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ABSTRACT 

Skudai River has undergone a general decline in water quality in recent years due 

to agricultural practices, urbanisation, industrial and other human activities in the river 

catchment. It is classified as “slightly contaminated” by the Department of Environment 

(DOE), and as such, immediate actions are needed to prevent further deterioration and 

improve the water quality. Majority of existing research on water quality modelling 

focuses on water quality data and the impact of land use on water quality, while those on 

the effects of sewage treatment plants (STP) discharge on river water quality have also 

been conducted to a certain extent. However, limited research on water quality prediction 

is based on land use input, existing STP, and rainfall. This is due to the complicated 

relationships between these three factors and water quality parameters. River systems are 

highly complex, hierarchical and patchy. Accurate predictions of the time series 

concerning the changing water quality could support early warnings on water pollution 

and help with management decisions. Currently, artificial intelligence (AI) technologies 

can simulate this behaviour and complement the inherent deficiencies. Among the latest 

research in integrating AI into water quality modelling, artificial neural networks (ANNs) 

are the most popular techniques used. This study aimed to identify and determine key 

water quality parameters using principal component analysis (PCA) based on land use and 

pollution sources, to correlate and predict water quality index (WQI) based on in-situ 

parameters using ANNs, and to determine and predict the relationships between land use 

patterns, precipitation, STP, and WQI, also using ANNs. ANNs were employed in a total 

of 839 physical and chemical pollution data sets from the Skudai River from 2001 to 2019 

as training (70%), test (15%) and validation data (15%) for the analysis in this study. River 

water sampling was also carried out to evaluate the modelling results (36 data sets). 

ArcMap 10.4 was used to prepare the map for the changes occurring in land use, observed 

from 2000 to 2019 The PCAs results indicated that the parameters causing water quality 

variations were mainly related to physical parameters (natural) and organic pollutants 

(anthropogenic). The study also showed that the cascade-forward net was the optimal 

ANNs-water quality index-1 (ANNWQI-1) model for WQI prediction with seven 

parameters: DO, pH, conductivity, temperature, TDS, salinity, and turbidity with an 

RSME of 7.15, and a coefficient of correlation (R) of 0.92. The analysis with Spearman 

correlation could explain that in-situ parameters correlated with the parameters used 

to calculate WQI values. The best ANNWQI-2 model was a feed-forward net with land 

use, STP service coverage, and precipitatin data as input data, resulting in RMSE of 6.98 

and R of 0.80. An input data analysis with Spearman correlation could explain that land 

use data, STP and rainfall data correlated with the parameters used to calculate WQI 

values. The integrated model of ANNWQI-3 had RMSE and R of 6.01 and 0.92, 

respectively. ANNWQI-1 demonstrated that accurate WQI predictions could be made, 

with only seven in-situ water quality parameters, while ANNWQI-3 required more 

comprehensive input data to get almost the same R. More importantly, the input data was 

in-situ water quality parameters, and no laboratory analysis was needed. The study 

determined the effective input parameters using PCA for successful ANN modelling while 

illustrating the usefulness of ANNs for WQI prediction. Ultimately, the results will give 

decision-makers valuable information to identify the causes of water pollution and the 

critical source areas that are useful for protecting the environment in terms of sustainable 

water resources.  
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ABSTRAK 

Sungai Skudai telah mengalami penurunan kualiti air secara umum dalam beberapa 

tahun kebelakangan ini kerana amalan pertanian, pembandaran, perindustrian dan kegiatan 

lain manusia yang berlaku di tadahan sungai. Sungai ini diklasifikasikan sebagai "sedikit 

tercemar" oleh Jabatan Alam Sekitar (JAS), dan oleh itu, tindakan segera diperlukan untuk 

mencegah kemerosotan lebih lanjut dan untuk meningkatkan kualiti air. Sebilangan besar 

kajian sedia ada berkaitan pemodelan kualiti air memfokuskan kepada data kualiti air dan 

impak penggunaan tanah terhadap kualiti air, sementara kajian mengenai kesan pelepasan dari 

loji rawatan kumbahan (STP) terhadap kualiti air sungai juga telah dilakukan, pada tahap 

