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ABSTRACT 

Diabetes is a medical condition caused by high glucose level in blood. A 

good control of glucose level is essential for diabetes patients as negligence of 

management could lead to severe health conditions such as obesity, blindness, stroke 

or heart attack. A conventional glucose level assessment uses an invasive glucometer 

device that is widely used in clinical practice. However, this practice is unfavourable 

for some patients since pricking fingers multiple times per day can be tiresome and 

painful, besides causing calluses, and not preferred by individuals with dexterity 

limitation, algophobia or anxiety problems. Therefore, prediction system of glucose 

level using non-invasive method is widely investigated. This thesis presents 

development of a non-invasive prediction system of glucose level in blood using near 

infrared spectrometer (NIRs), combined with predictive linear and non-linear 

models. This research focuses on the capability of spectrum to penetrate the skin, as 

well as the correlation between skin depth, location of human blood vessel and 

length of NIR spectrum. The data utilized are acquired from three groups: the 

existing diabetic patients, the non-diabetic persons, and a group of persons with no 

prior diagnosis. The existing diabetic patients are under medical treatment from 

Hospital Universiti Sains Malaysia (HUSM), while the non-diabetic persons are 

subjects who had their medical check-up in less than one year prior. Meanwhile, the 

control group consists of subjects who never had their medical check-up in the last 2 

years.  The glucometer is treated as reference data, and both glucometer and NIR 

spectral readings were obtained from all subjects (1000nm-2000nm). From the 

wavelength, regions that show significant information of glucose and water are 

between 1440 nm – 1460 nm and 1940 nm – 1960 nm. Results from pre-processing 

stage imply that data pre-processed by Savitzky-Golay (SG) filter with optimal 

parameter setting achieved the best accuracy. To establish correlation between the 

reference data and the NIR spectrum, two linear models, Autoregressive with 

Exogenous (ARX) and Autoregressive Moving Average Exogenous (ARMAX) 

models were implemented, and the combination of ARX and ARMAX with 

Artificial Neural Network (ANN) were utilized as non-linear models. The 

unregularized and regularized models for both ARX and ARMAX show unsatisfying 

results, where unregularized ARX is only at 24.82%, regularized ARX at 36.40%, 

unregularized ARMAX at 53.89% and regularized ARMAX shows accuracy of 

78.57%. The results from regularized ARX and ARMAX are then used to combine 

with the ANN models. The ARMAX-ANN result shows a significant improvement 

at 89.45% respectively. The Clarke Error Grid Analysis (CEG) was used as a method 

to validate the new system with the reference established method in clinical practice. 

The CEG analysis reveals that the distribution of samples lies in region A and region 

B, where region A is within 20% of the reference sensor and region B is outside of 

20% but would not lead to an inappropriate treatment for patients. From the results 

obtained, it is concluded that the selection of NIR regions and non-linear ARMAX-

ANN model is proven as a promising method in predicting the glucose level in blood 

and future works can be executed in enhancing system accuracy.   
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ABSTRAK 

Diabetes ialah keadaan kesihatan yang disebabkan oleh kandungan glukosa 

yang tinggi dalam darah. Kawalan glukosa yang baik penting untuk pesakit diabetes 

kerana pengabaian dalam pengurusan boleh membawa kepada keadaan kesihatan 

yang serius seperti obesiti, buta, strok atau serangan jantung. Kaedah saringan paras 

glukosa konvensional adalah menggunakan glukometer invasif yang digunakan 

secara meluas dalam amalan klinikal. Tetapi, kaedah ini kurang digemari oleh 

sesetengah pesakit kerana menusuk jari beberapa kali sehari menimbulkan kelelahan 

dan kesakitan, selain mengakibatkan kalus, dan tidak digemari oleh individu yang 

mempunyai had ketangkasan, algofobia, atau masalah kegelisahan. Maka, sistem 

ramalan tahap glukosa menggunakan kaedah tidak invasif diselidik secara meluas. 

