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ABSTRACT 

Numerous test case prioritization (TCP) approaches have been introduced to 

enhance the test viability in software testing activity with the goal to maximize early 

average percentage fault detection (APFD). String based approach had shown that 

applying a single string distance-based metric to differentiate the test cases can 

improve the APFD and coverage rate (CR) results. However, to precisely differentiate 

the test cases in regression testing, the string approach still requires an enhancement 

as it lacks priority criteria. Therefore, a study on how to effectively cluster and 

prioritize test cases through string-based approach is conducted. To counter the string 

distances problem, weighted string distances is introduced. A further enhancement was 

made by tuning the weighted string metric with K-Means clustering and prioritization 

using Firefly Algorithm (FA) technique for the TCP approach to become more flexible 

in manipulating available information. Then, the combination of the weighted string 

distances along with clustering and prioritization is executed under the designed 

process for a new weighted string distances-based approach for complete evaluation. 

The experimental results show that all the weighted string distances obtained better 

results compared to its single string metric with average APFD values 95.73% and CR 

values 61.80% in cstcas Siemen dataset. As for the proposed weighted string distances 

approach with clustering techniques for regression testing, the combination obtained 

better results and flexibility than the conventional string approach. In addition, the 

proposed approach also passed statistical assessment by obtaining p-value higher than 

0.05 in Shapiro-Wilk’s normality test and p-value lower than 0.05 in Tukey Kramer 

Post Hoc tests. In conclusion, the proposed weighted string distances approach 

improves the overall score of APFD and CE and provides flexibility in the TCP 

approach for regression testing environment. 
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ABSTRAK 

Banyak pendekatan keutamaan kes ujian (TCP) telah diperkenalkan untuk 

meningkatkan daya maju ujian dalam aktiviti pengujian perisian dengan matlamat 

untuk memaksimumkan pengesanan kesalahan peratusan purata awal (APFD). 

Pendekatan berasaskan rentetan telah menunjukkan bahawa dengan menggunakan 

metrik berasaskan jarak rentetan tunggal untuk membezakan kes ujian boleh 

meningkatkan keputusan APFD dan kadar liputan (CR). Walau bagaimanapun, untuk 

membezakan kes ujian dengan tepat dalam ujian regresi, pendekatan rentetan masih 

memerlukan peningkatan kerana ia tidak mempunyai kriteria keutamaan. Oleh itu, satu 

kajian tentang cara mengelompokkan dan mengutamakan kes ujian secara berkesan 

melalui pendekatan berasaskan rentetan dijalankan. Untuk mengatasi masalah jarak 

rentetan, jarak rentetan berwajaran diperkenalkan. Penambahbaikan selanjutnya dibuat 

dengan menala metrik jarak rentetan berwajaran dengan pengelompokan K-Means dan 

keutamaan menggunakan teknik algorithma kelip-kelip (FA) untuk pendekatan TCP 

agar menjadi lebih fleksibel untuk memanipulasi maklumat yang tersedia. Kemudian, 

gabungan metrik jarak rentetan berwajaran bersama pengelompokan dan keutamaan 

dilaksanakan di bawah proses yang direka bentuk untuk pendekatan berasaskan jarak 

rentetan berwajaran baharu untuk penilaian lengkap. Keputusan eksperimen 

menunjukkan bahawa semua metrik jarak rentetan berwajaran memperoleh hasil yang 

lebih baik berbanding dengan metrik rentetan tunggalnya dengan purata nilai APFD 

95.73% dan nilai CR 61.80% dalam set data cstcas Siemen. Bagi pendekatan jarak 

rentetan berwajaran yang dicadangkan dengan teknik pengelompokan untuk ujian 

regresi, gabungan itu berjaya memperoleh hasil dan fleksibiliti yang lebih baik 

berbanding dengan pendekatan rentetan konvensional. Di samping itu, pendekatan 

yang dicadangkan juga melepasi penilaian statistik dengan mendapatkan nilai p lebih 

tinggi daripada 0.05 dalam ujian normaliti Shapiro-Wilk dan nilai p lebih rendah 

daripada 0.05 dalam ujian Post Hoc Tukey Kramer. Sebagai kesimpulan, pendekatan 

jarak rentetan berwajaran yang dicadangkan berjaya meningkatkan skor keseluruhan 

APFD dan CE serta menyediakan fleksibiliti dalam pendekatan TCP untuk 

persekitaran ujian regresi. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

The first and foremost chapter presents the background of the study, challenges 

in the current Test Case Prioritization (TCP) methodology, challenges in test case 

distinction, challenges in the applied algorithm in TCP, motivation of study, problem 

statement, research objectives, the scope of the research and significance of the study. 

