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ABSTRACT 

Harmonics distortion is the most prominent power quality problem in an 
electrical power distribution network that interrupts a good quality of electric power 
to be drawn in the network. Additionally, the major impact of harmonics distortion is 
the risk of the distribution transformer failure due to the elevation of power losses and 
hotspot temperature (HST) in its three-phase low voltage (LV) winding cables. The 
major challenge is to identify the exact location and point where the premature failure 
could occur on the three-phase cables. This research proposes an HST mathematical 
expression to detect a premature failure at the three-phase LV winding along with the 
transformer loading. As most transformer failure cases were rooted in heat losses that 
require meticulous analysis, the best accuracy numerical method as Finite Element 
Method (FEM) is selected to analyse the HST of the thermal distribution transformer 
model. The HST is simulated by considering the three-phase unbalanced harmonic 
loads from three different group levels of THDI and under five different insulation 
temperature classes system. The simulation outputs are then verified with HST results 
from the HST mathematical model based on IEEE C57.110-2018 standard. Further 
analysis of the simulation results has been done to propose the HST mathematical 
expression, which will be assessed on the three-phase LV winding cables to detect 
premature failure. At the end of this research, it is found that the individual harmonic 
currents from the 7th until 19th order are the prominent harmonic orders that had 
exceeded the limit of MS 1555 (IEC 61000-3-4) standard. Other than that, based on 
the proposed HST mathematical expression, it is found out that if the transformer is 
being loaded with loading over 0.9 pu, the premature failure is expected to occur 
promptly in the group of THDI peak-level, prominently at 180, 200 and 220 insulation 
temperature classes. As for the lifetime expectancy of the distribution transformer, if 
the transformer is loaded with loading at 0.9 pu and above, the lifetime is approximated 
to drop by the minimum at 14.5% and maximum at 56% from its expectancy lifetime. 
Plus, it is also concluded that the possibility of the lifetime reduction to be happened 
at the premature failure point at average of 93.5%, 85.4% and 78% of the THDI peak-
level, THDI average-level and THDI low-level correspondingly. Hence, the findings 
have successfully shown the proposed method's effectiveness in vividly viewing the 
distribution transformer's current condition. Upon the early detection of the premature 
failure on the three-phase cables, the execution of the proposed HST mathematical 
expression is also able to identify the exact location and point where the premature 
failure shall happen. Thus, it outright protects the distribution transformer from any 
unwanted breakdown, next preserves its best performance and lifetime expectancy. 
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ABSTRAK 

Gangguan harmonik ialah masalah utama di dalam rangkaian elektrik kuasa, 
yang mana ianya mengaggu kualiti kuasa yang terbaik untuk mengalir di dalam 
rangkaian tersebut. Tambahan lagi, kesan utama gangguan harmonik ini ialah risiko 
kegagalan pada alat pengubah agihan yang berpunca daripada peningkatan dalam 
kehilangan kuasa dan suhu titik panas (HST) di atas kabel voltan rendah (LV) tiga 
fasanya. Cabaran utama adalah untuk mengenal pasti lokasi dan titik tepat di mana 
berkemungkinan terjadi kegagalan pramatang pada   kabel   tiga fasa. Kajian ini 
mencadangkan ekpresi matematik HST untuk mengesan kemunculan kegagalan 
pramatang pada kabel LV tiga fasa di sepanjang muatan alat pengubah agihan. 
Sebagaimana kebanyakkan kes -   kes   kegagalan pengubah berpunca daripada 
kehilangan haba yang memerlukan analisis yang teliti, keadah numerikal yang tepat 
seperti Finite Element Method (FEM) dipilih untuk menganalisa suhu titik panas 
(HST) pada model termal pengubah agihan. HST disimulasi dengan mengambilkira 
keadaan muatan harmonik tidak seimbang tiga fasa yang diperoleh daripada tiga 
kumpulan aras gangguan arus harmonik (THDI) dan pada lima sistem kelas penebat 
suhu yang berbeza. Hasil keputusan daripada simulasi   tersebut   kemudiannya 
diverifikasi dengan hasil keputusan HST yang diperoleh daripada model matematik 
HST berdasarkan kepada piawaian di dalam IEEE C57.110-2018. Tambahan analisis 
kepada keputusan simulasi tersebut dilakukan bagi mengemukakan ekpresi matematik 
HST di mana akan ditaksir pada kabel LV tiga fasa untuk mengesan kegagalan 
pramatang pada alat pengubah agihan. Di akhir kajian ini, telah didapati arus harmonik 
individu yang bermula dari jujukan susunan 7th sehingga 19th adalah merupakan 
jujukan yang paling ketara dalam melepasi batas piawai MS 1555 (IEC 61000-3-4). 
Selain daripada itu, berdasarkan kepada ekspresi matematik HST yang dikemukakan, 
sekiranya muatan pengubah melebihi 0.9 p.u, kegagalan pramatang dianggar akan 
berlaku pada kumpulan aras THDI tertinggi (THDI peak-level) , terutamanya dalam 
sistem kelas penebat suhu 180, 200 dan 220. Bagi jangkaan hayat pengubah agihan 
pula, sekiranya muatan pengubah pada 0.9 p.u dan ke atas, jangkaan hayat dianggarkan 
akan menurun secara minimumnya sebanyak 14.5% dan maksimumnya sebanyak 
56%. Tambahan, ianya   juga   boleh   disimpulkan bahawa kemungkinan pengurangan 
jangka hayat pengubah terjadi pada ketika kegagalan pramatang berlaku adalah secara 
puratanya pada 93.5%, 85.4% dan 78% di dalam gangguan arus harmonik yang paling 
tinggi (THDI peak-level), aras sederhana (THDI average-level) dan aras rendah (THDI 
low-level) masing - masing. Maka berdasarkan kepada penemuan -  penemuan 
tersebut, ianya telah menunjukkan keberkesanan metodologi yang dicadangkan untuk 
memaparkan secara jelas keadaan semasa alat pengubah agihan tiga fasa. Di atas 
pengesanan awal kegagalan pramatang pada kabel tiga fasa,   perlaksanaan   ekpresi 
matematik HST yang dikemukakan ini juga   dapat mengenal pasti lokasi dan titik tepat 
di mana kegagalan pramatang bakal berlaku. Maka ia serta merta dapat melindungi 
alat pengubah agihan   tersebut   daripada kerosakkan   yang tidak diingini, seterusnya 
dapat memelihara prestasi terbaik dan jangkaan hayatnya
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CHAPTER 1  
 