Tesis ini menampilkan pembangunan sistem ramalan paras glukosa dalam darah 

secara tidak invasif menggunakan spektroskopi inframerah (NIRs), digabungkan 

bersama model ramalan linear dan tidak linear. Kajian ini mengfokus kepada 

keupayaan spektrum untuk menembusi kulit manusia, dan korelasi antara kedalaman 

kulit, lokasi pembuluh darah dan kepanjangan spektrum inframerah. Data diperolehi 

daripada tiga kumpulan: pesakit kencing manis tersedia, kumpulan bukan pesakit 

kencing manis dan mereka yang belum pernah didiagnosis. Kumpulan pesakit 

kencing manis tersedia adalah di bawah rawatan kesihatan di Hospital Universiti 

Sains Malaysia (HUSM) Kubang Kerian, manakala kumpulan bukan pesakit kencing 

manis adalah subjek yang telah mendapatkan laporan perubatan mereka dalam masa 

setahun sebelumnya. Sementara itu, kumpulan kawalan adalah subjek yang tidak 

pernah mendapatkan laporan perubatan dalam masa 2 tahun sebelumnya. Bacaan 

glukometer dijadikan sebagai data panduan, dan kedua-dua bacaan glukometer dan 

spektra inframerah (1000nm-2000nm) diambil dari setiap subjek. Daripada panjang 

gelombang, kawasan yang menunjukkkan informasi ketara glukosa dan air adalah 

antara 1440 nm – 1460 nm dan 1940 nm – 1960 nm. Keputusan dari pra-

pemprosesan menunjukan data yang diproses menggunakan penapisan Savitzky-

Golay (SG) dengan tetapan parameter yang optimum memberi ketepatan terbaik. 

Untuk menghasilkan korelasi antara data rujukan dan spektra inframerah, dua model 

linear iaitu Autoregressive with Exogenous (ARX) dan Autoregressive Moving 

Average Exogenous (ARMAX) digunakan manakala gabungan ARX dan ARMAX 

bersama Artificial Neural Network (ANN) digunakan sebagai model tidak linear. 

Model tidak teratur dan teratur bagi kedua-dua ARX dan ARMAX menunjukkan 

keputusan kurang memberangsangkan di mana ARX tidak teratur adalah pada 

24.82%, ARX teratur pada 36.40%, ARMAX tidak teratur pada 53.89%, dan 

ARMAX teratur pada 78.57%. Keputusan dari ARX dan ARMAX teratur kemudian 

diguna dan digabungkan bersama model ANN. Keputusan ARMAX-ANN 

menunjukkan peningkatan memberangsangkan pada 89.45%. Analisa Clarke Error 

Grid (CEG) digunakan sabagai kaedah untuk mengesahkan sistem terbaru dengan 

kaedah rujukan yang terdahulu digunakan. Analisa CEG didapati menunjukkan 

taburan sampel terdapat pada kawasan A dan kawasan B di mana kawasan A dalam 

20% dari sensor rujukan dan kawasan B di luar 20% tetapi tidak ke arah rawatan 

yang tidak sesuai. Mengikut keputusan yang diperolehi, dapat disimpulkan bahawa 

model tidak linear ARMAX-ANN terbukti berpotensi sebagai kaedah untuk meramal 

tahap glukosa dalam darah dan kajian pada masa hadapan boleh dijalankan bagi 

meningkatkan ketepatan sistem. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Diabetes Mellitus (DM) or commonly referred to as diabetes,  is a chronic 

disease that occur when the body are not able to properly utilize the glucose content in 

blood [1], over a prolong period of time and occurred either when the pancreas does 

not produce enough insulin or when the body cannot effectively utilize natural insulin. 

Insulin in human is a hormone that regulates blood glucose [2]. The World Health 

Organization (WHO) stated that the number of people with diabetes rose from 108 

million in 1980 to 422 million in 2014. The prevalence of this disease has been rising 

rapidly especially in low and middle-income countries, compared to the high-income 

countries. The organization estimated in 2019 that 1.5 million deaths were directly 

caused by diabetes and another 2.2 million deaths were attributable to high blood 

glucose in 2012 [2]. 

Three common types of diabetes are Diabetes Mellitus Type I (Type I DM), 

Diabetes Mellitus Type II (Type II DM) and Gestational Diabetes Mellitus (GDM) [3]. 

Type I DM is developed in the early age of an individual where natural insulin is not 

produced in the body and this condition usually occurs since birth. This type of DM is 

an insulin-dependent diabetes, categorized as a chronic condition which is caused by 

autoimmune reaction. Once the symptom appears, it could lead to severe condition [4]. 

Guidelines published by the Ministry of Health (MOH), Malaysia suggest a Self-

Monitoring Blood Glucose (SMBG) test as frequent as four to six times per day where 

the regularity depends on an individual condition [5].  

