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ABSTRACT 

 
 
 
 

The demand of lightweight materials and fuel economy enhancement has 
driven the development of polymer nanocomposites. In this study, novel 
nanocomposites based on polybutylene terephthalate (PBT) and synthetic wollastonite 
nanofibers (SWN) were developed. SWN were synthesized via hydrothermal reaction 
under different reaction mediums and temperatures, followed by calcination. The 
products were confirmed as high-purity wollastonite in nanosize, with either granular 
or fiber form. SWN with highest aspect ratio of 16.3 produced under reaction medium 
mixture of 20 v/v% ethanol, 80 v/v% water and reaction temperature of 200 ºC, was 
used in PBT nanocomposites. The effect of SWN contents on the mechanical, thermal, 
tribological and flammability properties of the PBT/SWN nanocomposites were 
studied. Test samples were fabricated via melt compounding method. The addition of 
SWN into PBT resulted in the maximum increment of tensile strength (6%) and 

matrix via hydrogen bonding. However, elongation at break and impact strength 
demonstrated decreasing trends with increasing SWN contents. PBT reinforced with 
1.0 phr SWN exhibited the best combination of stiffness and toughness. A significant 
increase in wear resistance (73%) was observed at the same SWN content, whereas 
friction coefficient decreased with increasing SWN contents. The incorporation of 
SWN had increased the thermal properties and the thermal stabilities of the 
nanocomposites, and simultaneously suppressed the peak rate of heat release and the 
rate of production of smoke and toxic gases. PBT/SWN 1.0 nanocomposite with the 
most balanced properties was used to compare with the natural wollastonite (NW)- 
and graphene oxide (GO)-reinforced PBT composites at the same content. Similar to 
SWN, hydrogen bonds were formed between the NW filler-PBT matrix interface. 
However, due to the larger surface area possessed by SWN, its nanocomposite 

NW. GO demonstrated poor interfacial adhesion with PBT matrix, thus had inferior 
mechanical properties and wear resistance. Nonetheless, PBT/GO 1.0 nanocomposite 
had the best anti-friction performance among the PBT composites due to the 
lubricating ability of GO. All fillers were able to improve the thermal and the 
flammability properties of PBT, where the degradation temperatures were 
significantly increased for PBT/SWN 1.0 and PBT/GO 1.0 nanocomposites by 9 - 14 
ºC. PBT/SWN 1.0 nanocomposite was also used as the base material to fabricate 
PBT/SWN/GO hybrid nanocomposites with 0.5 - 2.0 phr GO contents. By increasing 
the GO contents 
modulus (16%) due to the better dispersion of GO nanosheets. However, due to the 
lacking of interfacial adhesion between GO and PBT matrix, the tensile strength, 
elongation at break, impact strength and wear resistance of hybrid nanocomposites 
were inferior than PBT/SWN 1.0 nanocomposite. The addition of 1.5 phr GO had 
attained the lowest friction coefficient with 34% reduction from that of neat PBT. 
Hybridization of SWN and GO further promoted crystallization, delayed the thermal 
degradation and improved the flame retardancy of hybrid nanocomposites. Overall 
study showed that the multifunctional PBT nanocomposites based on SWN and GO 
have great potential for lightweight structural components, thereby expanding the 
applications of PBT in automotive industry. 
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ABSTRAK 

 
 
 
 