These challenges have been discussed in-depth to identify the research gaps that 

matched the research questions. Research objectives are then outlined to answer the 

research questions. The research boundaries are defined by outlining the research 

scopes. Later, the significance of the research is discussed to emphasize the importance 

and contribution of the study to enhance the existing approaches in the domain area. 

Software engineering is not just programming and software development. 

Software engineering is the implementation of engineering procedures in the 

development of any software systematically. Within a software development 

process, software testing consumes a longer time in execution and can be the most 

expensive phase (Myers et al., 2004). Software testing is typically carried out even 

with time constraints and fixed resources (Mohd-Shafie et al., 2021). Software 

engineering groups are regularly compelled to end their testing activities because of 

financial and time necessities, which will trigger difficulties such as software quality 

and client agreement problems. 

As the software evolves, a software test suite tends to increase in size, 

frequently making it expensive to execute. Research shows software testing is an 

expensive process that may require more than 33% of the cumulative expenses of the 

software (Chittimalli & Harrold, 2009; Zhang et al., 2018). In the work of Yoo and 

Harman (Pan et al., 2022), various test approaches were examined to supplement the 
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importance of the accumulated test suite in testing. Those studies were then classified 

into three domains; test case minimization, test case selection, and test case 

prioritization. 

Test case prioritization (TCP) aims to order a set of test cases to achieve an 

early optimization based on preferred properties (Amit Kumar & Singh, 2014). It gives 

an approach the ability to execute highly significant test cases first according to some 

measure and produce the desired outcome, such as revealing faults earlier and 

providing feedback to the testers. It also helps to find the ideal permutation of a series 

of test cases and could be executed accordingly (Mohd-Shafie et al., 2020; Yoo & 

Harman, 2012a). There are many dimensions of test case prioritization techniques. As 

many as eight broad dimensions were described by (Singh, 2012). Each approach has 

specified potential values, advantages, and limitations. 

The inputs and dataset type play an essential role in the determination of their 

advantages and limitation. As there were different approaches, the methodology for 

each approach may also vary (Arora & Bhatia, 2018). As a result of this variation, it 

benefits project managers in adjusting their project schedules to counter the constraint 

within the project development process. However, most TCP approaches are not 

flexible enough to adequately fit different types of changes in regression testing 

(Garousi et al., 2018). This has resulted in less TCP utilization in current software 

development trends. Therefore, there is a gap in having a TCP approach that can adapt 

to different types of software development environment changes. 

Artificial intelligence (AI) has emerged in TCP as one of the techniques that 

can support different types of changes but requires well-coded algorithms to cover 

multiple types of changes by itself. Regardless of the difficulty, the technique 

utilization in TCP is becoming the most popular TCP approach available nowadays. 

Numerous works have emerged recently (Bajaj & Sangwan, 2019; Hao, Zhang, Zang, 

et al., 2016; Prado & Vergilio, 2019; Shahbazi & Miller, 2016). AI techniques have 

been successfully used to reduce the effort of many software engineering activities 

(Hao, Zhang, Zang et al., 2016). In particular, machine learning (ML) techniques, a 

research field at the intersection of AI, computer science, and statistics, have been 
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applied to automate various software engineering activities (Mece et al., 2020). In the 

TCP approach, the ML technique has been well welcomed recently (Mece et al., 2020). 

However, as software systems have become gradually complex, some conventional 

TCP approaches may not scale well to the complexity of these modern software 

systems. This snowballing complexity of recent software systems has solidified the 

neediness of ML techniques in TCP. 

As the system was going to evolve, the process normally starts with 

requirement changes down to its model and, finally, the source code. These three 

phases of change hold helpful information that can be used as the resources and inputs 

for the TCP process. Each phase may have contributed a different level of information 

either as its reliability or precisely noted. All these changes can be clustered and 

classified to help the developers keep track of the software changes during the software 

developments. This can be an essential contributing factor to software project success, 

leading to less maintainable software. Thus, having a clustering technique in the TCP 

process is worth to be explored to achieve effective software testing by reducing test 

effort and increasing fault detection. 