tertentu. Walau bagaimanapun, kajian mengenai ramalan kualiti air, berdasarkan input 

penggunaan tanah, STP sedia ada, dan curahan hujan adalah sangat terbatas. Ini disebabkan 

hubungan yang rumit antara ketiga-tiga faktor dan parameter kualiti air. Sistem sungai sangat 

kompleks, berhierarki dan tidak sekata. Ramalan yang tepat bagi siri masa, berkaitan dengan 

perubahan kualiti air, dapat mengukuhkan amaran awal mengenai pencemaran air dan 

membantu keputusan yang berkaitan dengan pengurusan sumber air. Pada masa ini, teknologi 

kecerdasan buatan (AI) mampu mensimulasikan tingkah laku ini dan melengkapkan 

kekurangan yang wujud. Antara kajian mutakhir dalam mengintegrasikan AI ke dalam 

pemodelan kualiti air, artificial neural networks (ANN) ialah teknik yang paling popular 

digunakan. Kajian ini bertujuan untuk mengenal pasti dan menentukan parameter kualiti air 

utama, menggunakan analisis komponen utama (PCA), berdasarkan penggunaan tanah dan 

sumber pencemaran, untuk menghubungkait dan meramalkan indeks kualiti air (IKA) 

berdasarkan parameter in-situ menggunakan ANN, dan untuk menentu dan meramalkan 

hubungan antara pola penggunaan tanah, curahan hujan, STP, dan IKA, juga menggunakan 

ANN. ANN telah digunakan untuk sejumlah 839 kumpulan data pencemaran fizikal dan kimia 

dari Sungai Skudai, bagi tempoh 2001 hingga 2019, sebagai data latihan (70%), ujian (15%) 

dan pengesahan (15%) untuk analisis dalam kajian ini. Pengambilan sampel air sungai juga 

dilakukan untuk menilai hasil pemodelan (36 set data). ArcMap 10.4 diguna untuk 

menyediakan peta bagi perubahan yang berlaku dalam penggunaan tanah, yang diperhatikan 

dari tahun 2000 hingga 2019. Hasil PCA menunjukkan bahawa parameter yang menyebabkan 

kepelbagaian kualiti air adalah terutamanya berkaitan dengan parameter fizikal (semula jadi) 

dan bahan pencemar organik (antropogenik). Kajian ini juga menunjukkan bahawa, cascade-

forward net ialah model 1 artificial neural networks - Indeks Kualiti Air (ANNWQI-1) yang 

optimum bagi ramalan IKA dengan tujuh parameter: DO, pH, kekonduksian, suhu, TDS, 

saliniti, dan kekeruhan dengan nilai RSME 7.15, dan pekali korelasi (R) 0.92. Analisis dengan 

korelasi Spearman boleh menjelaskan bahawa parameter in-situ berkorelasi dengan parameter 

yang digunakan untuk mengira nilai IKA. Model ANN-IKA-2 yang terbaik ialah feed-forward 

net dengan penggunaan tanah, liputan perkhidmatan STP, dan data kerpasan, sebagai data 

input, yang menghasilkan nilai RMSE 6.98 dan koefisien korelasi 0.80. Analisis data input 

dengan korelasi Spearman boleh menjelaskan bahawa data guna tanah, STP dan data hujan 

berkorelasi dengan parameter yang digunakan untuk mengira nilai IKA. Hasil model 

bersepadu ANN-IKA-3 mempunyai nilai RMSE 6.01 dan koefisien korelasi 0.92. ANN-IKA-

1 menunjukkan bahawa, ramalan IKA yang tepat dapat dilakukan dengan hanya tujuh 

parameter kualiti air in situ, sementara ANN-IKA-3 memerlukan data input yang lebih 

komprehensif untuk mendapatkan R yang hampir sama. Lebih penting lagi, data input adalah 

dalam bentuk parameter kualiti air in situ, dan analisis makmal tidak diperlukan. Kajian ini 

dapat menentukan parameter input yang berkesan menggunakan PCA untuk pemodelan ANN 

yang berjaya, selain menjelaskan kegunaan ANN untuk ramalan IKA. Pada akhirnya, hasil 

yang didapati akan memberikan maklumat bernilai kepada pembuat keputusan untuk 

mengenalpasti penyebab pencemaran air dan juga kawasan sumber kritikal yang berguna bagi 

melindungi alam sekitar daripada sudut sumber air yang lestari.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