 

 

INTRODUCTION 

 Research background 

Ever since the evolution of the power electronics technologies to replace the 

conventional alternating current (AC) electrical system, Malaysia as a developing 

country is not exceptional in utilizing those technologies to improve its system towards 

the country's development. Upon that matter, good quality of the electricity power is 

expected to be drawn along the distribution networks. Unfortunately, the ideal state of 

the power could not be ideally obtained due to the undesired power quality event such 

as the harmonics. Harmonics distortion is the most prominent power quality problem 

in electrical power distribution networks. International standard bodies such as the 

Institute of Electrical and Electronics Engineers, IEEE defined harmonics as the 

frequency components that are integer multiples of the fundamental line frequency. 

The harmonics mainly originated from the nonlinear loads in the electrical 

distribution equipment which the frequency variations are mainly involved. The 

nonlinear load is defined as a load where the steady-state wave shape does not follow 

the wave shape of the applied voltage [1]. Other than the distorted power sinusoidal 

wave shape, the problems that might be happened due to the nonlinear harmonics loads 

include the elevation of the power losses and overheated the distribution transformer, 

poor power factor condition that causes users to pay the penalty fee, disturbance in the 

smoothness of massive production at industrial sites and many other bothersome issues 

within the network. 

Based on the above problems, other crucial aspects are the electrical 

equipment's safety and lifetime. This hence mainly refers to the distribution 

transformer. In any electrical system network, a distribution transformer is a vital 
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component of the distribution system, which enable the utility provider to deliver 

power to its customers. It supplies voltage throughout the four wires cables to the 

electricity consumer, which usually requires high demand. Thus, making the 

distribution transformer the most expensive equipment in the electricity delivery 

system. Upon that matters, it is vital to ensure the durability and lifetime expectancy 

of the distribution transformer and its best performance to be preserved. In order to do 

this, it is best to explicit the possible root cause of any probability failure in the 

transformer at the earlier stage to avoid the massive loss due to the breakdown of the 

transformer. In [2], the author stated that the top ranking in the distribution transformer 

failure cases was caused by the transformer's excessive heat. The statement is strongly 

supported by the group of previous works that most agreed that the heat is the primary 

source of the failure in the distribution transformer [3±16]. Other than that, the authors 

also came to the mutual finding that most failures are happened at the low voltage side 

winding (LV) of the transformer compared to the core or other parts in the transformer. 

Elsewhere, the failure is said to frequently happen due to the degradation of the 

ZLQGLQJ¶V� LQVXODWLRQ� >��-28]. Nevertheless, the harmonics were not much being 

appointed or focused as the source of the excessive heat in that particular works. 