To apply ML techniques in TCP, each of the test cases available has to be 

distinguished properly. One of the methods is by using string metrics. String metrics 

play an important role in text-related research and applications in tasks such as 

information retrieval, text classification, document clustering, topic detection, topic 

tracking, questions generation, question answering, essay scoring, short answer 

scoring, machine translation, text summarization, and others (Gomaa & Fahmy, 2013). 

The string metric can be categorized based on its metric calculation, such as distances, 

similarity, and weight. However, to precisely calculate the distance between test cases, 

a specific and reliable string metric with specific priority was required where existing 

works (Bo Jiang & Chan, 2015; Ledru et al., 2012) have utilized one simple string 

similarity metric only, which produce numerous redundancy in equivalent value. 

Therefore, there is a need for enhancement of string similarity metric in order to 

overcome the issues. 
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To complete the TCP approach process, prioritization activity may occur after 

the clustering ML technique, which uses string metrics as discussed earlier. Recent 

works (Bo Jiang & Chan, 2015; Prado & Vergilio, 2019) indicate that the heuristic 

prioritization algorithm can significantly affect the TCP process. Their findings 

suggest that heuristic algorithms may increase the average percentage of fault 

detection (APFD) results. However, the result may differ if a clustering technique is 

applied before prioritization activity takes place. Therefore, there is a need for 

improvement to be made to prioritize the clustered test cases using string metric with 

its priority, improving the efficiency of the whole TCP process. 

The main challenge to the problems alluded to can be divided into three 

primary issues: TCP Approaches that do not adequately address different types of 

changes, single string similarity metric formulation, and prioritization with ML 

technique. The string distances determine how far the distances between each test case 

are based on their attribute, such as test case inputs. ML techniques were then used to 

cluster the test cases, which must be prioritized to complete the TCP process. This 

prioritization algorithm is crucial to prioritize the clustered test cases with its 

calculated distance values among them. As for the process of TCP, it is meant to 

provide systematic guidance on how to execute the TCP process with an ML 

technique, specifically with consideration of string metrics. All the issues aim to 

address the issues of systematic fault detection in test case prioritization, problems 

which will be explained in detail in the following sections. 

1.2 Challenge in Test Case Prioritization 

Software engineering is highly concerned about systematically applying 

engineering processes to software development. Therefore, it is necessary to have a 

systematic process for the ML technique in the TCP approach. Numerous works 

exhibit similar process flow, with the only notable difference in adding or reducing 

one step to an existing process flow (Arora & Bhatia, 2018; Bajaj & Sangwan, 2019; 

Kazmi et al., 2017). This variation of process flow may give different results in a 

similar technique with the same dataset. However, a well-described approach using 

the combination of string similarity based on ML techniques has yet to be introduced 



 

5 

(Mukherjee & Patnaik, 2021). Therefore, the challenge in this process can be 

recognized as how to apply an ML technique in TCP with consideration of string 

metrics into the testing environment to improve the effectiveness of the process? 

Generally, the TCP process starts with the preparation of data; even though no 

single paper clearly states it, it is compulsory for any experiment or research to identify 

which information or data will be used (Mukherjee & Patnaik, 2021). The data or 

information in TCP can be in the form of requirement statements, system models, and 

source code. The process is followed by determining and calculating prioritization 

criteria or dependency based on the data chosen. Then, the process goes on to prioritize 

the calculated criteria or dependency and measure the performance. However, formally 

defined steps and processes, especially in ML techniques with the challenges stated, 

are worth addressing (Bagherzadeh et al., 2021). 

String metrics play an important role in text-related research and applications 

in tasks such as information retrieval, text classification, document clustering, topic 

detection, topic tracking, question generation, question answering, essay scoring, short 

answer scoring, machine translation, text summarization, and others. For example, the 

work by Jiang and Chan (Bo Jiang & Chan, 2015) tries to maximize test case diversity 

through test cases input information which is differ from Ledru's work (Ledru et al., 

2012), where they treat each test case as a string of characters and prioritize test cases 

by using a simple string edit distance to determine the similarity between test cases. In 

these techniques, the goal is to give high priority to test cases that are vastly unalike 

(e.g., because they invoke different methods or have high string distances), thereby 

maximizing test case diversity and casting a wide net for detecting unique faults 

(Hemmati et al., 2011; Thomas et al., 2014). 

However, using only string distance values, the possibility of having the same 

distance is quite high and may affect the prioritization process. Therefore, there was 

such an opportunity for improvement, as the prioritization was made based on the 

differences between two points; instead of using one metric only, which is distance, 

this string distances formulation may be enhanced more with another possible metric. 