Permintaan terhadap bahan yang ringan dan penjimatan bahan api telah 
memacu pembangunan nanokomposit polimer. Nanokomposit berasaskan polibutilena 
tereftalat (PBT) dan nanogentian wollastonite sintetik (SWN) dihasilkan dalam kajian 
ini. SWN telah disintesis melalui tindak balas hidroterma dalam pelarut dan suhu 
tindak balas yang berbeza, diikuti dengan pengkalsinan. Produk terhasil telah disahkan 
sebagai wollastonite yang berketulenan tinggi bersaiz nano, berbentuk butiran atau 
gentian. SWN yang mempunyai nisbah aspek tertinggi iaitu 16.3 digunakan sebagai 
pengisi nano dalam nanokomposit PBT, ianya dihasilkan secara pukal dalam 
campuran pelarut 20 v/v% etanol, 80 v/v% air dan suhu 200 ºC. Kesan kandungan 
SWN pada sifat mekanikal, haba, tribologi dan kebolehbakaran nanokomposit 
PBT/SWN telah dikaji. Sampel ujian telah dihasilkan melalui kaedah penyebatian 
lebur. Penambahan SWN meningkatkan kekuatan tegangan (6%) dan modulus Young 
(13%) disebabkan oleh kesan pengukuhan SWN dan interaksi yang baik dengan PBT 
melalui ikatan hidrogen. Walau bagaimanapun, pemanjangan takat putus dan kekuatan 
hentaman menurun dengan peningkatan kandungan SWN. PBT diisi dengan 1.0 phr 
SWN mempamerkan gabungan kekakuan dan keliatan yang terbaik. Peningkatan 
ketara dalam rintangan haus (73%) dapat dilihat pada 1.0 phr SWN, manakala pekali 
geseran menurun dengan peningkatan kandungan SWN. Kehadiran SWN 
meningkatkan sifat terma dan kestabilan terma dan menurunkan kemuncak kadar 
pelepasan haba dan kadar pengeluaran asap dan gas toksik. PBT/SWN 1.0 mempunyai 
sifat yang paling seimbang telah dibandingkan dengan komposit yang berasaskan 
wollastonite semula jadi (NW) dan grafin oksida (GO) dengan kandungan yang sama. 
Sama seperti SWN, ikatan hidrogen wujud di antara permukaan PBT dan NW. 
Nanokompositnya mempamerkan kekuatan modulus Young dan rintangan haus yang 
lebih tinggi daripada NW disebabkan oleh luas permukaan yang lebih besar yang 
dimiliki oleh SWN. GO menunjukkan perekatan yang lemah dengan matrik PBT 
menyebabkan sifat mekanikal dan rintangan haus yang lebih rendah. Namun begitu, 
nanokomposit PBT/GO 1.0 mempunyai prestasi anti-geseran yang terbaik di kalangan 
komposit PBT kerana keupayaan pelinciran GO. Semua pengisi berupaya untuk 
meningkatkan sifat terma dan kebolehbakaran PBT yang mana suhu perosotan telah 
meningkat dengan ketara untuk nanokomposit PBT/SWN 1.0 dan PBT/GO 1.0 
sebanyak 9 ºC - 14 ºC. Oleh itu, nanokomposit PBT/SWN 1.0 telah digunakan sebagai 
bahan asas untuk menghasilkan nanokomposit hibrid PBT/SWN/GO dengan 0.5 - 2.0 
phr kandungan GO. Peningkatan kandungan GO dalam nanokomposit hibrid 
menunjukkan penambahbaikan dalam modulus Young (16%) disebabkan oleh serakan 
nanopengisi GO yang lebih baik. Walau bagaimanapun, disebabkan kekurangan 
lekatan antara GO dan PBT, kekuatan tegangan, pemanjangan semasa putus, kekuatan 
hentaman dan rintangan haus nanokomposit hibrid adalah lebih rendah daripada 
nanokomposit PBT/SWN 1.0. Penambahan 1.5 phr GO mencapai pekali geseran 
terendah dengan pengurangan 34% daripada PBT. Hibridisasi SWN dan GO 
menggalakkan lagi penghabluran, melambatkan degradasi terma dan meningkatkan 
rencat nyalaan nanokomposit hibrid. Kajian keseluruhan menunjukkan bahawa 
nanokomposit PBT berdasarkan SWN dan GO mempunyai potensi yang besar dalam 
komponen struktur ringan serta pengembangan aplikasi PBT dalam industri automotif.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 
 
 
 

1.1 Background of Study 

 
 

Due to the limited natural resources and stricter environmental regulations, fuel 

efficiency has become one of the most important featured in automotive design. 

Developing new materials and re-designing of the existing one, particularly the 

advanced plastics and polymer composites have driven the advancements in 

automotive industry. Engineering thermoplastics are playing vital roles in industries 

such as automotive, construction and electrical/electronic industries (Sanusi, 

Benelfellah, and Aït Hocine, 2020). In automotive industry, they are replacing 

materials such as metals and glasses to reduce weight and improve fuel economy 

(Ramanjaneyulu et al., 2017; Ibeh, 2011). Usage of plastics and polymer composites 

as a substitute for heavier materials can lead to an overall 10% weight reduction with 

a 3  7% improvement in fuel efficiency (Miller et al., 2014). Figure 1.1 shows the 

average material composition for a passenger vehicle based on year, indicating the 

increasing mass percentage for plastics from 6% to 18% (Rouilloux et al., 2012; Miller 

et al., 2014).  

