

WEIGHTED STRING DISTANCE APPROACH BASED ON

MODIFIED CLUSTERING TECHNIQUE FOR

OPTIMIZING TEST CASE PRIORITIZATION

MUHAMMAD KHATIBSYARBINI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy

Faculty of Computing

Universiti Teknologi Malaysia

OCTOBER 2022

iv

DEDICATION

This thesis is dedicated to my beloved parents, who taught me that the best
kind of knowledge to have is that to believe that everything come from Him and was
destiny for specific purposed. It is also dedicated to my lecturers, who taught me that
even the largest task can be accomplished if it is done one step at a time.

v

ACKNOWLEDGEMENT

Praise upon to HIM, for the blessings that I am able to finish this research. First
of all, I would like to express my gratitude to my parents, my wife and family members
for giving me the non-stop morale support for me to complete my studies.

In preparing this thesis, I was in contact with many people, researchers,
academicians, and practitioners. They have contributed towards my understanding and
thoughts. In particular, I wish to express my sincere appreciation to my main thesis
supervisor, Professor Dr. Mohd Adham bin Isa, for encouragement, guidance, critics
and friendship. I am also very thankful to my co-supervisor Prof. Dr. Dayang
Norhayati bt. Abang Jawawi for their guidance, advices and motivation. Without their
continued support and interest, this thesis would not have been the same as presented
here.

I am also indebted to Universiti Teknologi Malaysia (UTM) for funding my
PhD study. My fellow postgraduate student should also be recognised for their support.
My sincere appreciation also extends to all my colleagues and others who have
provided assistance at various occasions. Their views and tips are useful indeed.
Unfortunately, it is not possible to list all of them in this limited space.

vi

ABSTRACT

Numerous test case prioritization (TCP) approaches have been introduced to

enhance the test viability in software testing activity with the goal to maximize early

average percentage fault detection (APFD). String based approach had shown that

applying a single string distance-based metric to differentiate the test cases can

improve the APFD and coverage rate (CR) results. However, to precisely differentiate

the test cases in regression testing, the string approach still requires an enhancement

as it lacks priority criteria. Therefore, a study on how to effectively cluster and

prioritize test cases through string-based approach is conducted. To counter the string

distances problem, weighted string distances is introduced. A further enhancement was

made by tuning the weighted string metric with K-Means clustering and prioritization

using Firefly Algorithm (FA) technique for the TCP approach to become more flexible

in manipulating available information. Then, the combination of the weighted string

distances along with clustering and prioritization is executed under the designed

process for a new weighted string distances-based approach for complete evaluation.

The experimental results show that all the weighted string distances obtained better

results compared to its single string metric with average APFD values 95.73% and CR

values 61.80% in cstcas Siemen dataset. As for the proposed weighted string distances

approach with clustering techniques for regression testing, the combination obtained

better results and flexibility than the conventional string approach. In addition, the

proposed approach also passed statistical assessment by obtaining p-value higher than

0.05 in Shapiro-Wilk’s normality test and p-value lower than 0.05 in Tukey Kramer

Post Hoc tests. In conclusion, the proposed weighted string distances approach

improves the overall score of APFD and CE and provides flexibility in the TCP

approach for regression testing environment.

vii

ABSTRAK

Banyak pendekatan keutamaan kes ujian (TCP) telah diperkenalkan untuk

meningkatkan daya maju ujian dalam aktiviti pengujian perisian dengan matlamat

untuk memaksimumkan pengesanan kesalahan peratusan purata awal (APFD).

Pendekatan berasaskan rentetan telah menunjukkan bahawa dengan menggunakan

metrik berasaskan jarak rentetan tunggal untuk membezakan kes ujian boleh

meningkatkan keputusan APFD dan kadar liputan (CR). Walau bagaimanapun, untuk

membezakan kes ujian dengan tepat dalam ujian regresi, pendekatan rentetan masih

memerlukan peningkatan kerana ia tidak mempunyai kriteria keutamaan. Oleh itu, satu

kajian tentang cara mengelompokkan dan mengutamakan kes ujian secara berkesan

melalui pendekatan berasaskan rentetan dijalankan. Untuk mengatasi masalah jarak

rentetan, jarak rentetan berwajaran diperkenalkan. Penambahbaikan selanjutnya dibuat

dengan menala metrik jarak rentetan berwajaran dengan pengelompokan K-Means dan

keutamaan menggunakan teknik algorithma kelip-kelip (FA) untuk pendekatan TCP

agar menjadi lebih fleksibel untuk memanipulasi maklumat yang tersedia. Kemudian,

gabungan metrik jarak rentetan berwajaran bersama pengelompokan dan keutamaan

dilaksanakan di bawah proses yang direka bentuk untuk pendekatan berasaskan jarak

rentetan berwajaran baharu untuk penilaian lengkap. Keputusan eksperimen

menunjukkan bahawa semua metrik jarak rentetan berwajaran memperoleh hasil yang

lebih baik berbanding dengan metrik rentetan tunggalnya dengan purata nilai APFD

95.73% dan nilai CR 61.80% dalam set data cstcas Siemen. Bagi pendekatan jarak

rentetan berwajaran yang dicadangkan dengan teknik pengelompokan untuk ujian

regresi, gabungan itu berjaya memperoleh hasil dan fleksibiliti yang lebih baik

berbanding dengan pendekatan rentetan konvensional. Di samping itu, pendekatan

yang dicadangkan juga melepasi penilaian statistik dengan mendapatkan nilai p lebih

tinggi daripada 0.05 dalam ujian normaliti Shapiro-Wilk dan nilai p lebih rendah

daripada 0.05 dalam ujian Post Hoc Tukey Kramer. Sebagai kesimpulan, pendekatan

jarak rentetan berwajaran yang dicadangkan berjaya meningkatkan skor keseluruhan

APFD dan CE serta menyediakan fleksibiliti dalam pendekatan TCP untuk

persekitaran ujian regresi.