In 2015, the United Nations (UN) promulgated the 2030 Agenda for 

Sustainable Development which comprises 17 Sustainable Development Goals 

(SDGs) to promote peace, prosperity, and a sustainable future for all. It recognises 

water management's importance in tackling global challenges, including climate 

change and environmental degradation (United Nations, 2020). One of the 17 goals, 

SDG 6, specifically addresses the clean water resources—to ensure the availability 

and sustainable management of water and sanitation for all. Two other goals, SDG 3 

and SDG 11, are also closely related to the clean water resources (including river) 

management policy. SDG 3 addresses healthy lives and promotes well-being for all 

ages, while SDG 11 aims to ensure inclusive, safe, resilient, and sustainable human 

settlements. The quality of river water, particularly that used as a source of water, 

impacts healthy living for human settlements that are safe, resilient, and sustainable. 

The government of Malaysia aligned the SDGs with the national five-year 

development plan. During the mid-term review of the Eleventh Malaysia Plan in 2019, 

the government pledged a more profound commitment to implement SDGs by 

introducing a new framework known as the Prosperity Vision 2030 (Ministry of 

Environment and Water, 2021). Furthermore, Malaysia also initiated the Sustainable 

Malaysia 2030 to tackle environmental-related challenges. Led by the Ministry of 

Environment and Water (KASA), the framework is based on four pillars: empowered 

governance, green growth, strategic collaboration, and social inclusion. Both 

frameworks aim to ensure sustainable economic growth, as developments are often the 

leading cause of environmental degradation due to the lack of a holistic plan to balance 

economic and environmental gain. 
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Urban development, usually characterised by rapid land use changes, severely 

affects the quality of its surrounding. Changes in land use often significantly impact 

river water quality passing through the developing area. In fact, major river 

management problems in Malaysia are closely related to water quality issues. This 

caused problems for the public since the river water is used for various activities such 

as domestic consumption, tourism activities, fish farming, and recreation. In 2017, 

river water accounted for 80.5% of Malaysia's raw water supply, making them valuable 

natural resources (Ahmad Kamal et al., 2020). In order to protect the environment, a 

balance between land use changes and environmental protection is needed. According 

to KASA (2020), in the Environmental Sustainability Plan in Malaysia 2020-2030, 

Malaysia planned to increase the number of clean rivers by 5% in 2023, 10% in 2025, 

and 25% in 2030. Thus, having a robust method to measure the impact of land use 

changes on water quality is particularly essential.  

The Department of Environment (DOE), Malaysia, monitors 477 rivers 

throughout the country (DOE, 2016). The trend of the monitored river water quality 

from 2005 to 2016 is shown in Figure 1.1. It can be shown that there was a declining 

trend in clean rivers from 2005 to 2016. In 2016, 244 (47%) of the 477 rivers monitored 

were classified as clean, 207 (43%) as slightly polluted, and 46 (10%) rivers as 

contaminated. These numbers represent a significant increase compared to 29 rivers 

classed as polluted in 2013. A study carried out by Ariffin et al. (2015) found that most 

the rivers suffer from high organic matters in terms of Biochemical Oxygen Demand 

(BOD), ammonia nitrogen (NH3-N), and suspended solids (SS).  
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Figure 1.1 River water quality trend from 2005 to 2016 (DOE, 2016) 

 

Biochemical Oxygen Demand, NH3-N, and SS are commonly found in 

domestic wastewater. The operation and maintenance of sewage treatment plants 

(STP) that treat domestic wastewater in most parts of Malaysia are carried out by the 

Indah Water Konsortium (IWK). Since IWK became fully operational in 1997, 

significant improvements have been made as almost all river basins are categorised by 

the DOE as having better water quality. According to Chan (2012), clean rivers had 

risen from 28% in 1993 to 64% in 2007. However, according to the DOE report in 

2016, 60-70% of river water pollution was from domestic waste, including domestic 

wastewater (DOE, 2016). In line with the report, several researchers have found that 

STP negatively impacts river water quality (Vijay et al., 2016, Jerves-Cobo et al., 

2018; Theoneste et al., 2020).  

