropsch wax in order to ease 

dispersion and compatibility within PVC matrix using defining melt-

mixing method. 

2. To investigate the effect of different type of graphene derivatives: GO, 

rGO and pre-dispersed rGO (PDG) in Fischer-Tropsch wax (FT wax) 

filled UPVC nanocomposites with varying contents on electrical, 

mechanical, rheological, thermal properties. 

3. To analyse cost performance efficiency of Ca-Zn stabilised pre-dispersed 

rGO in Fischer-Tropsch wax filled UPVC nanocomposites benchmarking 

against commercial Pb-based stabilised CB filled UPVC composites. 

1.5 Scope of Study 

In order to achieve the aim of this research, the scopes of this study are as 

follows: 

a. To identify the optimum content of PDG in FT wax with different 

temperature variations using ultrasonication. 

i. Scanning electron microscopy (SEM) to confirm the nanocomposites 

surface and the dispersion’s homogeneity. 

ii. Fourier-transform infrared spectroscopy (FTIR) to confirm the 

presence of rGO. 

b. Design of experimental formulation followed by the preparation of 

sample, which involves the following stages: 

i. high speed Mixing 

ii. two-roll milling 

iii. compression moulding  
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c. Electrical conductivity test to determine: 

i. the effect of Pb and Ca-Zn stabiliser on volume resistivity. 

ii. the effect of various contents of GO, rGO and PDG on filled UPVC 

nanocomposites in term of volume resistivity. 

iii. the optimum content of PDG filled UPVC nanocomposites in order to 

achieve comparable volume resistivity of commercial CB filled UPVC 

composites.  

d. Tensile test to determine the effect of various contents of GO, rGO and 

PDG on filled UPVC nanocomposites in term of tensile strength, 

elongation at break and Tensile modulus.  

e. The Halpin-Tsai equation was used to simulate the modulus of the PDG 

filled UPVC nanocomposites to study the distribution of graphene 

nanosheets in the polymer matrix.  

f. Impact test to determine the effect of various contents of PDG filled UPVC 

nanocomposites on impact strength.  

g. Scanning electron microscopy (SEM) to study the morphological and 

structural of fracture test specimens to correlate with the impact test 

results.  

h. To determine the effect of various contents of PDG filled UPVC 

nanocomposites on mechanical properties benchmarking against 

commercial CB filled UPVC composites.  

i. Torque rheometer (Brabender plasticoder) is used to study the 

processability of various contents of PDG filled UPVC nanocomposites 

benchmarking against commercial CB filled UPVC composites. 

j. Differential Scanning Calorimetry (DSC) analysis to determine transition 

glass temperature (Tg), degree of fusion and processing temperature of 

various content of PDG filled UPVC nanocomposites benchmarking 

against commercial CB filled UPVC composites.  
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k. Thermogravimetric analysis (TGA) and congo red test to determine the 

thermal heat stability of various contents of PDG filled UPVC 

nanocomposites.  

l. Determine the cost performance efficiency of electrical, mechanical, 

processability and thermal heat stability of PDG filled UPVC 

nanocomposites at various contents benchmarking against commercial CB 

filled UPVC nanocomposites.  
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