Meanwhile, Type II DM happens when the natural insulin does not work or is 

not well-produced, which commonly occurs among the elderlies. The cells do not 

respond well to the natural insulin, and this condition is known as insulin-resistance 
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[6]. In general, Type II DM is more common among diabetic patients, with risk of 

complications as severe as Type I DM. Thus, it requires a proper management. The 

SMBG test for the patients with Type II DM is depending on an individual condition. 

Pre-diabetes is defined as a stage where symptoms of diabetes begin to emerge and 

yield warning sign to the individual to take precautions, avoiding the occurrence of 

Type II DM. The glucose level at this stage is higher than normal, but not high enough 

to be considered as diabetic. Early precautions could prevent progression towards Type 

II DM. 

The third type of diabetes, i.e. GDM, occurs during pregnancy. In gestational 

diabetes, a pregnant woman without diabetes develops high blood glucose levels which 

upsurge to abnormal level. This condition is caused by reaction of pregnancy hormone. 

However, the glucose level will subside after labour. A proper management for GDM 

is essential as the disease is associated with risk to the woman and the developing fetus 

as complications that can arise such as pre-eclampsia, major birth defects, premature 

birth or stillbirth. The screening of GDM is based on risk factors like family history 

and previous pregnancy history. The guidelines published by MOH suggest the 

implementation of SMBG and the frequency should be individualised based on the 

mode of treatment and glycaemic control of patients [7].  

Statistics reported by MOH through National Diabetes Registry Report (NDR) 

indicate that there were more than 1.6 million diabetics recorded by the end of 2019. 

From this number, 99.29% were patients who suffered from Type II DM, 0.62% 

suffered from Type I DM and 0.09% suffered from other types of DM [8]. The 

statistics also show that 42.9% were males and 57.1% females and from this, Malay 

ethnicity contributed 59.15%, Chinese with 19.62%, Indian with 13.17% and the 

remaining 8.05% represented other minor ethnicities. The NDR reports on the statistics 

of complication and co-morbidities that occurred on diabetic patients indicate that 

hypertension, dyslipidaemia, retinopathy, ischaemic heart disease, cerebrovascular 

disease, diabetic foot ulcer, amputation and erectile dysfunction are among the highest 

complications experienced by correspondents [8]. The complication rate shows an 

increment over the years, thus suggesting the need for better glucose management by 

the patients.  
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The management of the disease is unlike other chronic diseases, where it is 

managed mostly by patients, with the help from medical practitioners. Thus, the 

patients are responsible in managing their glucose levels and need to be equipped with 

knowledge and tools that are comfortable to be operated. The SMBG is widely 

agreeable as a method in clinical practice guidelines and should be easily accessible to 

patients as part of their diabetes management. Real-time data of a patient’s glucose 

level reflects the influence of dietary and physical activity, thus helping in 

understanding the impact of lifestyle on glycaemic control [9].  

It is important for the glucose level in blood to stay within healthy range and 

healthy people are encouraged to perform the glucose level test in order to maintain 

them and to identify any abnormalities presence. The glucometer is a standard clinical 

practice to observe glucose level at one particular time, typically used as a screening 

tool. On the other hand, a standard diagnosis of diabetes is performed using 𝐻𝑏𝐴1𝑐 

test, a standard clinical test to determine the average glucose level in a blood sample 

for a period of three to six months [10], [11]. The 𝐻𝑏𝐴1𝑐 test typically performed post 

to the glucometer test, if the abnormality in glucose level of a person’s blood is 

identified. The other method used is oral tolerance test (OTT) that is commonly 

conducted on pregnant women to discover GDM [7].  

The established glucose level tests in clinical practice are invasive tests, where 

a certain amount of blood is drawn from patients, to be sampled using an analyser 

machine. Even though there is enormous research on the development of non-invasive 

technique, the implementation and commercialization of this technique is far from 

reality. The following Table 1.1 shows glucose range for classes of diabetes, pre-

diabetes and normal according to the different glucose tests. 
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Table 1.1 The glucose range for diabetes, pre-diabetes and normal range for 

different type of glucose test. 

Stages 𝐻𝑏𝐴1𝑐 Fasting Test 

(mmol/L) 

Oral Tolerance 

Test (mmol/L) 

Diabetes ≥ 6.5 ≥ 7.0 ≥ 11.0 

Pre-diabetes 5.7 – 6.4 5.4 – 6.9 7.7 – 10.9 

Normal ~ 5.0 < 5.4 < 7.7 

 

Near-infrared spectroscopy (NIRs) technology is proven to be a reliable non-

invasive technique used in various fields and biomedical is among them [12]–[20]. 

