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ABSTRACT 

Microbial pathogenic contaminants such as bacteria, viruses and protozoa pose 

a major threat to environment human health that can cause deadly infectious diseases. 

One promising way of disinfection activity is by photocatalysis. Bismuth ferrite (BFO) 

has been regarded as an efficient visible-light driven material for photocatalyst due to 

its narrow band gap value. However, rapid recombination of photogenerated electron 

(𝑒−) – hole (ℎ+) pairs has limits its application as photocatalyst. To overcome this, 

BFO-activated carbon nanocomposites (BFO-AC) was synthesized by ultrasonication 

method with various ratio of activated carbon. Characterization using X-Ray 

diffraction analysis showed no change in crystallinity of BFO nanoparticles when 

activated carbon was incorporated into nanoparticles. By using the UV-Vis diffuse 

reflactance spectroscopy (UVDRS), the emission band of all BFO and BFO-AC 

nanocomposites were found within visible light range (400-700 nm) and BA (1:1.5) 

was having the lowest band gap value of 1.86 eV. Interestingly, after the addition of 

AC, the Brunauer–Emmett–Teller (BET) surface area of BA (1:0.5), BA (1:1) and BA 

(1:1.5) dramatically increased ie., 267.51 m2/g, 351.82 m2/g and 862.99 m2/g, 

respectively. BET results indicate BA (1:1.5) has the highest surface area due to its 

porous property. The field emission scanning electron micrograph has shown that BA 

(1:1.5) possess a better distribution and less agglomeration. The photoluminescence 

analysis demonstrated the intensity of all BFO-AC nanocomposites decreases 

compared to pristine BFO. The decrease of photoluminescence indicate the lower rate 

of electron (𝑒−) – hole (ℎ+) pairs recombination. Photocatalytic disinfection of 

S.aureus by AC, BFO, BA (1:0.5) and BA (1:1) were obtained within 150 min, 120 

min, 120 min and 90 min, respectively. BA (1:1.5) exhibited the strongest bactericidal 

activity as a complete inactivation of S.aureus was achieved within 60 min. The 

surface and morphology of S.aureus were characterized by transmission electron 

microscopy analysis. Bacterial cell had a smooth and spherical shape before being 

irradiated under visible light. However, the bacterial cell were severely damaged and 

ruptured as the irradiation time increased, implying that S.aureus was killed. It is 

herein worth noting that the incorporation of AC onto BFO significantly improved the 

performance of photocatalytic disinfection of S.aureus under visible-light irradiation.  
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ABSTRAK 

Bahan cemar patogen mikrob seperti bakteria, virus dan protozoa 

menimbulkan ancaman besar terhadap isu alam sekitar serta mengancam kesihatan 

manusia kerana ianya boleh menyebabkan penyakit yang membawa maut. Salah satu 

cara yang boleh menjanjikan pembasmian kuman adalah dengan fotomangkin. 

Bismuth ferrite (BFO) telah dianggap sebagai bahan fotomangkin di pacu cahaya 

tampak yang berkesan kerana mempunyai nilai jalurnya yang kecil. 

Walaubagaimanapun, penggabungan semula pasangan lubang elektron yang pantas 

menghadkan penggunaannya sebagai fotomangkin. Untuk menangani permasalahan 

ini, nanokomposit BFO-karbon teraktif (BFO-AC) telah disintesis melalui kaedah 

ultrasonik dengan nilai nisbah karbon teraktif yang berbeza. Pencirian menggunakan 

analisis pembelauan sinar-X menunjukkan tiada perubahan dalam kehabluran 

nanopartikel BFO apabila karbon teraktif dimasukkan ke dalam nanopartikel. Dengan 

menggunakan spektroskopi pemantulan resap UV-Vis (UVDRS) jalur pancaran semua 

nanokomposit BFO-AC dan BFO berada dalam julat cahaya nampak (400-700 nm) 

dan BA (1:1.5) mempunyai nilai jurang jalur paling rendah iaitu 1.86 eV. Menariknya, 

selepas penambahan AC, luas permukaan Branauer-Emmett-Teller (BET) BA (1:0.5), 

BA (1:1) dan BA (1:1.5) masing-masing meningkat setiap satunya adalah 267.51 m2/g, 

351.82 m2/g dan 862.99 m2/g. Analisis BET menunjukkan BA (1:1.5) mempunyai luas 

permukaan paling tinggi disebabkan oleh sifat berliang. Analisis mikroskopik elektron 

pengimbasan pelepasan medan menunjukkan bahawa BA (1:1.5) mempunyai taburan 

yang lebih baik dan kurang penggumpalan. Analisis foto pendarcahaya menunjukkan 

keamatan bagi semua BFO-AC nanokomposit berkurangan berbanding dengan BFO. 