Despite that, the impacts of the harmonics towards the distribution transformer 

are being highlighted in the numerous previous works, with most having emphasized 

the impact from the harmonic currents and having neglected the harmonic voltages 

due to its insignificance in the analysis [29-37]. The harmonic currents are said to be 

the root in the induction of the additional power losses and elevation in the average 

temperature riVH� DQG�KRWVSRW� WHPSHUDWXUH�RI� WKH� WUDQVIRUPHU¶V�/9�ZLQGLQJ��7KLV� LV�

highly supported in [37], where the author had clarified that the harmonic currents had 

caused the 17% increment in the temperature rise at the LV winding and only caused 

the 3% increment at the HV winding. However, from the mentioned past works, 

another drawback is that less attention was paid to the actual condition of the 

unbalanced harmonics loads. Only a few authors opted to illustrate the impacts from 

the view of unbalanced harmonics loads condition [38-46]. Without illustrating the 

actual operation of the LV network, in which the current in each phase is expected to 

be imbalanced as the supply depends on the load needs, the accuracy of the results can 
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then be disputed. Thus, to get a precise outcome of any research problem, this 

unbalanced condition shall be considered and analysed thoroughly without exception. 

Other than the actual harmonics loads condition, the behaviour of the 

harmonics loads also needs to be carefully observed, as it can indicate any possibility 

of premature failure at the transformer. Additionally, the behaviour shall cover the 

order of the harmonics (݄௧௛), the individual spectrum of the harmonics (ܫ௛) in which 

finally brought to the generation of the harmonics distortion level produced during the 

operation of the network, which is also known as total harmonic distortion (THD). On 

the topic to preserve the performance and the lifetime of the transformer, abundance 

methods are being proposed to observe and understand the behaviour of the harmonics 

loads in the transformer [47-59] and their contributions to the temperature rise and 

HST that may cause failure inside the transformer [60-67]. However, based on their 

results, the ambiguities were still there because not many authors came with the exact 

classification of the harmonic behaviour, especially on the THD that represents the 

several loads' distortion condition from the consumer. This is by means, the harmonic 

behaviour towards the power losses and hotspot temperature of the transformer should 

be determined and analysed according to the specific loads status and the actual 

operation timing of the loads which either the loads are generating low, intermediate 

or high harmonic distortion at that particular time. From this exact classification, the 

particular condition of the premature failure of the transformer shall be achieved. 

The final part is the premature failure condition of the transformer due to the 

unbalanced harmonics loads. This is vital since prevention is indeed better than cure. 

It is highly recommended to protect the transformer at the earlier stage of any 

premature failure before the failure worsens until the unwanted massive breakdown 

becomes unavoidable. Since last 2011 up to the year 2020, many published research 

papers related upon endeavour in detecting and analysing the premature failure of the 

transformer. There are broad methods, including the model simulation covering 

numerical and analytical analysis [68-72], power quality collected data assessment 

[73-77], laboratory testing, and maintenance activities [78-81]. However, despite the 

advantages in each finding, there are still rooms for improvement that can be made in 

the analysis. First of all, only limited papers had put the influence of the harmonic 
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range or harmonic classification into the premature failure of the transformer. 

Secondly, none of the specific location on the winding was declared whenever they 

had traced any sign of the premature failure from their output results. This has made 

their methods impractical when there is a high necessity to trace the suspected problem 

from a specific view. This is important to avoid waste in cost and energy to replace the 

whole transformer unit with the new one. Secondly, there is a high necessity in 

choosing the most efficient technique to obtain the most accurate result. Based on 

studies, researchers have agreed that the Finite Element Method (FEM) from the 

numerical analysis is the most accurate, efficient, reliable and relevant up to recently 

to solve any simple and even complex problem in any condition compared to other 

methods [82-85]. Aside from the previously mentioned papers, this can also be seen 

in numerous published papers that are prominently related to the solution of the 

problems in transformer [86-91]. Last but not least is lacking in using the international 

standard as the reference for the premature failure condition. This is by means, other 

than using the formulation guide in the standard, the limit stated in the standard also 

can be beneficial as a benchmark of any evaluation analysis work. 

Hence, it comes to the consideration in this research to utilize the FEM and 

combine it with the selected international standard limit as the reference of the 

premature failure condition of the transformer. The designed thermal transformer 

model using FEM is expected to generate the value of hotspot temperature (HST) in 

the LV winding of the three-phase transformer under unbalanced harmonics conditions 

throughout the simulation. Then the HST value is compared to the standard limit to 

check the compliance of the HST towards the limit. As for the limit compliance 

reference, the best reference to be referred to in harmonics behaviour towards heating 

the transformer is the guide solution from the well-established and trustworthy IEEE 

standard. For every type of temperature, the related standard such as IEEE Std. 