viii

TABLE OF CONTENTS

 TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xiii

LIST OF FIGURES xv

LIST OF ABBREVIATIONS xvii

LIST OF SYMBOLS xviii

CHAPTER 1 INTRODUCTION 1

1.1 Background of the Study 1

1.2 Challenge in Test Case Prioritization 4

1.3 Research Gaps, Problem Statement and Research
Questions 7

1.4 Research Objectives 9

1.5 Scope of Study 9

1.6 Thesis Structure and Organization 10

CHAPTER 2 LITERATURE REVIEW 13

2.1 Introduction 13

2.2 Test Case Prioritization 13

2.2.1 Comparison of Existing Prioritization
Approach 17

2.3 Changes Utilization in Test Case Prioritization 21

2.3.1 Requirement Changes in Test Case
Prioritization 22

2.3.2 Code Changes in Test Case Prioritization 22

ix

2.3.3 Test Cases Changes in Test Case Prioritization 23

2.3.4 Fault Changes in Test Case Prioritization 23

2.3.5 Comparison of Changes Utilization in Test
Case Prioritization 23

2.4 String Metric 25

2.4.1 Manhattan 26

2.4.2 Levenshtein 27

2.4.3 Cosine Similarity 27

2.4.4 Jaccard 28

2.4.5 Two-level Edit Distance 28

2.4.6 Jaccard – Cosine Similarity Distance 29

2.4.7 Summary of String Distances Metric 29

2.5 Machine Learning Technique 32

2.5.1 Comparison Existing ML Technique in TCP 34

2.6 Prioritization Algorithm 38

2.6.1 Nearest Neighbour 38

2.6.2 Local Beam Search 39

2.6.3 Firefly 40

2.6.4 Summary of Prioritization Algorithm 40

2.7 Evaluation Metric 42

2.7.1 Average Percentage Fault Detection (APFD) 42

2.7.2 Coverage Rate (CR) 43

2.7.3 Analysis of variance (ANOVA) 43

2.8 Summary 44

CHAPTER 3 RESEARCH METHODOLOGY 45

3.1 Introduction 45

3.2 Research Operational Process 45

3.3 Research Framework 48

3.4 Benchmark Dataset and Case Study 50

3.4.1 Case Study - RWS 51

3.4.2 Benchmark Program 53

3.4.2.1 TCAS Benchmark Program 54

x

3.4.2.2 UNIX Benchmark Program 55

3.5 The Term Frequency Inverse Document Frequency 55

3.6 The Experiment Design 56

3.6.1 The Experiment Setup 56

3.7 Summary 58

CHAPTER 4 PROPOSED WEIGHTED STRING DISTANCE

METRIC 59

4.1 Overview 59

4.2 The Application of String Distance Metric 59

4.3 Experiment String Distances on Benchmark Program 62

4.3.1 Experiment Results 62

4.4 The Proposed Weighted String Distance 63

4.4.1 Enhancement Inspiration and Motivation 63

4.4.2 Enhancement Steps and Modification 64

4.5 Results and Discussion 68

4.5.1 Average Percentage Fault Detection (APFD)
Results 69

4.5.2 Coverage Rate (CR) Results 72

4.5.3 Time Execution and Overall Discussion 75

4.6 Experiment Findings 76

4.7 Summary 76

CHAPTER 5 WEIGHTED STRING DISTANCE METRIC

WITH CLUSTERING AND FIREFLY

ALGORITHM 77

5.1 Overview 77

5.2 Overview of Algorithms 77

5.2.1 The K-Means Clustering Algorithm 78

5.2.2 The Firefly Algorithm 79

5.3 The Experiments Results 80

5.3.1 Tuned Clustering with Weighted String
Distance Results 80

5.3.1.1 APFD Results for Tuned Clustering
with Weighted String Distance 81

xi

5.3.1.2 Overall CR and Time Results 84

5.3.2 Tuned Firefly Algorithm with Weighted String
Distance Results 85

5.3.2.1 APFD Results for Tuned FA with
Weighted String Distance 87

5.3.2.2 Overall CR and Time Results 90

5.4 Overall Discussion 91

5.5 Summary 92

CHAPTER 6 EVALUATION AND COMPARISON OF THE

PROPOSED WEIGHTED STRING DISTANCE

WITH MODIFIED CLUSTER AND FIREFLY 93

6.1 Overview 93

6.2 Evaluation Strategy 93

6.3 Application to Case Study 95

6.3.1 Analysis the Context 95

6.3.2 The Data Preparation 96

6.3.3 Test Cases Distance Matrix Generation 97

6.4 Performance Analysis 98

6.4.1 Comparative Studies 98

6.4.2 Result and Discussion 99

6.5 Statistical Analysis 101

6.5.1 RWS Shapiro-Wilk Test of Normality 101

6.5.2 Tukey Kramer (HSD) Post Hoc Analysis 102

6.6 Summary 102

CHAPTER 7 CONCLUSION AND FUTURE WORKS 105

7.1 Overview 105

7.2 Achievement of the Study 105

7.3 Research Contribution 106

7.3.1 The Proposed Weighted String Distance Metric
 107

7.3.2 Test Case Prioritization with Firefly Algorithm 107

7.3.3 Clustering Technique with Weighted String
Distance Metric 108

xii

7.3.4 Weighted String Distance Approach with

Clustering and Firefly 108

7.4 Recommendation for Future Works 108

REFERENCES 111

LIST OF PUBLICATIONS 123

xiii

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 General Advantages and Limitation of Prioritization
Approach 17

Table 2.2 Summary of General Advantages and Limitation of
Approaches 19

Table 2.3 Prioritization Technique and Respective Authors 19

Table 2.4 Comparison of Prioritization Techniques 20

Table 2.5 General Advantages and Limitation of Changes Utilization 24

Table 2.6 Summary Advantages and Limitation of Changes
Utilization 24

Table 2.7 String Distance Reviews Summaries 30

Table 2.8 Summary of Findings on Existing String Distances
Techniques 32

Table 2.9 General Overview of ML Techniques 34

Table 2.10 The advantages and limitation of ML techniques in TCP 35

Table 2.11 Summary of advantages and limitation of ML techniques in
TCP 37

Table 2.12 Algorithm Reviews Summaries 40

Table 2.13 Summary of algorithms reviews 41

Table 3.1 Benchmark Dataset and Case Study Characteristics 51

Table 3.2 Robotic Wheelchair System Program Component 53

Table 3.3 Overviews of TCAS Datasets 54

Table 3.4 Overviews of UNIX Datasets 55

Table 4.1 Five Dummy Test Cases 60

Table 4.2 Adjacency Matrix for Similarity Distance Percentage 60

Table 4.3 Adjacency Matrix for Similarity Distance Percentage 61

Table 4.4 Experiment APFD and CR Result 62

Table 4.5 The Overview Idea Weighted String Distance 64

Table 4.6 The Overview Idea Weighted String Distance 71

xiv

Table 4.7 Overall Percentage Coverage Rate Results 74

Table 5.1 Abbreviations for comparative techniques 81

Table 5.2 Overall APFD Assessments for TCAS Dataset 82

Table 5.3 Overall APFD Assessments for JTCAS Dataset 83

Table 5.4 Overall APFD Assessments for CSTCAS Dataset 84

Table 5.5 Overall CR and Time Assessments 85

Table 5.6 Abbreviations for comparative techniques 86

Table 5.7 Overall APFD Assessments for FLEX Dataset 87

Table 5.8 Overall APFD Assessments for GREP Dataset 88

Table 5.9 Overall APFD Assessments for GREP Dataset 89

Table 5.10 Overall APFD Assessments for GREP Dataset 90

Table 5.11 Overall CR and Time Assessments 91

Table 6.1 Part of the Example Requirement of RWS Test Case 95

Table 6.2 Part of the Prepared Data in RWS Test Case 96

Table 6.3 Example of String Distance Matrix Calculated 97

Table 6.4 Example of String Distance Matrix Calculated 98

Table 6.5 Overall APFD Assessments for RWS Case Study 100

Table 6.6 RWS Shapiro-Wilk Test of Normality 101

Table 6.7 ANOVA Tukey HSD Tests Results 102

xv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 The Overview of Taxonomy of TCP 15