Wavelength range of NIR could provide various information for numerous types of 

experimental subjects, thus the NIR application has generated interest of many 

researchers. The ability of NIR in identifying substances such as carbon, oxygen and 

hydrogen has further strengthened the opinion of NIR application in determining 

glucose level in blood. Some studies show that the correlation of glucometer reading 

and sensory attributes to be unsatisfactory with more that 20% - 30% error [21], [22]. 

Improvement on the correlation of these characteristics is required and by 

implementing non-linear models such as neural network, the validity of predictive 

system could be increased.  

1.2 Problem Statement 

The statistics of the diabetic patients show an increment over the years, and 

according to NDR, the total number of diabetic patients enrolled in the registry as at 

the end of 2019 were more than 1.6 million patients. However, this is contrary to the 

survey that was also made by MOH through National Health and Morbidity Survey 

2019 [23] indicating about 3.9 million people aged 18 and above suffered from 

diabetes. This number shows that nearly one of five Malaysian adults has diabetes and 
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may also suffer from other complications. This survey also discovered increment in 

percentage of individuals who are diagnosed with diabetes and people who are not 

aware that they have the disease. The difference in numbers from both reports suggests 

that besides patients who are getting treatments from government medical care, about 

twice the number of individuals either receiving treatment from private practice or 

solely ignoring the fact that they are suffering from the disease. There are numerous 

qualitative studies investigating the SMBG practice among the patients, and these 

studies show low utilization of the practice [24]–[27].  

The low utilization of SMBG does not only occur in Malaysia, but also in 

advanced countries like Australia and Korea. The main factors discovered by these 

studies that contributed to this circumstance are fear of testing and pain, cost of the 

glucometer strips and lack of awareness on the importance of SMBG [28], [29]. In 

routine clinical practices, blood glucose test is performed through a quick prick of 

needle on finger and the blood is tested using glucometer. In this conventional method, 

for close monitoring of severe diabetic patients, the glucose level needs to be tested 

several times per day or per week, depending on individual needs [5], [7]. According 

to the previous studies conducted, it is not surprising that this practice is not favoured 

since pricking fingers multiple times a day can be tiresome, painful and impacting the 

mental health of patients, hence this becomes a dreadful ordeal to many diabetics. On 

top of the dreadful experience, besides causing some calluses and forming sensitive 

fingers, the conventional technique is not preferred by patients with dexterity 

limitation, algophobia or anxiety problems. If coerced, this can lead to a situation of 

total avoidance or negligence by these patients, and therefore, proper treatment is not 

received [30], [31].  

Resulting from this situation, further experiments of the non-invasive 

techniques were explored such as ultrasonic sensor implementation [32], multisensory 

systems [33]–[36], and the absorbance of transmittance photometry [37], [38]. Other 

interesting approaches include bio-impedance [39]–[41], voltage intensity [42] and 

thermography [43]. These approaches show promising results, but never been 

developed as clinical practice. Thus, the search for a novel, fast and reliable test for 

non-invasive routine clinical application continues. 
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The implementation of near infrared (NIR) as a non-invasive medium in 

estimating the glucose level has received numerous attentions. Due to the characteristic 

of NIR that offers distinct advantage in speed while identifying and quantifying 

degradation products, its application in various fields is quite extensive, in addition to 

the fact that the technique is a non-destructive technique [44]. Although numerous 

researches conducted related to investigating the ability of NIR for glucose level 

detection, researchers tend to use very small sample size [45], [46] and some of the 

studies were only focusing on healthy subjects, or only on diabetic patients [47]. 

Certain number of researches focussed  on NIR ability in estimating glucose 

concentration on glucose solution and cell specimens [48], [49] without further 

implementation on human subjects. This research attempts to overcome the limitation 

of previous studies. The subjects used in this research include diabetic patients and 

healthy persons, with different groups of age, races and gender.  

A progression was made by researchers in order to analyse the data from NIR 

spectroscopy (NIRs) using various analysing models. The various approaches 

executed use either linear models or non-linear models. The application of linear and 

non-linear models generally depends on the form of NIR data. Linear regression model 

follows a very particular form while the non-linear model can fit an enormous variety 

of information. The subjects of experiment influence the result of the models; thus 

selection of models is a crucial part of the research. For instance, the NIR data from 

subjects with single or a few information may require linear model in data analysing 

process. 