 
 
Polymer composite consist of two or more components, with filler materials as 

the most important additives to polymers. Polymer nanocomposite is an alternative to 

the conventional polymer composites, at which the filler material used is in nanoscale. 

Nanoscale fillers have at least one dimension of 100 nm or lesser and vary essentially 

from isotropic to highly anisotropic morphologies (Fu et al., 2019; Szeluga, Kumanek, 

and Trzebicka, 2015). The growth of polymer composite in various applications is due 

to their outstanding strength to weight ratio and cost to performance ratio when 

compared to that of metals. In the last two decades, the development of polymer 
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nanocomposite has replaced the traditional polymer composite. Since the discovery of 

the excellent performance of organophilic clay reinforced polyamide (PA) 6 by Toyota 

Central Research Laboratories, Japan in 1990, polymer nanocomposite has received 

much attention as very little amount of nano-filler can significantly improve thermal 

and mechanical properties of the polymer matrix (Sanusi et al., 2020). Nanoscale 

fillers provide relatively larger surface interactions with the polymer matrix, leading 

to the properties enhancement of polymer matrix at very low filler content (Fu et al., 

2019; Sanusi et al., 2020). Besides its effectiveness, polymer nanocomposites stand 

out as one of the most promising technologies because its processing and 

manufacturing technique is similar to that of conventional polymer composites. Hybrid 

nanocomposite is another focus in polymer industry as the need for high performance 

polymer composites is increasing. Hybrid polymer composites are those systems in 

which one type of filler material is introduced into a mixture of different matrixes, two 

or more filler materials are introduced into a single matrix, or the combination of the 

two approaches (Szeluga et al., 2015; Fu et al., 2019). To achieve desired properties, 

polymer nanocomposites with multi-type fillers have been developed (Ding et al., 

2019; Phutfak and Larpkasemsuk, 2021). By producing a hybrid polymer composite, 

it may be possible to create a material with combined advantages of the individual 

components (Fu et al., 2019).  

 
 

 
Figure 1.1 Average material composition of a passenger vehicle in Europe 

(Rouilloux et al., 2012) 
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Polybutylene terephthalate (PBT) is the engineering thermoplastic counterpart 

of polyethylene terephthalate (PET) commercialized in 1969 (Ibeh, 2011). It is one of 

the raising engineering polymers. The global market for PBT was estimated at 1.3 

Million Metric Tons in the year 2022, and is projected to reach 1.5 Million Metric 

Tons by year 2026, growing at a compound annual growth rate (CAGR) of 4.7% 

(Global Industry Analysts, 2022). According to the world market report by Global 

Industry Analysts in 2022, the largest end-use market of PBT is in automotive and 

followed by the electronics and electrical sector. Owning to the increasing demands 

for lightweight, cost-effective and low-maintenance materials, PBT is projected to 

grow at 5.1% CAGR in automotive segment for the next four years. PBT is commonly 

applied as exterior and interior automotive parts such as fuel system components, 

mirror housings and ignition system components. It gained footing in the market with 

its exclusive properties in dimensional stability, chemical resistance, dielectric 

properties, and heat resistance. However, due to its relatively inferior strength, rigidity, 

thermal stability, friction performance and flammability, PBT is often added with 

fillers to form polymer composites and nanocomposites (Chow, 2015).  

 
 
Wollastonite is a biocompatible mineral filler with many unique characteristics 

and it can act as reinforcing agent and functional filler in polymer materials. It is 

commonly known as calcium metasilicate, CaSiO3 and has acicular crystal shape with 

high aspect ratio, high hardness and good nucleation ability ( vab et al., 2009; Panin 

et al., 2020). With this, it has become a common alternative to fiberglass in enhancing 

the properties of plastics, construction materials and ceramics, as it provides 

characteristics comparable to those of fiberglass (Panin et al., 2020). Wollastonite is 

often being used as reinforcing filler in polymers such as polypropylene (PP) (Ding et 

al., 2019; Luyt et al., 2009), ultra-high-molecular weight polyethylene (UHMWPE) 

(Danilova et al., 2021; Panin et al., 2020) and PBT (Deshmukh et al., 2022; Deshmukh 

et al., 2011a). Wollastonite can be obtained naturally or synthesized through chemical 

reactions. Commercially available wollastonite is naturally obtained from ore through 

the beneficiation process. Synthetic wollastonite can be found in the market as well, 

normally being produced through solid-state reaction (SSR). The synthetic 

wollastonite with controllable quality is preferred as the size, shape and purity of the 
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filler has significant effect on the properties enhancement of polymer composites 

(Ding et al., 2019; Tong et al., 2006). 