Figure 2.2 The General Process Flow of TCP Approaches 16

Figure 2.3 The overview of software changes stages in TCP 21

Figure 2.4 The Overview of Taxonomy of ML Technique in TCP 33

Figure 3.1 Research Operational Process 46

Figure 3.2 Research Framework 49

Figure 3.3 Robotic Wheelchair 52

Figure 3.4 Block Diagram of Robotic Wheelchair 52

Figure 3.5 Experiment Process Design 57

Figure 4.1 The Enhanced String Metric 67

Figure 4.2 APFD rate for string distances for tcas dataset 69

Figure 4.3 APFD rate for string distances for jtcas dataset 70

Figure 4.4 APFD rate for string distances for cstcas dataset 70

Figure 4.5 Test case used to achieve full coverage for tcas dataset 72

Figure 4.6 Test case used to achieve full coverage for jtcas dataset 73

Figure 4.7 Test case used to achieve full coverage for cstcas dataset 73

Figure 5.1 The Basic K-Means Clustering Algorithm with Tuned
Algorithm 78

Figure 5.2 The Basic Firefly Algorithm with the Tuned Algorithm 79

Figure 5.3 APFD Result for TCAS Dataset 82

Figure 5.4 APFD Result for JTCAS Dataset 83

Figure 5.5 APFD Result for CSTCAS Dataset 84

Figure 5.6 APFD Result for FLEX Dataset 87

Figure 5.7 APFD Result for GREP Dataset 88

Figure 5.8 APFD Result for GZIP Dataset 89

Figure 5.9 APFD Result for TCAS Dataset 90

xvi

Figure 6.1 An Evaluation Strategy Framework 94

Figure 7.1 Research Contribution 107

xvii

LIST OF ABBREVIATIONS

AI - Artificial Intelligent

APFD - Average Percentage Fault Detection

ANOVA - Analysis of Variance

CR - Coverage Rate

CS - Cosine Similarity

GA - Genetic Algorithm

FA - Firefly Algorithm

LBS - Local Beam Search

LOC - Line of Code

ML - Machine Learning

NN - Nearest Neighbour Algorithm

PSO - Particle Swarm Optimization

RWS - Robotic Wheelchair System

SLR - Systematic Literature Review

SI - Swarm Intelligence

TCP - Test Case Prioritization

TF-IDF - Term Frequency – Inverse Document Frequency

TSP - Travelling Salesman Problem

xviii

LIST OF SYMBOLS

D - Distances

df - Data iteration frequency

F - Faults revealed

m - Total faults revealed

n - Total number of

T - Terms in all documents / test cases

t - Terms in single document / test case

TC - Test cases

TF - Sequence number of faults revealed

W - Weight

1

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The first and foremost chapter presents the background of the study, challenges

in the current Test Case Prioritization (TCP) methodology, challenges in test case

distinction, challenges in the applied algorithm in TCP, motivation of study, problem

statement, research objectives, the scope of the research and significance of the study.

These challenges have been discussed in-depth to identify the research gaps that

matched the research questions. Research objectives are then outlined to answer the

research questions. The research boundaries are defined by outlining the research

scopes. Later, the significance of the research is discussed to emphasize the importance

and contribution of the study to enhance the existing approaches in the domain area.

Software engineering is not just programming and software development.

Software engineering is the implementation of engineering procedures in the

development of any software systematically. Within a software development

process, software testing consumes a longer time in execution and can be the most

expensive phase (Myers et al., 2004). Software testing is typically carried out even

with time constraints and fixed resources (Mohd-Shafie et al., 2021). Software

engineering groups are regularly compelled to end their testing activities because of

financial and time necessities, which will trigger difficulties such as software quality

and client agreement problems.

As the software evolves, a software test suite tends to increase in size,

frequently making it expensive to execute. Research shows software testing is an

expensive process that may require more than 33% of the cumulative expenses of the

software (Chittimalli & Harrold, 2009; Zhang et al., 2018). In the work of Yoo and

Harman (Pan et al., 2022), various test approaches were examined to supplement the

2

importance of the accumulated test suite in testing. Those studies were then classified

into three domains; test case minimization, test case selection, and test case

prioritization.

Test case prioritization (TCP) aims to order a set of test cases to achieve an

early optimization based on preferred properties (Amit Kumar & Singh, 2014). It gives

an approach the ability to execute highly significant test cases first according to some

measure and produce the desired outcome, such as revealing faults earlier and

providing feedback to the testers. It also helps to find the ideal permutation of a series

of test cases and could be executed accordingly (Mohd-Shafie et al., 2020; Yoo &

Harman, 2012a). There are many dimensions of test case prioritization techniques. As

many as eight broad dimensions were described by (Singh, 2012). Each approach has

specified potential values, advantages, and limitations.

The inputs and dataset type play an essential role in the determination of their

advantages and limitation. As there were different approaches, the methodology for

each approach may also vary (Arora & Bhatia, 2018). As a result of this variation, it

benefits project managers in adjusting their project schedules to counter the constraint

within the project development process. However, most TCP approaches are not

flexible enough to adequately fit different types of changes in regression testing

(Garousi et al., 2018). This has resulted in less TCP utilization in current software

development trends. Therefore, there is a gap in having a TCP approach that can adapt

to different types of software development environment changes.

Artificial intelligence (AI) has emerged in TCP as one of the techniques that

can support different types of changes but requires well-coded algorithms to cover

multiple types of changes by itself. Regardless of the difficulty, the technique

utilization in TCP is becoming the most popular TCP approach available nowadays.

Numerous works have emerged recently (Bajaj & Sangwan, 2019; Hao, Zhang, Zang,

et al., 2016; Prado & Vergilio, 2019; Shahbazi & Miller, 2016). AI techniques have

been successfully used to reduce the effort of many software engineering activities

(Hao, Zhang, Zang et al., 2016). In particular, machine learning (ML) techniques, a

research field at the intersection of AI, computer science, and statistics, have been

3

applied to automate various software engineering activities (Mece et al., 2020). In the

TCP approach, the ML technique has been well welcomed recently (Mece et al., 2020).

However, as software systems have become gradually complex, some conventional

TCP approaches may not scale well to the complexity of these modern software

systems. This snowballing complexity of recent software systems has solidified the

neediness of ML techniques in TCP.

As the system was going to evolve, the process normally starts with

requirement changes down to its model and, finally, the source code. These three

phases of change hold helpful information that can be used as the resources and inputs

for the TCP process. Each phase may have contributed a different level of information

either as its reliability or precisely noted. All these changes can be clustered and

classified to help the developers keep track of the software changes during the software

developments. This can be an essential contributing factor to software project success,

leading to less maintainable software. Thus, having a clustering technique in the TCP

process is worth to be explored to achieve effective software testing by reducing test

effort and increasing fault detection.

To apply ML techniques in TCP, each of the test cases available has to be

distinguished properly. One of the methods is by using string metrics. String metrics

play an important role in text-related research and applications in tasks such as

information retrieval, text classification, document clustering, topic detection, topic

tracking, questions generation, question answering, essay scoring, short answer

scoring, machine translation, text summarization, and others (Gomaa & Fahmy, 2013).

The string metric can be categorized based on its metric calculation, such as distances,

similarity, and weight. However, to precisely calculate the distance between test cases,

a specific and reliable string metric with specific priority was required where existing

works (Bo Jiang & Chan, 2015; Ledru et al., 2012) have utilized one simple string

similarity metric only, which produce numerous redundancy in equivalent value.

Therefore, there is a need for enhancement of string similarity metric in order to

overcome the issues.

4

To complete the TCP approach process, prioritization activity may occur after

the clustering ML technique, which uses string metrics as discussed earlier. Recent

works (Bo Jiang & Chan, 2015; Prado & Vergilio, 2019) indicate that the heuristic

prioritization algorithm can significantly affect the TCP process. Their findings

suggest that heuristic algorithms may increase the average percentage of fault

detection (APFD) results. However, the result may differ if a clustering technique is

applied before prioritization activity takes place. Therefore, there is a need for

improvement to be made to prioritize the clustered test cases using string metric with

its priority, improving the efficiency of the whole TCP process.

The main challenge to the problems alluded to can be divided into three

primary issues: TCP Approaches that do not adequately address different types of

changes, single string similarity metric formulation, and prioritization with ML

technique. The string distances determine how far the distances between each test case

are based on their attribute, such as test case inputs. ML techniques were then used to

cluster the test cases, which must be prioritized to complete the TCP process. This

prioritization algorithm is crucial to prioritize the clustered test cases with its

calculated distance values among them. As for the process of TCP, it is meant to

provide systematic guidance on how to execute the TCP process with an ML

technique, specifically with consideration of string metrics. All the issues aim to

address the issues of systematic fault detection in test case prioritization, problems

which will be explained in detail in the following sections.