Pengurangan foto pendarcahaya menunjukkan penggabungan pasangan lubang 

elektron dengan kadar yang lebih rendah. Pembasmian kuman fotopemangkin 

S.aureus oleh AC, BFO, BA (1:0.5) dan BA (1:1) masing-masing diperoleh dalam 

masa 150 min, 120 min, 120 min dan 90 min. BA (1:1.5) menunjukkan penyahaktifan 

bakteria yang paling tinggi dalam masa 60 min. Permukaan dan morfologi S.aureus 

dicirikan melalui analisis mikroskopi elektron transmisi. Sel bakteria berbentuk sfera 

dan mempunyai permukaan yang licin sebelum disinari dibawah cahaya tampak. 

Walaubagaimanapun, sel bakteria pecah dan rosak apabila masa sinaran meningkat 

dan ini membuktikan bahawa S.aurues telah dimatikan. Secara ringkas, penggabungan 

AC kepada BFO telah menunjukkan peningkatan prestasi pembasmian fotopemangkin 

kuman S.aureus di bawah penyinaran cahaya tampak.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Water is the most essential and fundamental to human population across the 

world. Human beings need water for drinking, cooking, washing, irrigated agricultural 

and other socioeconomic activities. Only about 1% of water is consumable for human 

consumption (Anjum et al., 2019). With the increasing population growth rate, the 

world’s population is expected to reach over 9 billion people by the year 2050. 

Microbial contamination includes bacteria, viruses, and parasites in water has become 

significantly cause a great threat to human and other lives in developed and developing 

countries. According to the World Health Organization (WHO), severe lack of 

cleanliness and inadequate knowledge of sanitation cause 80% of disease in humans 

across the world (Punia et al., 2021). Concerns related to water safety plays an 

important role in sustaining life. Contaminated water sources contain pathogenic 

microorganisms which lead to various of serious diseases such as diarrhea, cholera, 

typhoid, polio and dysentery (Pandey et al., 2014). More than 3.5 million people die 

each year due to waterborne diseases. The treatment of contaminated water can reduce 

these concerns to provide safe and readily available water (Pinki et al., 2021). 

Different methods have subsequently been investigated to improve the 

efficiency of treating microbially contaminated water. Despite many conventional 

water disinfection techniques such as cholorination, ozonation, UV irradiation, these 

application are still limited to the removal of microorganisms. In a way to efficiently 

remove microbial, this research has been focus on photocatalysis, a green solution 

technology that possess a vital role for antimicrobial disinfection application by 

generating reactive oxygen species (ROS) which are responsible for damaging the cell 

components of bacteria in the presence of light (Ganguly et al., 2018).  
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The discovery of water splitting experiment was reported by Fujishima and 

Honda, (1972) by using titanium dioxide (TiO2) photocatalyst in the presence of solar 

light. This pioneered research led to developing numerous photocatalyst for 

degradation of various contaminants. Further, Matsunaga et al. (1985) studied the 

photocatalytic disinfection of Escherichia coli (E.coli), Saccharomyces Cerevisiae and 

Lactobacillus Acidophilus using TiO2 under UV light. Following this, a lot of studied 

have investigated photocatalytic disinfection by various photocatalyst including 

graphitic carbon nitride- silver bromide (g-C3N4-AgBr), iron-dope bismuth vanadate 

(Fe-doped BiVO4), molybdenum disulfide (MoS2) and tungsten disulfide (WS2) 

nanoparticles, carbon supported vanadium tetrasulfide (VS4/CP), cadmium sulfide 

(Cds), copper-titanium dioxide (Cu-TiO2) nanofibers and lead-bismuth ferrite/reduced 

graphene oxide (Pb-BiFeO3/rGO). However, according to Kumar et al. (2021), there 

are still very few study on bismuth based photocatalytic disinfection activity. To 

harness solar light, bismuth ferrite (BFO) has been regarded as one of the promising 

photocatalyst due to their low band gap value (~2.2eV) and possessed magnetic 

properties. Howbeit, the application of BFO alone was practically restricted by rapid 

recombination of photo-generated electron – hole (𝑒− − ℎ+) pairs (Li et al., 2019). An 

attempt needs to be made in order to circumvent this limitation. Thereupon, the 

modification of BFO needs to be emphasized to enhance photocatalytic performance 

of visible light-responsive photocatalysts. 

Photocatalyst combine with carbonaceous material have been attempted to 

surmount these shortfalls in photocatalytic performance (Yahya et al., 2018). The 

application of carbonaceous material such as activated carbons (AC) to support 

photocatalyst has been widely applied by researchers to improve photocatalytic 

efficiencies. According to Saravanan et al. (2021) nanocomposite photocatalyst which 

comprise of metals or metal oxides have been showing excellent photocatalytic 

performance. Activated carbon has a remarkable properties including high adsorption 

capacity, large surface area, microporous structure, high thermal stability and 

environmental applications (Alhan et al., 2019). AC greatly promote the separation of 

photo-induced 𝑒− − ℎ+ pairs and improve the activity of photocatalysis (Chen et al., 

2017). Various studies have shown interesting characteristics upon integration of 



 

3 

adsorbent with photocatalyst thus, improving the overall photocatalytic efficiency 

(Yahya et al., 2019).  