C57.134-2013 [92] and IEEE Std. C57.96-2013 [93] have already provided the 

guidelines and set the limit to be the reference for any study related to the distribution 

transformer's temperature. In the actual practice of the distribution transformer, if any 

temperature value exceeds the limit, the transformer is said to be in a risky state and 

need to be alert for any failure or tripped. This fact can hence be beneficial in clarifying 

the premature failure condition of the distribution transformer due to the harmonics. 
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In order to validate the results proposed in this thesis, the HST results from 

both thermal distribution transformer modelling using FEM [94] and HST 

mathematical modelling using IEEE Std C57.110-2018 standard [95] are compared. 

The modelling using the IEEE standard can be done because, in the mentioned 

standard, the committee had established the hotspot temperature (HST) calculation 

concerning the non-sinusoidal load currents for both liquid immersed-type and dry-

type of power and distribution transformer.  

Thus the main focus of this research is to propose an early detection of 

premature failure expression at the distribution transformer by improving the analysis 

of power losses concerning the unbalanced harmonic loads towards the hot spot 

temperature of the transformer. Hence, the percentage of the harmonic current loads 

that contribute to the final hot spot temperature is classified and presented. Also, for 

any hotspot temperature that has exceeded the standard limit, the percentage of that 

particular unbalanced harmonic current loads towards the hotspot is expressed as an 

indication of the early detection of premature distribution transformer failure. 

 Problem statement 

Generally, the harmonic current loads gradually impact the ideal performance 

of the distribution transformer when they increase the power losses and HST, which 

lead to the possible failure inside the winding of the distribution transformer. Hence, 

some of the related problems to be solved in this thesis are listed as follows: 

i. The excessive unbalanced harmonic loads currents elevate the total 

power losses and increase the hotspot temperature in the LV winding. 

This can cause damage and breakdown of the distribution transformer 

if no preventive measure has been taken at the earlier stage [37]. In the 

network operation between commercial loads and voltage supply, lack 

of attention had been given to the relationship between the unbalanced 

harmonics loads to the power losses and hotspot temperature of the 
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transformer to observe any premature failure that could be occurred in 

the transformer [43]. 

ii. The harmonics current distortion (THDI) is often treated as the 

distortion percentage, which is calculated from one whole day instead 

of particularly measured at a specific real-time within the day in 

observing its impact towards the GLVWULEXWLRQ� WUDQVIRUPHU¶V� /9�

winding. When considering the power losses and hotspot temperature 

of the winding in the distribution transformer, no harmonic current 

distortion from specific hours is highlighted in the previous in order to 

explicitly recognize its behaviour towards the premature failure of the 

winding [63]. Additionally, most of the previous works cited in this 

research focused on the higher value of THDI instead of paying 

attention to the lower value to analyse its impact on the distribution 

transformer [64-66]. Hence, this brought to the hypothesis that the 

IDLOXUH¶V�FDXVHV�XSRQ�WKH�KDUPonic distortion can only be known once 

the distribution transformers are either already damaged or its 

expectancy lifetime had dramatically dropped, as the premature failure 

in the distribution transformer could not be traced at an earlier stage. 

iii. The existing methods to detect the premature failure of distribution 

transformers remain ambiguous in the findings. This upon lacking in 

utilizing the mathematical function to vividly express the final findings 

for a better understanding of the proposed solution [70], [73], [75], [77]. 

Plus, when dealing with failure in the distribution transformer, it is also 

important to perform the real lifetime of the transformer in order to 

observe the impact of the failure on the lifetime expectancy of the 

transformer. Thus, with the comprehensive expression of the findings, 

the analysis of the real lifetime estimation of the transformer shall be 

improved. 
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 Research objectives 

Based on the previously mentioned problems in Section 1.2, here are the listed 

three main objectives to be implemented for this research to reflect those arisen 

problems accordingly. 

i. To propose an improved analysis in power losses of distribution 

transformer to detect the premature failure of the transformer by 

considering the relationship between unbalanced harmonic current 

from the loads towards power losses and HST of the transformer. 

ii. To enhance the examination of the HST behaviour on the LV windings 

by employing the power losses under different THDI levels onto the 

FEM thermal distribution transformer model to identify the premature 

failure condition of the LV windings under such particular 

circumstances. 

iii. To develop a new HST mathematical expression for premature failure 

condition assessment based on HST upon per unit loadings, which to 

be assessed on the LV windings and evaluate the real lifetime 

estimation of the distribution transformer. 