Back to this sub-chapters objective, the challenges from this opening are, namely, how 
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can string distances be enhanced with other metrics and, simultaneously, can give the 

necessary priority to test cases that are greatly altered. As supporting evidence, 

previous works reported prioritized test cases using string distance to have promising 

APFD values compared to randomly ordered ones (Bo Jiang & Chan, 2015; Ledru et 

al., 2012). However, the average APFD rank for almost all string distances was nearly 

identical (Ledru et al., 2012). A work using two string distances also faces similar 

problems (Wen et al., 2019). Hence, this implies an enhancement for string distances 

with other related metrics, such as the weighting scale, was worth further analysis. 

As for the prioritization algorithm challenge, this research utilizes the 

generated test cases and prioritizes them based on their inputs to calculate the string 

distance/similarity between test cases. The fitness function that will be used is based 

on string similarity or distance between the test case and its neighboring test cases 

throughout the whole test suite. Assuming there are 1500 test cases, the number of 

permutations to complete evaluate the whole possible test cases sequences distances 

were 1500!, which is equal to 1500×1499×1498×…..×1 in value, and it is impossible 

for human manual prioritization. This situation is more likely similar to the traveling 

salesman problem (TSP), which is highly intractable (Bagloee & Asadi, 2015). The 

complexity arises from the size of test cases for the system. Thus, the worst-case 

running time for any algorithm for the TCP may increase exponentially with the 

number of test cases. For this reason, the challenges in the TCP algorithm for string 

metric can be recognized as; how prioritization algorithms should be tuned with sting 

metric, which could result in superior outcomes in terms of execution time and 

obtaining better APFD results for TCP itself. 

Recent works (Hema Shankari et al., 2021; Bo Jiang & Chan, 2015; Panwar et 

al., 2018) show that the heuristic prioritization algorithm can significantly affect the 

TCP process. From their finding, using artificial intelligence algorithms may increase 

the average percentage of fault detection (APFD) results. However, existing 

prioritization often fails to provide the efficiency of coverage rate and execution time 

improvement. In this sense, a suitable prioritization algorithm that suits the challenges 

stated is worth investigating. 
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As time progressed, there were many new ML techniques introduced. These 

ML techniques can be categorized into several categories (Mahdieh et al., 2020; 

Malhotra, 2015). The categories can be named supervised, unsupervised, and 

reinforcement. The unsupervised ML technique is reserved when there is no historical 

information or incomplete information regarding the study program. The unsupervised 

ML technique may also have been chosen as it has been far less complex than the 

supervised ML technique (Hajri et al., 2019; Khalid & Qamar, 2019). The clustering 

technique was the most popular unsupervised ML technique in TCP. Work by Chen 

(Chen et al., 2018) proposed adaptive random sequences based on clustering 

techniques. By using black box information, their clustering techniques manage to 

cluster test cases as diverse as possible.  

As the experiment is conducted further, the result shows that the technique 

manages to unfold fault at an earlier stage with higher effectiveness. Recent studies 

also show that the clustering technique may have high efficiency in terms of time 

execution, leading to cost-effectiveness (Harikarthik et al., 2019; Khalid & Qamar, 

2019). However, some notable issues are outlined in the ML technique, specifically in 

clustering. One of them is the number of classes or clusters that could affect the results 

significantly (Chen et al., 2018). Apart from that, low performance on coverage rate 

due to imperfect differentiating the test cases do raise some attention in the TCP 

approach. Therefore, a well-tuned clustering ML technique with metric string 

enhancement could improve the coverage rate worth exploring. For this reason, the 

challenges for ML technique in TCP can recognize as; how ML technique can be tuned 

with the consideration of enhanced string metric algorithms to resolve the number of 

cluster issues which could result in superior outcomes in terms of coverage rate as well 

as obtaining better APFD result for TCP itself. 