1.2 Problem Statement 

The most widely studied photocatalyst, TiO2 are facing crucial problems, wide 

band gap (3.2-3.35 eV) that limits the utilization of visible-light and resulted in low 

quantum efficiency (Gamage and Zhang, 2010). Thus, BFO is the potential candidate 

as the photocatalyst due to their intrinsic properties such as low band gap (~2.5 eV) 

compared to commercial TiO2. Moreover, it also has an outstanding properties as a 

photocatalyst due to its non-toxic nature, excellent chemical stability, low cost, 

magnetic properties, efficient response to visible light irradiation and have been proved 

to have a good antimicrobial properties. This photocatalyst shows a comprehensive 

properties compare to other materials. Despite these promissory findings, there are 

some limitation of BFO that needs an improvement in which designing of more 

efficient nanostructures including fast recombination of photogenarated (𝑒− − ℎ+) 

pairs. Separation of photogenerated (𝑒− − ℎ+) pairs subsequently influence the 

performance of photocatalytic activity (Wei et al., 2017). In order to further improve 

the practical applications of BFO photocatalyst in photocatalytic activity, the 

modification on BFO needs to be emphasized to enhance the properties of BFO. 

The synergistic effects between AC and semiconductor significantly influence the 

photocatalytic activity (Li et al., 2019). Incorporation of AC remarkably prevent the 

(𝑒− − ℎ+) pairs recombination in photocatalytic activity (Ramya et al., 2018). AC 

have an outstanding potential as adsorbent due to its fascinating properties such as 

microporous structure, large surface area and high adsorption capacity (Yahya et al., 

2018). Moreover, due to its good biocompatibility, AC can remove microorganisms 

which can play a part in water treatment (Devi, Mohanta and Ahmaruzzaman, 2019). 

Yamamoto, Sawai and Sasamoto (2002) also reported AC has an excellent affinity to 

microorganisms and adsorbed large amount of bacteria. These intriguing properties of 

AC increase its use as a stable supporting material for the synthesis of BFO.  
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An efficient bacterial inactivation often entails the interruption or complete 

destruction of their physiological functions including cell membrane (Zhang et al., 

2018). The cell membrane appears to be an important first target by ROS species in 

disinfection activity leading to the loss of membrane permeability. The destruction of 

bacterial cell membrane during photocatalytic disinfection subsequently result in the 

releasing of intracellular components (Zhang et al., 2019). Hence, the changes of 

microbial morphology to further validate the efficiency of bacterial inactivation. 

1.3 Research Objectives 

The aim of this study is to synthesis BFO: AC nanocomposites for adsorption and 

photocatalytic microbial disinfection present in water under visible-light irradiation. 

In order to achieve that, there are three specific objectives in this study, which are:  

i. To assess the effects of activated carbon (AC) ratio incorporated onto BFO via 

ultrasonication method on physicochemical properties of the synthesized BFO-

AC nanocomposites. 

ii. To identify the effects of irradiation time and BFO-AC ratio on antimicrobial 

activity of BFO-AC nanocomposites on Gram-positive bacteria (Staphylococcus 

aureus). 

iii. To establish the disinfection mechanism on a subcellular level via systematic 

analysis focusing on cell morphology.  

1.4 Scope of Study 

i. Synthesizing pure BFO using sol-gel auto combustion method with calcination 

temperature at 500℃ for 3 h. 

ii. Synthesizing BFO-activated carbon (BFO-AC) with different activated carbon 

ratio using ultrasonication method for 3 h.  
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iii. Characterization of physicochemical properties of the synthesized pure BFO and 

BFO: AC nanocomposites by using several characterizations such as X-ray 

diffractometer (XRD), UV-Vis diffuse reflectance spectroscopy (UVDRS) 

analysis, Brunauer-Emmet-Teller (BET), Fourier Transform Infrared 

Spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and 

photoluminescence analysis (PL). 

iv. Performing photocatalytic disinfection study of S.aureus with 1 mg catalyst 

loadings at pH 7 under visible light irradiation. Initial bacterial concentration is 3 

× 106 CFU/ml. 

v. Evaluation of bacterial cell death by Transmission Electron Microscopy (TEM) 

analysis. 

 

1.5 Significance of Study 

Photocatalysis, is an effective method to oxidize many organic contaminants at 

ambient conditions. Thus, researches on synthesizing visible-light driven 

photocatalyst that are easy to be produced and large scalable nanoparticles with desired 

properties are the main priorities. In this study, the synthesized BFO photocatalyst was 

prepared via sol-gel auto combustion and activated carbon was incorporated onto BFO 

via ultrasonication method. Activated carbon was considered as better adsorbents due 

to its large surface area, microporous structure as well as reduce the recombination 

rate of charge carriers (𝑒− − ℎ+) pairs. Additionally, varying different weight ratios 

of activated carbon onto BFO was proved to significantly enhance the efficiency of 

photocatalytic activity. In fact, this study shows the bacterial cell wall was severely 

damaged upon irradiation of visible light at different time intervals. The synthesized 

BFO-AC nanocomposites led to significant improvement in photocatalytic 

disinfection of S.aureus under visible light irradiation. The utilization of activated 

carbon supported semiconductor provides as an effective alternative in photocatalytic 

disinfection activity. 
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