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ABSTRACT 

Jet fire occurrence in an industrial installation can be severe as it can trigger a 

series of related events. The main hazard associated with jet fire occurrence is the heat 

released by radiation, which can be very high at a very short distance. The evaluation 

of jet flame geometry could assist the safety officer to prevent flame impingement on 

the nearby equipment and therefore, reduce the inventory losses and structural 

collapse. Previous observation indicates that the horizontal jet fire poses more 

significant thermal hazards as compared to that of other types of fire. However, to date, 

scarce and limited data are available as a reference on a jet flame for horizontal 

orientation, particularly for parametric characteristics and correlation model 

development. Thus, this study aims to investigate the thermal radiation and 

geometrical flame features of buoyant horizontal jet fires. Two scenarios were 

considered for this work i.e. free jet fires and jet fire impingement. This study used 

propane as the fuel that was released from a circular nozzle with a diameter of 7.15 

mm and 9.8 mm. The jet fire tests were performed with different ranges of flow rates 

between 30 – 600 g/min at a release distance of 0.8 m and 1.2 m. Differences in flame 

shapes are evaluated with the use of the MATLAB. Meanwhile, linear correlations of 

the main geometrical parameters of interest are determined as a function of Reynolds 

number and Froude number (i.e. lift-off distance, projected flame length, flame height, 

flame trajectory, flame width). For thermal radiation analysis measurement, semi-

empirical model prediction of the line-source (LSM) model was adopted to account 

the flame geometrical features. From the findings, it was found that the lift-off length, 

Lf estimation from this work was in a good agreement with Bradley’s correlation for 

both free and impinging jet release with R2 of 0.95. Due to the flame Froude number 

value is between 0.8 to 3.5, it signifies that the flame is controlled by buoyancy and 

momentum, thus flame trajectory, Lt was proposed to be used to estimate the radiant 

heat release.  Using the flame trajectory, Lt for radiant heat estimation, it was observed 

that Lt could give a better prediction of radiant heat release for free jet fire release with 

R2 of 0.99 as compared to projected flame length, Lp (horizontal kite flame shape) (R2 

= 0.94). It also gave consistent results with the measured data for an impinging jet 

release with R2=0.99 for all release scenario, using a similar approach. It can be 

deduced that the modified LSM using the flame trajectory parameter is a reliable 

method for radiant heat prediction, on both scenario in this work; free jet release and 

impinging jet. Implicitly, it can be suggested that the applicability of LSM becomes 

wider to include the effects of buoyancy and impingement scenario. Furthermore, it 

offers additional provision to determine the minimum spacing distance of the 

equipment sitting for the plant layout. 
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ABSTRAK 

Kejadian kebakaran jet yang berlaku di industri boleh menjadi parah di mana 

ia boleh mencetuskan satu siri peristiwa yang berkaitan. Kesan bahaya utama yang 

berkaitan dengan kejadian kebakaran jet adalah haba yang dilepaskan secara radiasi, 

boleh terjadi sangat tinggi pada jarak yang sangat dekat. Penilaian terhadap geometri 

api jet dapat membantu pegawai keselamatan untuk mencegah api hentaman pada 

peralatan yang berdekatan dan seterusnya dapat mengurangkan kerugian inventori dan 

keruntuhan struktur. Menurut pemerhatian masa lepas, didapati kebakaran jet secara 

melintang adalah lebih bahaya secara termal berbanding dengan kebakaran jenis lain. 

Walau bagaimanapun, sehingga kini, terdapat keterbatasan data bagi kebakaran jet 

secara melintang terutamanya yang berkaitan ciri-ciri parametrik dan pembangunan 

model perhubungan (korilasi). Justeru, kajian ini dijalankan untuk mengkaji termal 

radiasi dan geometri ciri nyalaan bagi kebakaran jet secara melintang. Dua senario 

telah dipertimbangkan dalam kajian ini iaitu kebakaran bebas dan kebakaran jet secara 

hentaman. Kajian ini menggunakan propana sebagai bahan bakar yang dilepaskan dari 

muncung bulat dengan diameter 7.15 mm dan 9.8 mm. Ujikaji kebakaran jet dilakukan 

dengan halaju yang berbeza antara 30 - 600 g/min pada jarak pelepasan 0.8 m dan 1.2 

m. Perbezaan bentuk nyalaan api yang terhasil telah dinilai dengan penggunaan 

perisian MATLAB. Sementara itu, korelasi linear bagi parameter utama geometri telah  

ditentukan sebagai fungsi nombor Reynolds dan nombor Froude (iaitu jarak angkat, 

unjuran panjang nyalaan, ketinggian api, panjang lintasan api, lebar nyalaan api). Bagi 

pengukuran analisis haba radiasi, ramalan model separa empirikal bagi model sumber 

garis (LSM) telah diterima pakai untuk mengambil kira ciri geometri nyalaan. 