However, the data that tend to offer overlapped information may require 

complicated analysing compared to a simple singular information. In this particular 

research, the information that could be extracted from human skin possibly contains 

various information, not limited to glucose concentration in blood. The human skin 

contains numerous substances and the penetration of NIRs that surpasses many layers 

of skin may contribute to complex analysing process. So, the pre-processing phase is 

essential to determine beneficial information to be analysed. In this research, the 

implementation of near-infrared spectrum in detecting the substance of glucose in 

blood and predicting the glucose level by using both the linear and non-linear system 
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identification models will be executed. The outcome in terms of accuracy and 

performance from both linear and non-linear models will be calculated and compared. 

The combination of appropriate pre-processing of NIR information and the non-linear 

models, the accuracy of the glucose level estimation can possibly be enhanced for 

optimum result. Hence, this provides a harmless and highly coveted non-invasive 

glucose level test technique for clinical use. 

1.3 Objectives of study 

The main objective of this study is to develop a non-invasive method in 

measuring the glucose level in blood using NIR spectrometer. In addition to the main 

objective, the other objectives are as below: 

(a) To investigate the practicality of NIR wavelength and a suitable data range as 

input of the system in determining the glucose level in blood. 

(b) To develop algorithm in analysing the blood glucose level using NIR spectrum 

signals range 

(c) To evaluate and validate the effectiveness of the implemented linear and non-

linear models in the system 

 

1.4 Scope 

The scope of this project comprises designing of linear and non-linear models 

using NIR spectral data in estimating glucose level in blood. The data acquisition 

process in this study is divided into two, which are obtained from the near-infrared 

spectrometer (spectral data) and data obtained from the conventional glucometer 

(reference data). These data were obtained from Hospital Universiti Sains Malaysia 

(HUSM) in Kubang Kerian and Universiti Teknologi Malaysia (UTM). The data 

acquisition process is divided into three groups: individuals diagnosed with diabetes 

who are currently undergoing treatment at HUSM, individuals without diabetes who 

had their medical check-up within one year, and individuals with no prior history of 
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diabetes and never undergone medical check-up for the last two years. The system is 

for a single sample monitoring (one-at-a time) particularly, with no continuous 

monitoring system. 

The diffuse reflectance of the NIR measuring mode is used to measure the 

wavelength depending on the absorption and scattering characteristics. Spectroscopy 

measured the data from 200 nm until 3500 nm. The contents of water and glucose 

substances in blood are analysed as the main factors in determining the glucose level. 

To analyse the obtained data, linear and non-linear models of system identification 

(SI) and combination artificial neural network (ANN) were used and the performances 

were compared. To validate the results obtained, Clarke Error Grid Analysis (CEG), 

an established method in medical field was used to compare the newly developed 

system with the reference value.  

1.5 Thesis Outline 

In chapter 1, introduction of the project and overview of the whole research are 

presented. The chapter starts by introducing the problem background of the project, 

continuing with problem statement, and objectives on why conducting the research, 

followed by scope of the research. This chapter also states the contribution of this 

study. 

Chapter 2 focuses on reviewing the previous and existing work or researches 

made on the field of diabetes disease, concerning with the development of invasive 

and non-invasive techniques to determine glucose level in blood. This chapter 

elaborates more on the efforts made previously in developing non-invasive technique 

in glucose determination using an in-vitro, in-vivo or both methods in experimental 

process. This chapter also describes and enlightens the theoretical aspects of pre-

processing technique implemented on the data set.  

In Chapter 3, the methodology or flow of the research is elaborated. Beginning 

with explanation of the data collection stage of subjects, continuing with the pre-



 

9 

processing of the data set process.  This chapter explains more on the implementation 

of system identification (SI) and artificial neural network (ANN) models, both linear 

and non-linear models and comparison for both types of methods and their usage. The 

next stage after the model implementation is model validation. This chapter gives 

details on the Clarke Error Grid (CEG) analysis method that is effectively used in the 

medical field as a reference in diabetes related devices.  

Chapter 4 presents the results for each process run and method used from the 

very first stage of research. It also presents the final accuracy result of each linear and 

non-linear model implemented in the research. In addition, this chapter discusses the 

performance of models based on accuracy result of the estimation and validation 

process. 

Chapter 5 concludes the overall performance of research with some 

recommended future works. This provides a better idea on how the system can help 

for further improvements. This chapter presents the advantages, disadvantages, 

limitations and affecting factors that occur during research. 
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