1.2 Challenge in Test Case Prioritization

Software engineering is highly concerned about systematically applying

engineering processes to software development. Therefore, it is necessary to have a

systematic process for the ML technique in the TCP approach. Numerous works

exhibit similar process flow, with the only notable difference in adding or reducing

one step to an existing process flow (Arora & Bhatia, 2018; Bajaj & Sangwan, 2019;

Kazmi et al., 2017). This variation of process flow may give different results in a

similar technique with the same dataset. However, a well-described approach using

the combination of string similarity based on ML techniques has yet to be introduced

5

(Mukherjee & Patnaik, 2021). Therefore, the challenge in this process can be

recognized as how to apply an ML technique in TCP with consideration of string

metrics into the testing environment to improve the effectiveness of the process?

Generally, the TCP process starts with the preparation of data; even though no

single paper clearly states it, it is compulsory for any experiment or research to identify

which information or data will be used (Mukherjee & Patnaik, 2021). The data or

information in TCP can be in the form of requirement statements, system models, and

source code. The process is followed by determining and calculating prioritization

criteria or dependency based on the data chosen. Then, the process goes on to prioritize

the calculated criteria or dependency and measure the performance. However, formally

defined steps and processes, especially in ML techniques with the challenges stated,

are worth addressing (Bagherzadeh et al., 2021).

String metrics play an important role in text-related research and applications

in tasks such as information retrieval, text classification, document clustering, topic

detection, topic tracking, question generation, question answering, essay scoring, short

answer scoring, machine translation, text summarization, and others. For example, the

work by Jiang and Chan (Bo Jiang & Chan, 2015) tries to maximize test case diversity

through test cases input information which is differ from Ledru's work (Ledru et al.,

2012), where they treat each test case as a string of characters and prioritize test cases

by using a simple string edit distance to determine the similarity between test cases. In

these techniques, the goal is to give high priority to test cases that are vastly unalike

(e.g., because they invoke different methods or have high string distances), thereby

maximizing test case diversity and casting a wide net for detecting unique faults

(Hemmati et al., 2011; Thomas et al., 2014).

However, using only string distance values, the possibility of having the same

distance is quite high and may affect the prioritization process. Therefore, there was

such an opportunity for improvement, as the prioritization was made based on the

differences between two points; instead of using one metric only, which is distance,

this string distances formulation may be enhanced more with another possible metric.

Back to this sub-chapters objective, the challenges from this opening are, namely, how

6

can string distances be enhanced with other metrics and, simultaneously, can give the

necessary priority to test cases that are greatly altered. As supporting evidence,

previous works reported prioritized test cases using string distance to have promising

APFD values compared to randomly ordered ones (Bo Jiang & Chan, 2015; Ledru et

al., 2012). However, the average APFD rank for almost all string distances was nearly

identical (Ledru et al., 2012). A work using two string distances also faces similar

problems (Wen et al., 2019). Hence, this implies an enhancement for string distances

with other related metrics, such as the weighting scale, was worth further analysis.

As for the prioritization algorithm challenge, this research utilizes the

generated test cases and prioritizes them based on their inputs to calculate the string

distance/similarity between test cases. The fitness function that will be used is based

on string similarity or distance between the test case and its neighboring test cases

throughout the whole test suite. Assuming there are 1500 test cases, the number of

permutations to complete evaluate the whole possible test cases sequences distances

were 1500!, which is equal to 1500×1499×1498×…..×1 in value, and it is impossible

for human manual prioritization. This situation is more likely similar to the traveling

salesman problem (TSP), which is highly intractable (Bagloee & Asadi, 2015). The

complexity arises from the size of test cases for the system. Thus, the worst-case

running time for any algorithm for the TCP may increase exponentially with the

number of test cases. For this reason, the challenges in the TCP algorithm for string

metric can be recognized as; how prioritization algorithms should be tuned with sting

metric, which could result in superior outcomes in terms of execution time and

obtaining better APFD results for TCP itself.

Recent works (Hema Shankari et al., 2021; Bo Jiang & Chan, 2015; Panwar et

al., 2018) show that the heuristic prioritization algorithm can significantly affect the

TCP process. From their finding, using artificial intelligence algorithms may increase

the average percentage of fault detection (APFD) results. However, existing

prioritization often fails to provide the efficiency of coverage rate and execution time

improvement. In this sense, a suitable prioritization algorithm that suits the challenges

stated is worth investigating.

7

As time progressed, there were many new ML techniques introduced. These

ML techniques can be categorized into several categories (Mahdieh et al., 2020;

Malhotra, 2015). The categories can be named supervised, unsupervised, and

reinforcement. The unsupervised ML technique is reserved when there is no historical

information or incomplete information regarding the study program. The unsupervised

ML technique may also have been chosen as it has been far less complex than the

supervised ML technique (Hajri et al., 2019; Khalid & Qamar, 2019). The clustering

technique was the most popular unsupervised ML technique in TCP. Work by Chen

(Chen et al., 2018) proposed adaptive random sequences based on clustering

techniques. By using black box information, their clustering techniques manage to

cluster test cases as diverse as possible.

As the experiment is conducted further, the result shows that the technique

manages to unfold fault at an earlier stage with higher effectiveness. Recent studies

also show that the clustering technique may have high efficiency in terms of time

execution, leading to cost-effectiveness (Harikarthik et al., 2019; Khalid & Qamar,

2019). However, some notable issues are outlined in the ML technique, specifically in

clustering. One of them is the number of classes or clusters that could affect the results

significantly (Chen et al., 2018). Apart from that, low performance on coverage rate

due to imperfect differentiating the test cases do raise some attention in the TCP

approach. Therefore, a well-tuned clustering ML technique with metric string

enhancement could improve the coverage rate worth exploring. For this reason, the

challenges for ML technique in TCP can recognize as; how ML technique can be tuned

with the consideration of enhanced string metric algorithms to resolve the number of

cluster issues which could result in superior outcomes in terms of coverage rate as well

as obtaining better APFD result for TCP itself.

1.3 Research Gaps, Problem Statement and Research Questions

The study was conducted with the mean idea of systematically prioritizing test

case prioritization (TCP) using the TCP string approach, driven by the problem arising

from the string metrics formulations and its prioritization. Problems such as lack of

metric consideration for the string metrics affect the uniqueness of each test case and

8

may result in many similarities in the distance between test cases. In this sense, the

prioritization algorithm often fails to offer an accurate path with desired distances. As

for the ML technique, problems such as high numbers of clusters or classes formed

due to differences in test cases resulted in a low coverage rate in TCP. In summary,

the research gaps from the previous sub-chapter can be listed as follow:

i. String distance techniques have proven to be a technique that can work with

any type of data but have a number of redundancy values that effected the

average fault detection rate (APFD) and coverage rate (CR).

ii. Clustering techniques in TCP manage to cluster test cases based on changes

but may have redundant priority values within the clusters, which reduces

the APFD rate.

iii. TCP approaches that do not adequately address the process of String-Based

TCP and Search-Based TCP.

Therefore, in this study, the TCP single string-based approach is addressed by

the formulation of the weighted string distance metric, the prioritization algorithm for

the dual factor string metric, and the clustering of the test case using the weighted

string distance metric. Concretely, the macro research question of this study is:

“How to effectively cluster and prioritize test cases using the weighted string

distance approach for test case prioritization in software testing?”

This research question is broad and requires various micro research questions

to answer. The word effectiveness consists of several other metrics: fault detection

rate, coverage rate, and execution time (Hao, Zhang, & Mei, 2016; Lou et al., 2019;

Rothermel et al., 1999). To realize this research goal, four research questions need to

be answered:

i. How to design the weighted string distances to ensure that string distances

have a sufficient enhancement to improve APFD and CR in TCP?

9

ii. How to tune clustering and prioritization technique together with the

weighted string distances to improve APFD rate in TCP?

iii. How to apply the proposed weighted string distance TCP approach with

clustering technique into testing environment in order to improve the

overall effectiveness of TCP?