 
 
Besides the properties of the polymer matrix and fillers, the morphology and 

size can directly determine the overall properties of the nanocomposite materials (Ding 

et al., 2019; Tong et al., 2006). In an attempt towards developing high-performance 

polymeric nanocomposites, combination of two dissimilar but distinctive nanofillers 

is being introduced into polymer matrix to produce ternary nanocomposites. Also, 

hybridization of nanofillers provides effective means of ensuring dispersibility of 

certain nanofiller using other nanofiller (Fu et al., 2019). Thus, graphene oxide (GO) 

is chosen as the second nanofiller to be incorporated. GO is one of the graphene 

derivatives. Despite of its natural abundancy, graphene and its derivatives have only 

recently merged as functional fillers. In recent years, development of graphene-based 

polymer nanocomposites attracted much attentions. GO is normally produced from 

graphite through a series of oxidation and exfoliation. Similar to graphene, it is in two-

dimensional with planar honeycomb lattice. Its surface area can be greater than 100 

µm2 and its thickness can be less than 1 nm. Due to the presence of oxygen 

functionalities, it can disperse easily in water, organic solvents and different 

hydrophilic matrixes. Moreover, GO has exceptional ability in improving mechanical, 

thermal and friction performances of polymers (Bian et al., 2013; Yetgin, 2020).  

 
 
 
 

1.2 Problem Statement 

 
 

PBT is one of the most commonly used plastics for automotive components 

and electrical/electronic appliances such as under-body and exterior body parts of 

automotive and electronics housings, due to its excellent comprehensive performance. 

Compared with PA, PBT has better dimensional stability due to its negligible moisture 

absorption. PBT is more suitable to be used for injection molding than PET due to its 

lower melt viscosity, good moldability and more rapid crystallization rate. Despite the 

superior properties of PBT, there are some drawbacks that need to be addressed. PBT 

has relatively lower tensile strength and tensile modulus when compare with other 
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engineering materials such as PET, PA and polyoxymethylene (POM). It has poorer 

thermal stability compared to PET and PA. PBT has relatively better tribology 

properties compared to PET, polycarbonate (PC) and phenolics but inferior compared 

to PA and POM. These limit its usage especially when the parts are subjected to 

continuous wear. PBT, PET and PA are relatively flame retardant than POM. 

However, PBT burns rapidly and produces large amount of smoke and toxic gas. 

Hence, enhancement in mechanical, thermal, tribological and flammability properties 

of PBT is vital in order to compete with other engineering polymers or polymer 

composites for more advance applications in automotive industry.  

 
 
With this, current work fabricated a novel PBT nanocomposite by 

incorporating the synthetic wollastonite nanofibers (SWN) to simultaneously enhance 

the overall functional properties. Wollastonite is one of the most popular and effective 

functional filler used in polymer composites to achieve better mechanical, thermal, 

wear resistance and flammability properties (Danilova et al., 2021; Deshmukh et al., 

2022; Chaiwutthinan et al., 2019). Natural wollastonite (NW) with acicular shape in 

broad range of micron-size distribution were commonly used. However, NW can 

hardly achieve high purity with its non-environmental-friendly beneficiation process. 

Also, extra processing steps are need to obtain the desired size and shape of NW. Along 

with the shift towards more sustainable and nanotechnological driven, the synthesis of 

nano-size wollastonite through various chemical route are receiving significant 

attention (Raju et al., 2022; Lin et al., 2007). Compared to the large amount of organic 

solvent required in the beneficiation process of NW ore, chemical routes used to 

synthesis synthetic wollastonite often use little or no template or organic solvent. 

Another advantage of synthetic wollastonite over NW is their high quality in terms of 

purity, as well as their tunable shape and size. Great interest recently arose in this area 

of study regarding the effect of synthesis parameters on the shape and size of synthetic 

wollastonite (Xu et al., 2018; Wu et al., 2013). U only one 

study reported the effect of reaction medium on the shape of calcium silicate system 