Daripada hasil penemuan itu, didapati jarak panjang pengangkatan, Lf dari kajian ini 

sangat sesuai menggunakan korelasi Bradley untuk kedua-dua pelepasan jet bebas dan 

hentaman jet dengan nilai R2 bersamaan 0.95. Oleh kerana nilai nombor Froude antara 

0.8 ke 3.5, ia menandakan nyalaan api dikawal oleh daya apungan dan momentum, 

dengan itu lintasan api, Lt dicadangkan untuk digunakan untuk menganggarkan haba 

radiasi. Daripada menggunakan unjuran panjang nyalaan, Lp untuk perkiraan haba 

radiasi, panjang lintasan api, Lt telah digunakan. Diperhatikan Lt dapat memberikan 

ramalan yang lebih baik mengenai pelepasan haba radiasi bagi pelepasan kebakaran 

jet bebas dengan R2 bersamaan 0.99 dibandingkan jika menggunakan unjuran panjang 

nyalaan (bentuk layang-layang mendatar) (R2 = 0.94). Ia  juga memberi kesepakatan 

yang baik untuk pelepasan jet secara hentaman, dengan R2 bersamaan 0.99 bagi 

kesemua senario, menggunakan kaedah yang sama. Secara ringkasnya, LSM yang 

diubah berdasarkan panjang lintasan  api adalah kaedah yang lebih jitu untuk ramalan 

haba radiasi bagi kedua-dua senario di dalam kajian ini, pelepasan jet bebas dan 

pelepasan kebakaran jet secara hentaman. Hasil kajian ini telah memberi lebih 

keyakinan bagi penerapan LSM  menjadi lebih luas dengan mempertimbangkan kesan 

keapungan. Selain itu, ia dapat menjadi ketentuan tambahan untuk menentukan jarak 

minimum peralatan di dalam susun atur loji. 
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 xxi 

Vfu - Flame volume portion intercepted by the impinging surface in 

(m3) 

Vf - Volume of the free flame (m3) 

W - Width 

𝑤 - Flame width 

𝑤0 - Maximum flame width 

xR - Radiative fraction 

(x,y,z) - Coordinate 

(𝑥0, 𝑦0, 𝑧0) - Target coordinate position 

Z0 - Virtual origin 

α - Flame ratio 

α1, α2 - Coefficients 

ε - Emissivity 

σ - Stefan-Boltzmann constant 

𝜅 - Parameter constant 

𝜂 - Parameter constant 

γ - Ratio of specific heats 

τ - Transmissivity 

𝛽 - Proportionality constant 

𝜃 - Angle (°) 

𝜙 - Angle of target and any point on the flame centreline 

ϕ - Heat flux measurement 

µ - Dynamic viscosity (kg/m.s) 

𝜌 - Density ratio (𝜌0 𝜌∞⁄ ) 

𝜌∞ - Ambient density 

𝜌 - Density (kg/m3) 

Ʌ - Dimensionless number (Lm/Lb) 

𝛱1 - Dimensionless integer, 
𝑢𝑒

𝑆𝐿
 

𝛱2 - Dimensionless integer, 𝑅𝑒𝐿 

𝛱3 - Dimensionless integer,
𝑑

𝐷
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INTRODUCTION 

1.1 Background of Study 

Any industrial facilities that dealt with pressurized pipelines and vessels are 

exposed to an unwanted incident called a jet fire. Jet fire is a form of diffusion flame 

resulting from a release of combustible materials from an opening at very high 

pressure, usually greater than 1.9 bar absolute (Palacios, 2011). In process industries, 

jet fires are frequently reported as a primary vector leading to domino effects that 

would lead to mass casualties and asset integrity (Wang et al., 2021; Casal, 2018). The 

main hazards that come from the jet fire are thermal radiation and jet flame 

impingement  (Swuste et al., 2019). The high momentum release of jet fire entrains a 

large amount of air and produces much better combustion than in other accidental fires. 