1.4 Research Objectives

This study aims to establish a weighted string distance approach based on a

modified clustering technique for optimizing test case prioritization. From the aim of

the study and derived research questions, the following research objectives are defined,

specifically:

i. To design a weighted string distance metric in test case prioritization by

combining string distances and its weight-based metric to improve fault

detection rate (APFD) and coverage rate (CR).

ii. To modify clustering technique and firefly algorithm with weighted string

distance metric for optimizing test case prioritization to improve the APFD,

CR, and timely execution results.

iii. To propose and evaluate the weighted string distance approach with

clustering technique for optimizing test case prioritization on the

benchmark datasets and its applicability to case study.

1.5 Scope of Study

The scopes of this research are limited within the following scopes:

i. The research focuses on small to medium-scale specialized systems

available in many engineering applications.

10

ii. Dataset and benchmark programs with any type of change availability

would be used to compare the findings of the enhanced test case

prioritization technique to the existing test case prioritization.

iii. The research applied to software testing environments specifically on the

test case prioritization domain only.

1.6 Thesis Structure and Organization

This thesis is outlined as follows:

Chapter 1 provides a brief overview of the research. It consists of a brief

overview of software system development, software testing, test case prioritization

techniques, and string metrics. Apart from that, this chapter highlight statement of the

problem, research questions, aims and objectives of the study, and scope of the study.

Chapter 2 provides a brief overview of related works on test case prioritization.

A summary of the literature review on TCP approaches is also presented. Besides that,

string distances and ML and prioritization algorithms are briefly reviewed in the

literature. Chapter 3 describes the overview of the research theoretical framework and

research operational framework. This chapter also introduces application case studies

and benchmark case studies used in this study for applicability and verification.

Chapter 4 elaborates on the implementation of four string distances:

Manhattan, Levenshtein, Cosine Similarity, and Jaccard. Besides that, a proposed

weighted string distance metric is implemented. Results are compared against the other

four string distances. While in chapter 5 elaborate on the implementation of weighted

string distance metric and prioritization with a heuristic algorithm applied, namely

firefly. This serves as supporting results for the first objective and supporting evidence

for further enhancement, leading to the implementation of the ML technique in the

TCP approach. This chapter also elaborates on the method of implementing weighted

string distance metric with the combination of the clustering technique. This serves as

11

results for the second objective and supporting evidence for the effectiveness of the

proposed double-string technique.

Chapter 6 elaborates on the proposed weighted string distance approach with

the clustering technique for optimizing TCP. The methodology was then applied to the

case study. The statistical evaluation of the result of the case study is also conducted

in this chapter. To form a conclusion, Chapter 7 highlights the research achievement,

research contribution, and future works.

111

REFERENCES

 Abbad, A., & Tairi, H. (2016). Combining Jaccard and Mahalanobis Cosine distance

to enhance the face recognition rate. WSEAS Transactions on Signal

Processing, 16, 171-178.

Abbeel, P., & Ng, A. Y. (2004, July). Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first international

conference on Machine learning (p. 1).

Aizawa, A. (2003). An information-theoretic perspective of tf–idf

measures. Information Processing & Management, 39(1), 45-65.

Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless

sensor networks: Algorithms, strategies, and applications. IEEE Communications

Surveys & Tutorials, 16(4), 1996-2018.

Amato, G., Gennaro, C., & Savino, P. (2014). MI-File: using inverted files for scalable

approximate similarity search. Multimedia tools and applications, 71(3), 1333-

1362.

Arafeen, M. J., & Do, H. (2013, March). Test case prioritization using requirements-

based clustering. In 2013 IEEE sixth international conference on software

testing, verification and validation (pp. 312-321). IEEE.

Arora, P. K., & Bhatia, R. (2018). A systematic review of agent-based test case

generation for regression testing. Arabian Journal for Science and

Engineering, 43(2), 447-470.

Azizi, M., & Do, H. (2018, April). A collaborative filtering recommender system for

test case prioritization in web applications. In Proceedings of the 33rd annual

ACM symposium on applied computing (pp. 1560-1567).

Bagherzadeh, M., Kahani, N., & Briand, L. (2021). Reinforcement learning for test

case prioritization. IEEE Transactions on Software Engineering.

Bagloee, S. A., & Asadi, M. (2015). Prioritizing road extension projects with

interdependent benefits under time constraint. Transportation Research Part A:

Policy and Practice, 75, 196-216.

Bajaj, A., & Sangwan, O. P. (2018, December). A survey on regression testing using

nature-inspired approaches. In 2018 4th International Conference on Computing

112

Communication and Automation (ICCCA) (pp. 1-5). IEEE.

Bajaj, A., & Sangwan, O. P. (2019). A systematic literature review of test case

prioritization using genetic algorithms. IEEE Access, 7, 126355-126375.

Carlson, R., Do, H., & Denton, A. (2011, September). A clustering approach to

improving test case prioritization: An industrial case study. In 2011 27th IEEE

International Conference on Software Maintenance (ICSM) (pp. 382-391). IEEE.

Catal, C., & Mishra, D. (2013). Test case prioritization: a systematic mapping

study. Software Quality Journal, 21(3), 445-478.

Chaudhary, L., & Singh, B. (2019, January). Community detection using an enhanced

louvain method in complex networks. In International Conference on Distributed

Computing and Internet Technology (pp. 243-250). Springer, Cham.

Chen, J., Zhu, L., Chen, T. Y., Towey, D., Kuo, F. C., Huang, R., & Guo, Y. (2018).

Test case prioritization for object-oriented software: An adaptive random

sequence approach based on clustering. Journal of Systems and Software, 135,

107-125.

Chittimalli, P. K., & Harrold, M. J. (2009). Recomputing coverage information to

assist regression testing. IEEE Transactions on Software Engineering, 35(4),

452-469.

Durelli, V. H., Durelli, R. S., Borges, S. S., Endo, A. T., Eler, M. M., Dias, D. R., &

Guimaraes, M. P. (2019). Machine learning applied to software testing: A

systematic mapping study. IEEE Transactions on Reliability, 68(3), 1189-1212.

Eghbali, S., & Tahvildari, L. (2016). Test case prioritization using lexicographical

ordering. IEEE Transactions on software engineering, 42(12), 1178-1195.

Elbaum, S., Kallakuri, P., Malishevsky, A., Rothermel, G., & Kanduri, S. (2003).

Understanding the effects of changes on the cost‐effectiveness of regression

testing techniques. Software testing, verification and reliability, 13(2), 65-83.

Elbaum, S., Malishevsky, A. G., & Rothermel, G. (2002). Test case prioritization: A

family of empirical studies. IEEE transactions on software engineering, 28(2),

159-182.

Elbaum, S., Rothermel, G., Kanduri, S., & Malishevsky, A. G. (2004). Selecting a

cost-effective test case prioritization technique. Software Quality Journal, 12(3),

185-210.

Elbaum, S., Rothermel, G., & Penix, J. (2014, November). Techniques for improving

regression testing in continuous integration development environments.

113

In Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering (pp. 235-245).

Fang, C., Chen, Z., Wu, K., & Zhao, Z. (2014). Similarity-based test case prioritization

using ordered sequences of program entities. Software Quality Journal, 22(2),

335-361.

Fisher, R. A. (1992). Statistical methods for research workers. In Breakthroughs in

statistics (pp. 66-70). Springer, New York, NY.

Fu, W., Yu, H., Fan, G., & Ji, X. (2017). Coverage-based clustering and scheduling

approach for test case prioritization. IEICE TRANSACTIONS on Information and

Systems, 100(6), 1218-1230.