1.3 Research Gaps, Problem Statement and Research Questions 

The study was conducted with the mean idea of systematically prioritizing test 

case prioritization (TCP) using the TCP string approach, driven by the problem arising 

from the string metrics formulations and its prioritization. Problems such as lack of 

metric consideration for the string metrics affect the uniqueness of each test case and 
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may result in many similarities in the distance between test cases. In this sense, the 

prioritization algorithm often fails to offer an accurate path with desired distances. As 

for the ML technique, problems such as high numbers of clusters or classes formed 

due to differences in test cases resulted in a low coverage rate in TCP. In summary, 

the research gaps from the previous sub-chapter can be listed as follow: 

i. String distance techniques have proven to be a technique that can work with 

any type of data but have a number of redundancy values that effected the 

average fault detection rate (APFD) and coverage rate (CR). 

ii. Clustering techniques in TCP manage to cluster test cases based on changes 

but may have redundant priority values within the clusters, which reduces 

the APFD rate. 

iii. TCP approaches that do not adequately address the process of String-Based 

TCP and Search-Based TCP. 

Therefore, in this study, the TCP single string-based approach is addressed by 

the formulation of the weighted string distance metric, the prioritization algorithm for 

the dual factor string metric, and the clustering of the test case using the weighted 

string distance metric. Concretely, the macro research question of this study is: 

“How to effectively cluster and prioritize test cases using the weighted string 

distance approach for test case prioritization in software testing?” 

This research question is broad and requires various micro research questions 

to answer. The word effectiveness consists of several other metrics: fault detection 

rate, coverage rate, and execution time (Hao, Zhang, & Mei, 2016; Lou et al., 2019; 

Rothermel et al., 1999). To realize this research goal, four research questions need to 

be answered: 

i. How to design the weighted string distances to ensure that string distances 

have a sufficient enhancement to improve APFD and CR in TCP? 
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ii. How to tune clustering and prioritization technique together with the 

weighted string distances to improve APFD rate in TCP? 

iii. How to apply the proposed weighted string distance TCP approach with 

clustering technique into testing environment in order to improve the 

overall effectiveness of TCP? 

1.4 Research Objectives 

This study aims to establish a weighted string distance approach based on a 

modified clustering technique for optimizing test case prioritization. From the aim of 

the study and derived research questions, the following research objectives are defined, 

specifically: 

i. To design a weighted string distance metric in test case prioritization by 

combining string distances and its weight-based metric to improve fault 

detection rate (APFD) and coverage rate (CR). 

ii. To modify clustering technique and firefly algorithm with weighted string 

distance metric for optimizing test case prioritization to improve the APFD, 

CR, and timely execution results. 

iii. To propose and evaluate the weighted string distance approach with 

clustering technique for optimizing test case prioritization on the 

benchmark datasets and its applicability to case study. 

1.5 Scope of Study 

The scopes of this research are limited within the following scopes: 

i. The research focuses on small to medium-scale specialized systems 

available in many engineering applications. 
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ii. Dataset and benchmark programs with any type of change availability 

would be used to compare the findings of the enhanced test case 

prioritization technique to the existing test case prioritization. 

iii. The research applied to software testing environments specifically on the 

test case prioritization domain only. 

1.6 Thesis Structure and Organization 

This thesis is outlined as follows: 

Chapter 1 provides a brief overview of the research. It consists of a brief 

overview of software system development, software testing, test case prioritization 

techniques, and string metrics. Apart from that, this chapter highlight statement of the 

problem, research questions, aims and objectives of the study, and scope of the study. 

Chapter 2 provides a brief overview of related works on test case prioritization. 

A summary of the literature review on TCP approaches is also presented. Besides that, 

string distances and ML and prioritization algorithms are briefly reviewed in the 

literature. Chapter 3 describes the overview of the research theoretical framework and 

research operational framework. This chapter also introduces application case studies 

and benchmark case studies used in this study for applicability and verification. 

Chapter 4 elaborates on the implementation of four string distances: 

Manhattan, Levenshtein, Cosine Similarity, and Jaccard. Besides that, a proposed 

weighted string distance metric is implemented. Results are compared against the other 

four string distances. While in chapter 5 elaborate on the implementation of weighted 

string distance metric and prioritization with a heuristic algorithm applied, namely 

firefly. This serves as supporting results for the first objective and supporting evidence 

for further enhancement, leading to the implementation of the ML technique in the 

TCP approach. This chapter also elaborates on the method of implementing weighted 

string distance metric with the combination of the clustering technique. This serves as 



 

11 

results for the second objective and supporting evidence for the effectiveness of the 

proposed double-string technique. 

Chapter 6 elaborates on the proposed weighted string distance approach with 

the clustering technique for optimizing TCP. The methodology was then applied to the 

case study. The statistical evaluation of the result of the case study is also conducted 

in this chapter. To form a conclusion, Chapter 7 highlights the research achievement, 

research contribution, and future works. 
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