(Wang et al., 2005). However, the study is not comprehensive. No previous work 

reported the effect of reaction medium on the size, shape and aspect ratio of synthetic 

wollastonite. Work investigating the effect of reaction parameters on the aspect ratio 

of wollastonite produced is very limited (Zhu and Sohn, 2012).  
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The development of SWN-reinforced PBT nanocomposites in this study was 

also driven by the perpetual pursuit of lightweight materials for better fuel economy 

in automotive industry. Synthetic wollastonite has the advantages over NW in terms 

of its more environmental-friendly synthesis route, high quality and tunable shape and 

size. Thus, the usage of synthetic wollastonite is getting more interests to be used as 

nanofillers in woods, wood plastic composites and polymer nanocomposites. To the 

best of  knowledge, there are very limited work on nano-size synthetic 

wollastonite-reinforced polymer nanocomposites (Danilova et al., 2021; Luyt et al., 

2009; Chatterjee, Khobragade, and Mishra, 2015). Thermoplastics reinforced with 

synthetic wollastonite of different shapes had been fabricated via melt blending 

method (Danilova et al., 2021; Luyt et al., 2009). However, no literature reported on 

the usage of nanostructure synthetic wollastonite in PBT matrix. Other than the 

advantages of synthetic wollastonite over NW mentioned before, micro size 

wollastonite as compared to its nano size counterpart gives inferior performance when 

being used as fillers in advanced materials. Filler size contributed to significant 

differences in performance enhancement of polymer composites, including 

mechanical, thermal and tribological properties (Ding et al., 2019; Tong et al., 2006). 

However, very limited paper reported on the comparative aspects of micro-fillers and 

nano-fillers on the properties enhancement of polymer composites (Sharma et al., 

2015). Moreover, considering the geometry of the particle as an important factor 

affecting the properties of polymer composites, the effect of SWN, NW and GO of 

different sizes, shapes and types on the mechanical, thermal, tribological and 

flammability properties of PBT composites is worth investigating.  

 
 
Nano-size wollastonite was proven to enhance the mechanical properties and 

wear performance in reinforced-thermoplastics (Danilova et al., 2021; Luyt et al., 

2009), while GO is superior in enhancing the tribological properties, specifically in 

lubricating the sliding of polymer materials (Bastiurea, Dima, and Andrei, 2018; 

Yetgin, 2020). Therefore, this research hybridized SWN which is expected to enhance 

the mechanical properties and GO which is responsible for tribological properties 

enhancement into PBT matrix to produce PBT/SWN/GO hybrid nanocomposites with 

balance mechanical, thermal, tribological and flammability properties to offer better 

alternatives in automotive industry. Work concerning the mechanical, thermal, 
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tribological and flammability properties of hybrid SWN/GO reinforced PBT 

nanocomposites has not been reported in literature.  

 
 
 
 

1.3 Objectives of Study 

 
 
 The main objective of this research is to develop a new nanocomposite 

material, hybrid SWN/GO reinforced PBT nanocomposites, which has enhanced 

performance in terms of mechanical, thermal, tribological and flammability properties. 

The specific objectives of the research are described as follows. 

 
 

1. To determine the effect of synthesis parameters (reaction medium and the 

reaction temperature) on the aspect ratio of the SWN produced.  

2. To investigate the effect of SWN content on mechanical, thermal, tribological 

and flammability properties of the PBT/SWN nanocomposites.  

3. To compare the effect of SWN, NW and GO on mechanical, thermal, 

tribological and flammability properties of the PBT-based composites.  

4. To investigate the effect of GO content on mechanical, thermal, tribological 

and flammability properties of the hybrid SWN/GO reinforced PBT 

nanocomposites.  

 
 
 
 
1.4 Scope of Study 

 
 

Based on the objectives, the following has been identified as the scopes of 

study. 

 
 

1. SWN were synthesized through a simple hydrothermal method using analytical 

grade calcium nitrate tetrahydrate (Ca(NO3)2 4H2O) and sodium meta-silicate-

pentahydrate (Na2SiO3 5H2O) as the reagents. The ethanol composition in 

reaction medium (0% v/v to 80% v/v) and the reaction temperature (160 °C to 
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240 °C) were varied to study their effect on the aspect ratio of SWN. All 

powders produced were characterized using x-ray diffractometer (XRD), 

fourier transform infrared spectrometer (FTIR), thermogravimetric analyzer 

(TGA) and field emission scanning electron microscope (FESEM). 