Furcy, D., & Koenig, S. (2005). Limited discrepancy beam search. In Proceedings of

the 19th international joint conference on Artificial intelligence (pp. 125-131).

Garousi, V., Özkan, R., & Betin-Can, A. (2018). Multi-objective regression test

selection in practice: An empirical study in the defense software

industry. Information and Software Technology, 103, 40-54.

Gokilavani, N., & Bharathi, B. (2021). Test case prioritization to examine software for

fault detection using PCA extraction and K-means clustering with ranking. Soft

Computing, 25(7), 5163-5172.

Gokilavani, N., & Bharathi, B. (2021). Multi-Objective based test case selection and

prioritization for distributed cloud environment. Microprocessors and

Microsystems, 82, 103964.

Gomaa, W. H., & Fahmy, A. A. (2013). A survey of text similarity

approaches. international journal of Computer Applications, 68(13), 13-18.

González-Estrada, E., & Cosmes, W. (2019). Shapiro–Wilk test for skew normal

distributions based on data transformations. Journal of Statistical Computation

and Simulation, 89(17), 3258-3272.

Hajri, I., Goknil, A., Pastore, F., & Briand, L. C. (2020). Automating system test case

classification and prioritization for use case-driven testing in product

lines. Empirical Software Engineering, 25(5), 3711-3769.

Hao, D., Zhang, L., & Mei, H. (2016). Test-case prioritization: achievements and

challenges. Frontiers of Computer Science, 10(5), 769-777.

Hao, D., Zhang, L., Zang, L., Wang, Y., Wu, X., & Xie, T. (2015). To be optimal or

not in test-case prioritization. IEEE Transactions on Software

Engineering, 42(5), 490-505.

114

Hao, D., Zhang, L., Zhang, L., Rothermel, G., & Mei, H. (2014). A unified test case

prioritization approach. ACM Transactions on Software Engineering and

Methodology (TOSEM), 24(2), 1-31.

Haraty, R. A., Mansour, N., Moukahal, L., & Khalil, I. (2016). Regression test cases

prioritization using clustering and code change relevance. International Journal

of Software Engineering and Knowledge Engineering, 26(05), 733-768.

Harikarthik, S. K., Palanisamy, V., & Ramanathan, P. (2019). Optimal test suite

selection in regression testing with testcase prioritization using modified Ann and

Whale optimization algorithm. Cluster Computing, 22(5), 11425-11434.

Harikarthik, S. K., Ramanathan, P., & Palanisamy, V. (2018). ‘Enhancement of

regression testing using genetic data generation and test case prioritization using

m-ACO technique. International Journal of Engineering & Technology, 7(1.3),

95-99.

Hasnain, M., Ghani, I., Pasha, M. F., Malik, I. H., & Malik, S. (2019). Investigating

the Regression Analysis Results for Classification in Test Case Prioritization: A

Replicated Study. International Journal of Internet, Broadcasting and

Communication, 11(2), 1-10.

Hema Shankari, K., Mathivilasini, S., Arasu, D., & Suseendran, G. (2021). Genetic

Algorithm Based on Test Suite Prioritization for Software Testing in Neural

Network. In Proceedings of First International Conference on Mathematical

Modeling and Computational Science (pp. 409-416). Springer, Singapore.

Hemmati, H., Arcuri, A., & Briand, L. (2011, March). Empirical investigation of the

effects of test suite properties on similarity-based test case selection. In 2011

Fourth IEEE International Conference on Software Testing, Verification and

Validation (pp. 327-336). IEEE.

Hemmati, H., Arcuri, A., & Briand, L. (2010, November). Reducing the cost of model-

based testing through test case diversity. In IFIP International Conference on

Testing Software and Systems (pp. 63-78). Springer, Berlin, Heidelberg.

Hettiarachchi, C., Do, H., & Choi, B. (2016). Risk-based test case prioritization using

a fuzzy expert system. Information and Software Technology, 69, 1-15.

Huang, A. (2008, April). Similarity measures for text document clustering.

In Proceedings of the sixth new zealand computer science research student

conference (NZCSRSC2008), Christchurch, New Zealand (Vol. 4, pp. 9-56).

Huang, Y. C., Peng, K. L., & Huang, C. Y. (2012). A history-based cost-cognizant test

115

case prioritization technique in regression testing. Journal of Systems and

Software, 85(3), 626-637.

Jiang, B., & Chan, W. K. (2015). Input-based adaptive randomized test case

prioritization: A local beam search approach. Journal of Systems and

Software, 105, 91-106.

Jimenez, S., Gonzalez, F. A., & Gelbukh, A. (2016). Mathematical properties of soft

cardinality: Enhancing Jaccard, Dice and cosine similarity measures with

element-wise distance. Information Sciences, 367, 373-389.

Kazmi, R., Jawawi, D. N., Mohamad, R., & Ghani, I. (2017). Effective regression test

case selection: A systematic literature review. ACM Computing Surveys

(CSUR), 50(2), 1-32.

Kanimozhi, R., & Rbalakrishnan, J. (2014). Cosine similarity based clustering for

software testing using prioritization. IOSR Journal of Computer Engineering

(IOSR-JCE), 16(1), 75-80.

Kennedy, J. (2011). Particle swarm optimization. Encyclopedia of machine

learning. Springer, 760, 766.

Khalid, Z., & Qamar, U. (2019, October). Weight and cluster based test case

prioritization technique. In 2019 IEEE 10th Annual Information Technology,

Electronics and Mobile Communication Conference (IEMCON) (pp. 1013-

1022). IEEE.

Khalilian, A., Azgomi, M. A., & Fazlalizadeh, Y. (2012). An improved method for

test case prioritization by incorporating historical test case data. Science of

Computer Programming, 78(1), 93-116.

Kim, J. M., & Porter, A. (2002, May). A history-based test prioritization technique for

regression testing in resource constrained environments. In Proceedings of the

24th international conference on software engineering (pp. 119-129).

Konsaard, P., & Ramingwong, L. (2015, June). Total coverage based regression test

case prioritization using genetic algorithm. In 2015 12th International

Conference on Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology (ECTI-CON) (pp. 1-6). IEEE.

Kumar, A., Vembu, S., Menon, A. K., & Elkan, C. (2013). Beam search algorithms

for multilabel learning. Machine learning, 92(1), 65-89.

Kumar, A., & Singh, K. (2014). A Literature Survey on test case

prioritization. Compusoft, 3(5), 793-799.

116

L Lachmann, R. (2018, June). Machine learning-driven test case prioritization

approaches for black-box software testing. In The European test and telemetry

conference, Nuremberg, Germany.

Lachmann, R., Schulze, S., Nieke, M., Seidl, C., & Schaefer, I. (2016, December).

System-level test case prioritization using machine learning. In 2016 15th IEEE

International Conference on Machine Learning and Applications (ICMLA) (pp.

361-368). IEEE.

Lancia, G., & Dalpasso, M. (2019, August). Speeding-Up the Dynamic Programming

Procedure for the Edit Distance of Two Strings. In International Conference on

Database and Expert Systems Applications (pp. 59-66). Springer, Cham.

Ledru, Y., Petrenko, A., Boroday, S., & Mandran, N. (2012). Prioritizing test cases

with string distances. Automated Software Engineering, 19(1), 65-95.

Li, N., Francis, P., & Robinson, B. (2008, November). Static detection of redundant

test cases: An initial study. In 2008 19th International Symposium on Software

Reliability Engineering (ISSRE) (pp. 303-304). IEEE.

Lou, Y., Chen, J., Zhang, L., & Hao, D. (2019). A survey on regression test-case

prioritization. In Advances in Computers (Vol. 113, pp. 1-46). Elsevier.

Lousada, J., & Ribeiro, M. (2020). Reinforcement learning for test case

prioritization. arXiv preprint arXiv:2012.11364.