 Research scopes 

In accountability to implement the abovementioned objectives in Section 1.3, 

the following scopes are hence shall be covered in this research.  

i. All harmonic data are measured and collected for one week with 10 

minutes intervals using a power quality data logger at the substations 

interconnected to commercial buildings. 
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ii. The measured and collected harmonic data for this research mainly 

comes from the detected problematic transformer at a substation that 

supply electricity to commercial load building. 

iii. The harmonic data for this research is extracted and assembled 

according to three different hours within the load operation of the 

selected day. The three different hours are named as the peak hour, 

average hour and low hour. 

iv. The harmonic current orders that being considered for this research are 

the odd harmonics orders, which start from 1st until 19th (ܫଵ untilܫ�ଵଽ). 

v. The THDI value being analysed for the research finding ranges 

between 12% to 22%. 

vi. The computation of the HST value is intended on the specified LV 

winding of the distribution transformer model. 

vii. The applications of Power analyse software, COMSOL Finite Element 

Method software, MATLAB software and Microsoft Excel are used to 

simulate the power flow harmonics analysis throughout the model of 

the distribution transformer. 

viii. FEM thermal distribution transformer model in COMSOL is developed 

to classify the condition of the hotspot temperature of the LV winding 

due to the unbalanced harmonic current loads. 

ix. The premature failure condition of the distribution transformer is 

determined by referring to the maximum hottest spot temperature 

loading above rating standard limits in [93]. 
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x. The results are validated by comparing with the HST obtained from the 

IEEE HST mathematical model, which is modelled using the guidelines 

from [95]. 

  Research contributions 

Prior to the statements and explanations from the previous sections above, here 

come the lists of contributions that shall be gained throughout the findings in this 

research.  

i. The final finding in this research summarized the HST condition of the 

LV winding by considering the possibility of different levels of the 

THDI that might occur in the network. 

ii. The proposed method had considered the unbalanced current loads due 

to the harmonic to be the adding value for this research. The finding in 

this research is hence convincible to be the reference to the early 

detection of a premature failure of the distribution transformer. 

Additionally, the generated premature failure expression allows to 

observe and analyse the insulation deterioration condition of the LV 

winding from each phase to decide the suitable counter measure 

regarding the condition. This hence will ease the diagnostic action on 

the transformer and replace the tedious, laborious and yet costly repair 

and maintenance for the whole one unit of the transformer.  

iii. The analysis in this research covered the whole types of insulation 

temperature classes that might be used in designing a distribution 

transformer for the low voltage network. 

iv. The lifetime analysis of the transformer under nonlinear loads is 

improved by the implementation of the proposed method from this 

thesis. Not limited only to observing the impact of the THDI on the 
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lifetime, the proposed method provides a coherent view of the real 

condition inside the transformer that contributes to the impact.  

v. The application of FEM as the acknowledged efficient numerical 

method and the regulation of the aforementioned standards has 

improved the reliability, robustness, result accuracy, practicality, and 

cost effective, which benefitted to achieve the objectives from this 

research. 

 Thesis outlines 

This thesis is organized into five chapters. The introduction in Chapter 1 is 

comprised of research background, problem statements, research objectives, research 

scopes, research contributions and thesis outline. The literature review in Chapter 2 

reviews previous related research works dominantly on harmonics and its impact on 

the transformer. Several selected publications are presented rigorously to expose the 

effectiveness and research gaps that are beneficial in the development of the proposed 

premature failure determination in distribution transformers. Chapter 3 explains the 

entire sequences in this research, including the harmonics data measurement and 

assembly from the site, designation and simulation of the distribution transformer, 

derivation of the premature failure function, and estimation of the real distribution 

WUDQVIRUPHU¶V�OLIHWLPH��7KH�GHVLJQHG�GLVWULEXWLRQ�WUDQVIRUPHU�PRGHO, which is verified 

based on remodelling the similar research problem using guidelines from the selected 

international standards, are also presented in this chapter. The results and discussion 

in Chapter 4 report the data collection, simulation results, discussions and validations 

of the HST behaviour under the unbalanced harmonic influence, the proposed HST at 

premature failure condition of the transformer and affected expectancy lifetime of the 

transformer. Ultimately, the conclusion in Chapter 5 summarizes the entire works in 

this thesis and proposes several recommendations that can be implemented in the 

future.
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