Skudai River is one of Johor Bahru city's primary drinking water sources, and 

the Skudai River watershed is the third largest watershed in Johor Bahru. Several 

tributaries join the mainstream and travel through housing, industrial, settlements, 

townships, and commercial centres before finally reaching the coast. Rapid 

urbanisation has had a significant negative impact on the water quality of the Skudai 

River and its associated ecosystems with the increasing numbers of residential, 

industries, commercial areas, and agriculture.  Skudai River was included in the 

"slightly polluted" category, and immediate action is needed to reverse the water 
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quality and prevent further degradation (Naubi et al., 2016; Ahmad Kamal et al., 

2020). Most of the water quality stations in Skudai River were classified as Class III 

(slightly polluted to polluted). The river contains a high concentration of NH3-N, 

particularly during dry weather (Ahmad Kamal et al., 2020). Therefore, understanding 

the relationship between land use changes, precipitation, and existing sewage 

treatment facility to water quality is very important to improve the prediction of water 

contamination in the watershed in guiding watershed land use planning in the future. 

And also, river management needs an intensive monitoring system program as an early 

warning. 

In analysing the water quality of freshwater ecosystems, a robust method is 

crucial. The lifeblood of best water resource management lies in accurate, precise, and 

reliable predictions of future phenomena (Dogan et al., 2009; Ömer Faruk, 2010; 

Najah et al., 2013; Nourani et al., 2014). More accurate and reliable monitoring may 

lead to more appropriate policies to keep pollution within the tolerable level. Different 

techniques, ranging from regression-based methods such as linear and multilinear 

regression to watershed models, can examine land use's impact on water quality. If 

there are sufficient data sets of high quality, then Artificial Neural Networks (ANNs) 

could be used effectively to predict water quality (Kalin et al., 2010). 

1.2 Problem Statement 

Over the past few decades, researchers have been developing method to assess 

the general quality of surface water, known as the Water Quality Index (WQI). Water 

Quality Index is one of the most effective tools for providing feedback on water quality 

to policymakers and environmentalists. It is helpful to determine river water suitability 

for various uses, including irrigation, aquaculture, and domestic use. Water quality 

knowledge and the WQI assessment play an essential role in controlling and managing 

water quality. The index uses several parameters, including chemical, physical, and 

biological properties, to measure water quality with a single numerical value (Khalil 

et al., 2011; Najah et al., 2013; Sahoo et al., 2015). National Standard Malaysia for 

WQI consists of six parameters; BOD (needed a five-day laboratory analysis), COD, 
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NH3-N, TSS, pH, and DO. Monitoring river water quality using WQI is costly and 

requires some effort. Since 2017, DOE has monitored the Skudai river bimonthly.  

Methods of water quality assessment have constantly been improving, along 

with increasing awareness of the quality of the water environment. Principal 

component analysis (PCA), a statistical method for multivariate data analysis, is 

commonly used to discover correlations between original indicator variables and 

transform them into independent principal components. Principal component analysis 

has been used to identify the spatial and temporal changes in water quality and possible 

pollution sources (Jiang et al., 2020; Shi et al., 2020; Yang et al., 2020; Zhao et al., 

2020). Many researchers have used this method to determine rivers' most crucial water 

quality parameters (Varol et al., 2012; Sun et al., 2016; Zeinalzadeh and Rezaei, 2017; 

Jahin et al., 2020). This method also reduces the number of characters, allowing 

relationships between individuals and variables. Furthermore, PCA is considered 

effective in eliminating redundant information  (Laghzal et al., 2016; Tripathi and 

Singal, 2019; Golabi et al., 2020; Venkateswarlu et al., 2020). The general WQI 

approach is based on the most common factors described in three steps: parameter 

selection, quality function determination, and sub-index aggregation with 

mathematical expressions (Tyagi et al., 2020). The selection of parameters is usually 

carried out using expert judgment (individual interviews, interactive groups, and the 

Delphi method) and statistical methods (Pearson’s correlation coefficient dan 

PCA/factor analysis) (Sutadian & Muttil, 2016; Banda & Kumarasamy, 2021). 