Luo, Q., Moran, K., & Poshyvanyk, D. (2016, November). A large-scale empirical

comparison of static and dynamic test case prioritization techniques.

In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering (pp. 559-570).

Ma, T., Zeng, H., & Wang, X. (2016, May). Test case prioritization based on

requirement correlations. In 2016 17th IEEE/ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD) (pp. 419-424). IEEE Computer Society.

Mahdieh, M., Mirian-Hosseinabadi, S. H., Etemadi, K., Nosrati, A., & Jalali, S. (2020).

Incorporating fault-proneness estimations into coverage-based test case

prioritization methods. Information and Software Technology, 121, 106269.

Malhotra, R. (2015). A systematic review of machine learning techniques for software

fault prediction. Applied Soft Computing, 27, 504-518.

Marijan, D., Gotlieb, A., & Sen, S. (2013, September). Test case prioritization for

continuous regression testing: An industrial case study. In 2013 IEEE

117

International Conference on Software Maintenance (pp. 540-543). IEEE.

McRoberts, R. E., Næsset, E., & Gobakken, T. (2015). Optimizing the k-Nearest

Neighbors technique for estimating forest aboveground biomass using airborne

laser scanning data. Remote Sensing of Environment, 163, 13-22.

Mece, E. K., Paci, H., & Binjaku, K. (2020). The application of machine learning in

test case prioritization-a review. European Journal of Electrical Engineering and

Computer Science, 4(1).

Mei, L., Chan, W. K., Tse, T. H., Jiang, B., & Zhai, K. (2014). Preemptive regression

testingof workflow-based web services. IEEE Transactions on Services

Computing, 8(5), 740-754.

Mete, S., Çil, Z. A., Ağpak, K., Özceylan, E., & Dolgui, A. (2016). A solution

approach based on beam search algorithm for disassembly line balancing

problem. Journal of Manufacturing Systems, 41, 188-200.

Miranda, B., & Bertolino, A. (2017). Scope-aided test prioritization, selection and

minimization for software reuse. Journal of Systems and Software, 131, 528-549.

Miranda, B., Cruciani, E., Verdecchia, R., & Bertolino, A. (2018, May). FAST

approaches to scalable similarity-based test case prioritization. In 2018

IEEE/ACM 40th International Conference on Software Engineering (ICSE) (pp.

222-232). IEEE.

Mohd-Shafie, M. L., Kadir, W. M. N. W., Lichter, H., Khatibsyarbini, M., & Isa, M.

A. (2021). Model-based test case generation and prioritization: a systematic

literature review. Software and Systems Modeling, 1-37.

Mohd-Shafie, M. L., Wan-Kadir, W. M. N., Khatibsyarbini, M., & Isa, M. A. (2020).

Model-based test case prioritization using selective and even-spread count-based

methods with scrutinized ordering criterion. PloS one, 15(2), e0229312.

Mukherjee, R., & Patnaik, K. S. (2021). A survey on different approaches for software

test case prioritization. Journal of King Saud University-Computer and

Information Sciences, 33(9), 1041-1054.

Muthusamy, T., & Seetharaman, K. (2014). A new effective test case prioritization for

regression testing based on prioritization algorithm. Int. J. Appl. Inf.

Syst.(IJAIS), 6(7), 21-26.

Myers, G. J., Sandler, C., & Badgett, T. (2011). The art of software testing. John Wiley

& Sons.

Nagar, R., Kumar, A., Singh, G. P., & Kumar, S. (2015, February). Test case selection

118

and prioritization using cuckoos search algorithm. In 2015 international

conference on futuristic trends on computational analysis and knowledge

management (ABLAZE) (pp. 283-288). IEEE.

Nguyen, A., Le, B., & Nguyen, V. (2019, September). Prioritizing automated user

interface tests using reinforcement learning. In Proceedings of the Fifteenth

International Conference on Predictive Models and Data Analytics in Software

Engineering (pp. 56-65).

Nurmuradov, D., Bryce, R., Piparia, S., & Bryant, B. (2018). Clustering and

combinatorial methods for test suite prioritization of GUI and web applications.

In Information Technology-New Generations (pp. 459-466). Springer, Cham.

Pan, R., Bagherzadeh, M., Ghaleb, T. A., & Briand, L. (2022). Test case selection and

prioritization using machine learning: a systematic literature review. Empirical

Software Engineering, 27(2), 1-43.

Panwar, D., Tomar, P., Harsh, H., & Siddique, M. H. (2018). Improved meta-heuristic

technique for test case prioritization. In Soft computing: Theories and

applications (pp. 647-664). Springer, Singapore.

Prado Lima, J. A. P., & Vergilio, S. R. (2020). Test Case Prioritization in Continuous

Integration environments: A systematic mapping study. Information and

Software Technology, 121, 106268.

Prado Lima, J. A., & Vergilio, S. R. (2020). A multi-armed bandit approach for test

case prioritization in continuous integration environments. IEEE Transactions on

Software Engineering.

Radovanović, M., Nanopoulos, A., & Ivanović, M. (2014). Reverse nearest neighbors

in unsupervised distance-based outlier detection. IEEE transactions on

knowledge and data engineering, 27(5), 1369-1382.

Rattan, P., Arora, M., Rakhra, M., & Goel, V. (2021). A Neoteric Approach of

Prioritizing Regression Test Suites Using Hybrid ESDG Models. Annals of the

Romanian Society for Cell Biology, 2965-2973.

Rezvani, M., & Hashemi, S. M. (2012, December). Enhancing accuracy of topic

sensitive PageRank using jaccard index and cosine similarity. In 2012

IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent

Agent Technology (Vol. 1, pp. 620-624). IEEE.

Rosenbauer, L., Stein, A., Pätzel, D., & Hähner, J. (2020, December). XCSF with

experience replay for automatic test case prioritization. In 2020 IEEE Symposium

119

Series on Computational Intelligence (SSCI) (pp. 1307-1314). IEEE.

Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (1999, August). Test case

prioritization: An empirical study. In Proceedings IEEE International

Conference on Software Maintenance-1999 (ICSM'99).'Software Maintenance

for Business Change'(Cat. No. 99CB36360) (pp. 179-188). IEEE.

Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (2001). Prioritizing test cases

for regression testing. IEEE Transactions on software engineering, 27(10), 929-

948.

Saini, M., Sharma, D., & Gupta, P. K. (2011, November). Enhancing information

retrieval efficiency using semantic-based-combined-similarity-measure. In 2011

International Conference on Image Information Processing (pp. 1-4). IEEE.

Sampath, S., Bryce, R., & Memon, A. M. (2013). A uniform representation of hybrid

criteria for regression testing. IEEE transactions on software

engineering, 39(10), 1326-1344.

Sánchez, A. B., Segura, S., & Ruiz-Cortés, A. (2014, March). A comparison of test

case prioritization criteria for software product lines. In 2014 IEEE Seventh

International Conference on Software Testing, Verification and Validation (pp.

41-50). IEEE.

Shahbazi, A., & Miller, J. (2015). Black-box string test case generation through a

multi-objective optimization. IEEE Transactions on Software

Engineering, 42(4), 361-378.

Singh, Y., Kaur, A., Suri, B., & Singhal, S. (2012). Systematic literature review on

regression test prioritization techniques. Informatica, 36(4).

Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2017, July). Reinforcement

learning for automatic test case prioritization and selection in continuous

integration. In Proceedings of the 26th ACM SIGSOFT International Symposium

on Software Testing and Analysis (pp. 12-22).

Srikanth, H., Hettiarachchi, C., & Do, H. (2016). Requirements based test

prioritization using risk factors: An industrial study. Information and Software

Technology, 69, 71-83.