This will significantly increase the heat release rate in terms of radiation. According 

to Pula et al. (2006), horizontal jet fire is more destructive than vertical due to higher 

impingement probability and since there is limited data available on horizontal jet 

flames, thus it has been a focus in this study.  

Several methods can be used to predict the main hazards associated with jet 

fire i.e. simulation, experimental data and semi-empirical model. To date, the 

development of the semi-empirical models is widely used by the industry in risk 

assessment associated with fire occurrence as it is easily programmed in the computer 

which the repetitive calculation can be done in a short time and economical with a 

reliable prediction. Furthermore, it provides an additional advantage in conducting 

massive measurement and risk prediction based on theoretical principles and 

experimental observation.  
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At present, four semi-empirical models could be adopted to predict the radiant 

heat flux based on the geometrical flame features which are solid flame model (SFM), 

point source model (PSM), weighted multipoint source model (MPSM) (Hankinson 

and Lowesmith, 2012), and line source model (LSM) (Zhou and Jiang, 2016; Zhou et 

al., 2016). To have a better prediction of radiant heat release by using a semi-empirical 

model, a true definition of geometrical flame features is very important (Palacios et 

al., 2012; Mashhadimoslem et al., 2020; Palacios et al., 2020). For a horizontal jet 

flame, the involved parameters include the lift-off length, the flame length, the flame 

height, the flame width and the flame trajectory  (Palacios et al., 2020; Smith et al., 

2005; Changchun et al., 2019) in which several correlations were developed for each 

of these parameters. These correlations are varied according to scenario i.e flame 

orientation, scale and receiver location which then further used as an input to semi-

empirical model for radiant heat prediction.  

In a study of horizontal jet flames governed by momentum and buoyancy, the 

flame length was defined as the length located along the flame axis centreline which 

is called flame trajectory (Liu et al., 2019a; Changchun et al., 2019; Kim et al., 2009). 

The description of flame trajectory is very important for these types of flame as it may 

lead to the underestimation of radiant heat by 40% or more if an incorrect definition 

of flame length is used (Ekoto et al., 2014). Other than the effects of buoyancy, the 

presence of an obstacle downstream that leads to flame impingement, may give a direct 

effect on the resulted flame length and consequently the measured radiant heat. In this 

study, the effects of the buoyancy on the horizontal jet flames and the effects of the 

impingement scenario were investigated to affirm the validity of the suggested 

correlation for the involved input parameters which can further extend its applicability 

to the said scenarios. 
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1.2 Problem Statement 

Most available radiant heat models for jet fire occurrence were developed 

based on ideal flame shape assumption namely as Solid Flame Model (SFM), Point 

Source Model (PSM), Multipoint Source Model (MPSM), and Line Source Model 

(LSM). SFM, PSM and MPSM are well established for radiant heat prediction of jet 

fire and there is a vast amount of data available. Nonetheless, each of these models has 

its limitation as such SFM is more suitable to be used for near field observation, PSM 

for far-field observation, and MPSM which can be used for both near and far-field 

observation but data available are limited to a large scale of the jet fire. The most 

recently developed, LSM offers a better option among the rest which are applicable 

for radiant heat prediction of vertical and horizontal jet release in both near and far-

field observation and has been tested against a large and small scale of the jet fire. Yet, 

the validity has to be explored more for low initial momentum release of jet fire as 

LSM does not consider the buoyancy effects. In general, the input parameter that has 

to be determined for LSM is the flame length, the heat release rate, the radiative 

fraction, the flame length ratio, and the lift-off distance.  

For a horizontal jet flame, it was dictated the flame length and the lift-off length 

hold a considerable effect on the radiant heat prediction. An earlier study using LSM, 

defines the flame length as the length of the flame either in a horizontal or vertical 

direction based on ideal flame shape. However, for a horizontal jet flame, as the initial 

momentum is consumed, the buoyancy will take over causing the flame to bend 

upwards or flame shape deformation. Thus, the consideration of these buoyancy 

effects has to be taken into accounted by introducing the trajectory length instead of a 

conventional flame length based on ideal flame projection. Based on this challenge, 

this study attempts to extend the validity of expression developed for radiant heat flux 

using the flame trajectory as a basis for horizontal jet flames governed by considering 

both momentum and buoyancy effect.  
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Besides, the jet release is not necessarily happened in a free release since there 

is a possibility of impingement jet fire in the process plant vicinity. The presence of an 

obstacle as an impingement object may have a significant effect on the air entrainment 

volume that may further result in the distortion of the flame shape and flame size. This 

work will investigate the possibility of accurately determining the properties of a 

horizontal jet flame without large-scale experiment or computational simulations by 

analyzing the jet flame with various release conditions at subsonic regimes in the near 

field, as well as considering the effect of impingement effect. Due to the unique feature 

of the flame trajectory concept, this work aims to propose a modified correlation of 

the Line Source Model (LSM) for radiant heat estimation for a general horizontal jet 

flame that covers both free and impinging jet release. 