Following the success of many researchers in utilising PCA, this approach can be used 

to select parameters that play an essential role in WQI values.  

Water quality modelling plays an essential role in river basin management. It 

can predict the trend of water quality characteristics following the watershed's current 

environmental quality and the rules for the transfer and transformation of pollutants in 

river watersheds. Due to uncertainties of water quality data—including size and 

heterogeneity, randomness, obscurity, inaccuracy, non-stationary, and the non-linear 

relation between the parameters of water quality—the prediction accuracy of 

traditional models has been limited. Artificial intelligence (AI) techniques can 

simulate this behaviour and complement the weakness. Several researchers have found 
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that factors having non-linear relationships among many parameters may affect water 

quality predictions. This substantial constraint cannot be solved by conventional data 

processing (Zhao et al., 2007; Singh et al., 2009; Barzegar et al., 2016). In recent 

decades, several studies exploring the use of AI in water quality modelling have shown 

encouraging results (Diamantopoulou et al., 2005; Palani et al., 2008; Dogan et al., 

2009; Singh et al., 2009; Kim & Seo, 2015; Najah et al., 2011; Sarkar & Pandey, 2015; 

Salami Shahid & Ehteshami, 2016). Artificial neural networks are AI techniques with 

flexible mathematical structures that can identify complex non-linear relationships 

between input and output data compared to other classical modelling techniques 

(Najah et al., 2013a; Barzegar et al., 2016; Elkiran et al., 2018; Zhang et al., 2019). 

From 2007 to 2019, the most predicted parameters for ANNs were dissolved oxygen 

(DO), BOD, SS, and temperature (T). There is still a lack of predictive studies using 

in-situ parameters as input (e.g., DO, pH, conductivity, temperature, salinity, total 

dissolved solids (TDS), and turbidity). Most ANNs studies used laboratory analysis 

parameters as input or output (BOD, chemical oxygen demand (COD), SS, etc.).  

The majority of existing research about water quality modelling focuses on 

water quality data and the impact of land use on water quality, while those on the 

effects of STPs discharges on river water quality have also been conducted to a certain 

extent (Seanego and Moyo, 2013; Cahoon et al., 2016). However, research on water 

quality prediction using land use input, existing STP, and rainfall has not yet been 

carried out. This is due to the complicated relationship between the abovementioned 

factors and water quality parameters. Moreover, limited water quality modelling 

studies utilize ANNs that consider these factors (in-situ parameters, land use, 

precipitation, and existing STP). And also, to date, the limited water quality index 

model integrates in-situ water quality parameters with land use, rainfall, and STP as 

input data. 

This study aimed to fill the existing research gap by using in-situ parameters, 

spatial data, precipitation, and the existing STP as input data in the ANNs model. It 

attempted to demonstrate its applicability to predicting the WQI. The AI approach is 

an advanced method that allows multiple data inputs from the raw time series. 

Integrating the three factors above with the ANN model is an interesting research 
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problem, especially in water resource forecasting problems where the input data are 

heterogeneous, complex, stochastic, and non-stationary.  

1.3 Research Objective 

This study involves the development of water quality models using ANNs. The 

developed model is aimed to assess the influences of land use, precipitation, and 

sewage treatment plant on a catchment system using the Skudai River catchment as a 

case study. The followings are the objectives for this study: 

(a) To identify and determine key water quality parameters using PCA based on 

land use and pollution sources.  

(b) To correlate and predict WQI values based on in-situ parameters using ANNs. 

(c) To determine and predict the relationship between land use patterns, 

precipitation, sewage treatment plant, and WQI using the ANNs model. 

(d) To develop a WQI Prediction Model using ANNs that integrate the in-situ 

water quality parameters with land use, precipitation, and existing sewage 

treatment plant.  