Stallbaum, H., Metzger, A., & Pohl, K. (2008, May). An automated technique for risk-

based test case generation and prioritization. In Proceedings of the 3rd

international workshop on Automation of software test (pp. 67-70).

Stratis, P., & Rajan, A. (2016, August). Test case permutation to improve execution

120

time. In Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering (pp. 45-50).

Su, W., Li, Z., Wang, Z., & Yang, D. (2020, March). A meta-heuristic test case

prioritization method based on hybrid model. In 2020 International Conference

on Computer Engineering and Application (ICCEA) (pp. 430-435). IEEE.

Tahvili, S., Afzal, W., Saadatmand, M., Bohlin, M., Sundmark, D., & Larsson, S.

(2016). Towards earlier fault detection by value-driven prioritization of test cases

using fuzzy TOPSIS. In Information Technology: New Generations (pp. 745-

759). Springer, Cham.

Tahvili, S., Hatvani, L., Felderer, M., Afzal, W., & Bohlin, M. (2019, April).

Automated functional dependency detection between test cases using doc2vec

and clustering. In 2019 IEEE International Conference On Artificial Intelligence

Testing (AITest) (pp. 19-26). IEEE.

Thomas, S. W., Hemmati, H., Hassan, A. E., & Blostein, D. (2014). Static test case

prioritization using topic models. Empirical Software Engineering, 19(1), 182-

212.

Unkovskiy, A., Bui, P. H. B., Schille, C., Geis-Gerstorfer, J., Huettig, F., & Spintzyk,

S. (2018). Objects build orientation, positioning, and curing influence

dimensional accuracy and flexural properties of stereolithographically printed

resin. Dental Materials, 34(12), e324-e333.

Wang, X., & Zeng, H. (2016). History-based dynamic test case prioritization for

requirement properties in regression testing. In Proceedings of the International

Workshop on Continuous Software Evolution and Delivery (pp. 41-47).

Wang, Y., Zhao, X., & Ding, X. (2015, September). An effective test case

prioritization method based on fault severity. In 2015 6th IEEE International

Conference on Software Engineering and Service Science (ICSESS) (pp. 737-

741). IEEE.

Wen, Z., Deng, D., Zhang, R., & Kotagiri, R. (2019, April). : An efficient entity

extraction algorithm using two-level edit-distance. In 2019 IEEE 35th

International Conference on Data Engineering (ICDE) (pp. 998-1009). IEEE.

Wen, Z., Deng, D., Zhang, R., & Ramamohanarao, K. (2017). A technical report:

entity extraction using both character-based and token-based similarity. arXiv

preprint arXiv:1702.03519.

Wu, Z., Yang, Y., Li, Z., & Zhao, R. (2019, October). A time window based

121

reinforcement learning reward for test case prioritization in continuous

integration. In Proceedings of the 11th Asia-Pacific Symposium on

Internetware (pp. 1-6).

Xia, X., Gong, L., Le, T. D. B., Lo, D., Jiang, L., & Zhang, H. (2016). Diversity

maximization speedup for localizing faults in single-fault and multi-fault

programs. Automated Software Engineering, 23(1), 43-75.

Xiao, C., Wang, W., & Lin, X. (2008). Ed-join: an efficient algorithm for similarity

joins with edit distance constraints. Proceedings of the VLDB Endowment, 1(1),

933-944.

Xiao, L., Miao, H., & Zhong, Y. (2018). Test case prioritization and selection

technique in continuous integration development environments: a case

study. International Journal of Engineering & Technology, 7(2.28), 332-336.

Xiao, L., Miao, H., Zhuang, W., & Chen, S. (2017, May). An empirical study on

clustering approach combining fault prediction for test case prioritization.

In 2017 IEEE/ACIS 16th International Conference on Computer and Information

Science (ICIS) (pp. 815-820). IEEE.

Xiao, L., Miao, H., Zhuang, W., & Chen, S. (2016, November). Applying Assemble

Clustering Algorithm and Fault Prediction to Test Case Prioritization. In 2016

International Conference on Software Analysis, Testing and Evolution

(SATE) (pp. 108-116). IEEE.

Yadav, D. K., & Dutta, S. (2016). Test case prioritization technique based on early

fault detection using fuzzy logic. In 2016 3rd international conference on

computing for sustainable global development (INDIACom) (pp. 1033-1036).

Yadav, D. K., & Dutta, S. (2017). Regression test case prioritization technique using

genetic algorithm. In Advances in computational intelligence (pp. 133-140).

Springer, Singapore.

Yan, M., Xia, X., Lo, D., Hassan, A. E., & Li, S. (2019). Characterizing and identifying

reverted commits. Empirical Software Engineering, 24(4), 2171-2208.

Yang, Y., Li, Z., Shang, Y., & Li, Q. (2021). Sparse reward for reinforcement learning‐

based continuous integration testing. Journal of Software: Evolution and Process,

e2409.

Yoo, S., & Harman, M. (2012). Regression testing minimization, selection and

prioritization: a survey. Software testing, verification and reliability, 22(2), 67-

120.

122

Yoon, M., Lee, E., Song, M., & Choi, B. (2012). A test case prioritization through

correlation of requirement and risk. Journal of Software Engineering and

Applications, 5(10), 823.

Yu, Y. T., & Lau, M. F. (2012). Fault-based test suite prioritization for specification-

based testing. Information and Software Technology, 54(2), 179-202.

Zhang, K., Zhang, Y., Zhang, L., Gao, H., Yan, R., & Yan, J. (2020). Neuron activation

frequency based test case prioritization. In 2020 International Symposium on

Theoretical Aspects of Software Engineering (TASE) (pp. 81-88).

Zhang, T., Wang, X., Wei, D., & Fang, J. (2018). Test case prioritization technique

based on error probability and severity of UML models. International Journal of

Software Engineering and Knowledge Engineering, 28(06), 831-844.

Zhang, W., Qi, Y., Zhang, X., Wei, B., Zhang, M., & Dou, Z. (2019, August). On test

case prioritization using ant colony optimization algorithm. In 2019 IEEE 21st

International Conference on High Performance Computing and

Communications; IEEE 17th International Conference on Smart City; IEEE 5th

International Conference on Data Science and Systems

(HPCC/SmartCity/DSS) (pp. 2767-2773). IEEE.

Zhang, X. Y., Towey, D., Chen, T. Y., Zheng, Z., & Cai, K. Y. (2016, May). A random

and coverage-based approach for fault localization prioritization. In 2016

Chinese Control and Decision Conference (CCDC) (pp. 3354-3361).

Zhao, X., Wang, Z., Fan, X., & Wang, Z. (2015). A clustering-bayesian network based

approach for test case prioritization. In 2015 IEEE 39th Annual Computer

Software and Applications Conference (Vol. 3, pp. 542-547). IEEE.

Zhou, Z. Q., Sinaga, A., & Susilo, W. (2012). On the fault-detection capabilities of

adaptive random test case prioritization: Case studies with large test suites.

In 2012 45th Hawaii International Conference on System Sciences (pp. 5584-

5593). IEEE.

123

LIST OF PUBLICATIONS

Journal with Impact Factor

1. Khatibsyarbini, M., Isa, M. A., Jawawi, D. N., Hamed, H. N. A., & Suffian,

M. D. M. (2019). Test case prioritization using firefly algorithm for software

testing. IEEE access, 7, 132360-132373. (Q2, IF:1.01)

2. Khatibsyarbini, M., Isa, M. A., Jawawi, D. N., Shafie, M. L. M., Kadir, W.

M. N. W., Hamed, H. N. A., & Suffian, M. D. M. (2021). Trend Application

of Machine Learning in Test Case Prioritization: A Review on

Techniques. IEEE Access. (Q2, IF:1.01)