2. The preparation of PBT/SWN nanocomposites with different SWN content (0 

phr to 3.0 phr) were done by using melt compounding. The structural and 

morphological characterization of neat PBT and PBT/SWN nanocomposites 

were studied using FTIR, FESEM and energy dispersive X-ray spectroscope 

(EDS). The effect of SWN content on the mechanical properties of PBT/SWN 

nanocomposites were determined by conducting tensile test (ASTM D638) and 

notched Izod impact test (ASTM D256). Thermal properties were determined 

using differential scanning calorimeter (DSC) and TGA. Meanwhile, the 

friction and wear performance were determined using a pin-on-disc (POD) 

tribo test machine (ASTM G99). Lastly, cone calorimetry (ISO 5660) was used 

to determine the flammability properties of PBT/SWN nanocomposites.  

3. SWN content which exhibited the most balanced functional properties were 

identified from the PBT/SWN nanocomposites. Similar filler content was used 

to prepare PBT/NW composite and PBT/GO nanocomposite, via the similar 

fabrication method with that of PBT/SWN nanocomposites. The effect of filler 

size and shape on the properties of PBT composites was studied. For 

comparison purpose, the structural, morphological, mechanical, thermal, 

tribological and flammability properties of PBT/NW composite and PBT/GO 

nanocomposite were determined by conducting similar testing.  

4. In order to investigate the effect of GO content on mechanical, thermal, 

tribological and flammability properties of the PBT/SWN/GO hybrid 

nanocomposites, SWN content was remined constant, while GO content was 

varied from 0.5 phr to 2.0 phr. Similar fabrication method and testing methods 

were used in preparing and characterizing PBT/SWN/GO hybrid 

nanocomposites. 
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1.5 Significance of Study 

 
 

This study developed PBT/SWN nanocomposites and PBT/SWN/GO hybrid 

nanocomposites, which have better mechanical, thermal, tribological and flammability 

properties than PBT. The mechanical, thermal, wear resistance and flammability 

properties of neat PBT were enhanced with the inclusion of SWN, while the 

hybridization of SWN and GO further exhibited synergistic effect in improving the 

anti-friction performance of the PBT/SWN/GO hybrid nanocomposites. The 

hybridization of SWN and GO showed more homogenous distribution of GO 

nanosheets in the PBT matrix, resulting in overall improvement in material properties. 

This research established the suitable polymer matrix to filler ratios for PBT/SWN 

nanocomposite and PBT/SWN/GO hybrid nanocomposites in order to achieve the 

best-balanced performance in mechanical, thermal, tribological and flammability 

properties. Therefore, lightweight PBT/SWN/GO hybrid nanocomposite with 

relatively superior properties was fabricated. It explores the potential applications of 

PBT/SWN/GO nanocomposites in automotive industry in order to replace other 

materials such as metal which has high density, high-performance polymers which are 

more expensive and commodity polymers which have inferior performance, for the 

purpose of safety and better fuel efficiency. The applications of PBT in automotive 

industry can be extended especially to those parts that require good tribological 

properties, such as bushings, bearings and gears.  

 
 
 
 
1.6 Thesis Structure 

 
 

 In this research, SWN with different sizes and shapes were successfully 

synthesized through a simple hydrothermal reaction. SWN with the highest aspect ratio 

produced from the tailored reaction medium and temperature was incorporated into 

PBT matrix to enhance the properties. It was further hybridized with GO to formed 

PBT/SWN/GO hybrid nanocomposites with better properties. Specifically, this 

research focuses on the mechanical, thermal, tribological and flammability properties 
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of the neat PBT and its composites, at which these properties are taken seriously in 

automotive industries. This thesis is divided into eight chapters as follows: 

 
 

 The first chapter provides an overview of the research conducted. It covers the 

research background, the problem that driven the study, objectives, scopes and 

the significance of the study.  

 The second chapter discussed and evaluated the previous related research 

reported in the literature to identify the research gaps.  

 The third chapter outlined the materials, research design and methods used in 

this study.  

 The fourth chapter reported the results and detailed discussion on the effect of 

reaction medium and temperature on the aspect ratio of the SWN synthesized. 

 The fifth chapter described the variations in mechanical, thermal, tribological 

and flammability properties of PBT/SWN nanocomposite as a function of 

SWN content. 

 The sixth chapter compared the mechanical, thermal, tribological and 

flammability properties of PBT/SWN nanocomposite, PBT/NW composite 

and PBT/GO nanocomposites.  

 The seventh chapter analyzed and discussed the effect of GO content on the 

properties performances of PBT/SWN/GO hybrid nanocomposites.  

 The eighth chapter highlighted the findings on the research, assessed the 

achievement of research objectives and suggested the future research focuses.  
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