1.4 Scope of The Study 

The study focused on developing the ANNs model to predict the WQI of the 

Skudai River upstream watershed. Several inputs are required to create a WQI 

prediction model, including water quality data, land use data, rainfall data, and existing 

STP data. The water quality data used in this study were obtained from the DOE (2001 

to 2019). The historical land use data for 2000, 2002, 2006, 2008, 2010, 2013, 2015, 

and 2018 were obtained from the Malaysian Centre for Geospatial Data Infrastructure 

(MaCGDI), and the Department of Agriculture (DOA) Malaysia processed using 

ArcMap 10.4. Then rainfall data (2001-2020) used in this study was provided by the 
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Department of Irrigation and Drainage (DID) and the Malaysian Meteorological 

Department (MMD). The existing STP development data (1995-2019) were collected 

from IWK, while the type and amount of industries (2018) were obtained from DOE. 

Identification of the key parameters affecting water quality and assessing the 

correlation between physical and chemical parameters using PCA performed using 

SPSS 25. The WQI model was developed using Artificial Neural Networks (ANNs) 

Back Propagation was done using Matlab R2018. The model was trained and tested 

using time series water data (2001-2019), and the results were validated with the 

experimental data from the fields. Four water quality stations were selected at 

upstream of the Skudai River. Data collection was carried out four times between 

February and March 2020 and six times between July and October 2020. Modelling 

performance was analysed using Mean Square Error (MSE), root means square error 

(RMSE), and coefficient of correlation (R). 

1.5 Significant of Study  

The significances of this study are as follows: 

(a) This study provides information regarding the relationship between physical 

and chemical water parameters using PCA. Principal Component Analysis is 

commonly used to identify the spatial and temporal changes in water quality 

and possible pollution sources and determine the essential water quality 

parameters in the river. These features can reduce the number of water quality 

parameters, focusing only on the main parameters and can be used as an 

alternative approach to determining parameters for calculating the value of the 

water quality index. 

(b) Water quality monitoring by the DOE is carried out every two months at 

specific sampling points for river monitoring purposes. The samples are 

analysed for six parameters to determine the river's WQI value and health 

status. A newly-developed model, the Artificial Neural Networks Water 

Quality Index 1 (ANNWQI-1) model, has been proposed to assist river 
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monitoring. This model will predict the water quality index only by analysing 

the in-situ parameters. This will significantly reduce the cost of water quality 

monitoring, enhance the monitoring's frequency and ability, and provide a 

better tool for managing the river water quality.  

(c) Water quality monitoring is a representative and quantitative collection of 

information on water quality's physical, biological, and chemical 

characteristics. Various approaches were made to select the location of the 

most optimum sampling point for water quality monitoring. The Artificial 

Neural Networks Water Quality Index-2 (ANNWQI-2) model predicts WQI 

using input data: land use, rainfall, and existing STPs location. Therefore 

ANNWQI-2 model enables WQI prediction in an area with similar 

physiographic characteristics. Especially where the sampling station is 

unavailable or in an unmonitored watershed. 

(d) The WQI model using the Artificial Neural Networks Water Quality Index-3 

(ANNWQI-3) model integrates the ANNWQI-1 and ANNWQI-2 models. 

Using the ANNWQI-3 model, it is also possible to simulate future WQI values 

during land use change and STP development. Moreover, the model also helps 

find effective measures to raise the WQI value. 0. Hence, the model can be 

used as an input for crucial decision-making. 

1.6 Organisation of Thesis 

This thesis is structured and designed in six chapters to present the study 

methods, analysis, results, discussion, and recommendation. The study objectives, 

problem statements, scope, and contribution to knowledge are described in Chapter 1. 

Chapter 2 provides a general overview and literature review related to the research 

methodology and materials used. Chapter 3 presents the framework of research, 

materials, and methods used to achieve the study objectives. The pre-processing data, 

to determine key water quality parameters using PCA is shown in Chapter 4. Chapter 

5 presents the results and analysis of Model Water Quality 1, 2, and 3. The discussion 

of the results obtained in this study is included in the same chapter. Finally, in Chapter 
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6, the conclusion of the findings is presented along with recommendations for future 

research. 
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