1.3 Objectives of Study 

Based on the preceding research background and problem statements, the main 

objective of this study is to develop a semi-empirical model that can incorporate an 

impingement scenario for a horizontal jet fire in a near field. To achieve the main 

objective, several objectives were carried out. 

(a) To determine the parametric and geometrical flame features of horizontal jet 

fire with and without impingement in respect to a change of gas flowrate, u 

(m/s), nozzle release diameter, d (mm), and nozzle-object separation distance, 

D (m). 

(b) To formulate the modified model using the input parameters in (a) for  the 

radiant heat release prediction of horizontal turbulent jet fire with and without 

impingement in the near field. 

(c) To verify the modified model applicability and performance using this work 

experimental data and previous literature data, using line source model as a 

prescribed model. 
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1.4 Scope of Study 

To fulfill the objectives of the study, the scopes of study have been drawn: 

(a) Only the line source model (LSM) was considered as a semi-empirical model 

prescribed to be used for radiant heat estimation for both free and impinging 

jet release scenarios in this study. Thus, the input parameters considered were 

flame length, the heat release rate, the radiative fraction, the flame length ratio, 

the flame width and the lift-off distance. 

(b) To create the impingement scenario, a cylindrical vessel with an internal 

diameter of 2-m, a thickness of 10-mm, and a material of carbon steel is used 

as an object to be impinged with a nozzle-object separation distance of 0.8 m 

and 1.2 m.  

(c) The gas flowrates used were between 30-600 g/min released from a circular 

nozzle with a diameter of 9.8 mm and 7.15 mm, in which it produces jet flames 

governed by momentum and buoyancy. Besides, with the flow rate, the 

Reynolds numbers are ensured above 4000 which indicates turbulence 

behavior. 

(d) CMOS sensor camera with video function was located orthogonally to the 

flame axis was used to capture a simultaneous image of the jet flame. The 

captured images were analyzed using MATLAB Image Processing Toolbox. 

The flame geometrical features i.e the flame length, flame height, flame width 

and lift-off length were obtained from the results of the analysis.  

(e) Propane of 99% purity was used as fuel as it represents the worst-case scenario 

of jet flame occurrence based on historical event data. 

(f) An environmental condition that includes the ambient temperature, relative 

humidity, and wind speed are obtained from an anemometer reading near the 

test area station. 
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(g) The flux sensor was located near-field which within half of the predicted 

projected flame length in a radial direction to eliminate the effects of 

atmospheric transmissivity on the readings. 

 

 

1.5 Significance of Study 

A lack of data to validate the use of a semi-empirical model based on the flame 

trajectory has been a motivation for this study. The prediction of radiant heat flux in 

the near field is of utmost importance as the radiant heat is among the elements of heat 

transfer to the nearby target that could induce accident escalation and will be the 

additional provision to determine the minimum spacing distance of the equipment 

sitting for the plant layout. The modified semi-empirical model developed based on 

the flame trajectory is believed could give a more accurate and reliable prediction on 

radiant heat of the horizontal jet flame either in a free jet or during impingement. In 

addition, it can be used by safety practitioners to assess asset integrity by considering 

the possibility of a jet fire impingement scenario for a release in a horizontal 

orientation. 

1.6 Limitation of Study 

From the discussion stated above, it is crucial to investigate the thermal 

behavior of jet flame projection and the presence of obstacles near the flame source. 

However, the model that is developed is strictly valid for a horizontal jet fire 

impingement scenario on a curved surface (cylinder) in close vicinity. The model for 

impingement assumes the flame hits perpendicularly to the center of the surface of the 

target object. The flame spread will be assumed to be similar on the left and right-hand 

sides of the impingement point. Thus, the measurement on the impingement side is 

taken only on the vertical side considering it to be in one dimension. Lastly, the 

outcome of this study may only apply for jet fire occurrence of propane with a range 

of parameters as stated in the scope of the study. 
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