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ABSTRACT

The mixed matrix membrane typically has the particles randomly dispersed 
within the membrane. The random particle dispersion will reduce the adsorption and 
photocatalytic performance because the optimum position for particles in the 
membrane is near the membrane surface. At the optimum position, the particles will 
easily interact with the incoming targeted molecule, i.e., phenol. One of the methods to 
disperse the particles near the membrane is by magnetic induce casting. Hence, the first 
objective was to analyze the effect of magnet arrangement in magnetic induced casting on 
zinc ferrite distribution in the membrane for phenol adsorption. Next, was to 
elucidate the impact of different zinc ferrite dosage on magnetic induced casting at 
varied initial phenol concentrations via adsorption kinetic, isotherm, and diffusion 
model. The final objective was to investigate the effect of varied magnetic strength on the 
distribution of zinc ferrite particles in the membrane for photocatalytic degradation of 
phenol. The particle in this work refers to zinc ferrite, while the magnetic induced 
casting refers to a step during the membrane fabrication in which the cast film was 
exposed to magnets in different arrangements with a unique magnetic field for inducing 
particle distribution and migration. The membrane performance was tested by water 
flux, phenol adsorption, regeneration while the adsorption data were fitted into 
adsorption isotherm and kinetic model. For testing the hypothesis, the magnetic 
induced casting was carried out by arranging the magnets into the rod, circular (MB), and 
chain (MC) pattern while the zinc ferrite composition was varied at 3, 12 and 30 wt%. 
The distance between the magnet and cast film was varied to 10, 15 and 40 mm to study 
the influence of magnetic strength. The findings show that magnet arranged in a chain and 
circular pattern produced a membrane with high phenol adsorption, fast water flux and 
stable performance after three regeneration cycle. Circular/12wt% ZnFe (MB12) 
membrane reported 30.4 L/m2.h water flux with a phenol adsorption capacity of 415 mg 
phenol/g ZnFe (mg/g). Meanwhile, the finding shows that membrane with 3 wt%/total 
solid has a stable performance compared to other compositions of zinc ferrite. In 
studying the effect of zinc ferrite composition, the magnetic arrangement was fixed to a 
MC and MB pattern. Circular/3wt% ZnFe (MB3) membrane possessed a balanced 
water flux and phenol adsorption performance with both registering ~27 L/m2.h and 
~303 mg/g, respectively. The adsorption kinetic model revealed that the diffusion in the 
MB3 membrane was propelled by intraparticle diffusion due to low external mass 
transfer coefficient, Ks = 0.000633, while the chain/3wt% ZnFe (MC3) membrane was 
rate-limited by external diffusion with Ks of 0.00254. The zinc ferrite adsorption stage 
implied that the MB3 membrane possessed a zone IV: drastic kinetic, the fastest adsorption 
rate, while the MC3 membrane exhibited zone III: quick kinetic, a moderate adsorption 
rate. Furthermore, varying the distance between magnetic and cast film revealed that 
the circular/12wt% ZnFe/15mm gap (MB1215) membrane demonstrated the highest 
photocatalytic performance with a stable photodegradation after three regeneration 
cycles at 1736, 1706, and 1693 mg/g phenol degradation capacity per cycle. A 
prolonged photocatalytic run indicated the MB1215 degraded ~98% phenol after 510 
min.
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ABSTRAK

Membran matriks campuran yang biasa selalunya mempunyai zarah yang 
diselerakkan secara rawak dalam membran. Penyebaran zarah secara rawak akan 
mengurangkan prestasi penjerapan dan fotopemangkinan kerana lokasi optimum bagi 
zarah di dalam membran ialah berdekatan dengan permukaan membran. Pada posisi 
optimum, zarah-zarah mudah untuk berinteraksi dengan molekul sasaran yang masuk 
seperti fenol. Salah satu cara untuk menyebarkan zarah hampir dengan permukaan 
membran ialah dengan menggunakan pencanai dorongan magnet. Oleh itu, objektif 
pertama ialah menganalisa kesan susunan magnet semasa mencanai dorongan magnet 
ke atas penyebaran zink ferit di dalam membran untuk penjerapan fenol. Seterusnya, 
mengkaji kesan dos zink ferit ke atas pencanai dorongan magnet pada pelbagai 
kepekatan fenol melalui model penjerapan isoterma dan kinetik. Objektif terakhir ialah 
menyiasat kesan pelbagai kekuatan magnet ke atas sebaran zarah zink ferit di dalam 
membran bagi fotopemangkinan fenol. Zarah dalam kajian ini merujuk kepada zink 
ferit sementara pencanai dorongan magnet merujuk kepada langkah semasa fabrikasi 
membran di mana acuan filem didedahkan pada set magnet dalam susunan yang 
berbeza yang mempunyai medan magnet yang unik bagi mendorong penyebaran dan 
penghijrahan zarah. Prestasi membran diuji dengan fluks air, penjerapan fenol, 
penjanaan semula sementara data penjerapan diisi ke dalam model penjerapan isoterma 
dan kinetik. Bagi menguji hipotesis, canaian dorongan magnet telah dilakukan dengan 
menyusun magnet kepada corak batang, bulatan (MB) dan rantai (MC) sementara 
komposisi zink ferit dipelbagaikan kepada 3, 12 and 30 wt%. Jarak diantara magnet 
dan filem membran dipelbagaikan kepada 10, 15 dan 40 mm bagi mengkaji kesan 
kekuatan magnet. Penemuan menunjukkan magnet yang di susun dengan corak rantai 
dan bulatan menghasilkan membran dengan penjerapan fenol tinggi, fluks air laju dan 
prestasi stabil setelah tiga kitaran penjanaan semula. Membran bulatan/12wt% ZnFe 
(MB12) melaporkan 30.4 L/m2.h fluks air dengan 415 mg fenol/g zink ferit (mg/g) 
kapasiti penjerapan fenol. Sementara itu, penemuan menunjukkan membran dengan 3 
wt%/jumlah pepejal menunjukkan prestasi stabil berbanding komposisi zink ferit yang 
lain. Semasa mengkaji kesan komposisi zink ferit, susunan magnet ditetapkan pada MC 
dan MB. Membran bulatan/3wt% ZnFe (MB3) memiliki fluks air dan prestasi 
penjerapan fenol yang seimbang dengan keduanya masing- masing mendaftarkan ~27 
L/m2.h and ~303 mg/g. Model penjerapan kinetik mendedahkan peresapan pada 
membran MB3 didorong oleh peresapan intrazarah kerana kadar pekali pemindahan 
jisim luaran, Ks = 0.000633 yang rendah, sementara membran rantai/3wt% ZnFe 
(MC3) dihadkan oleh peresapan luaran dengan Ks bersamaan 0.00254. Tahap 
penjerapan zink ferit menunjukkan membran MB3 memiliki zon IV:kinetik drastik, 
kadar penjerapan tertinggi sementara membran MC3 mempamerkan zon III:kinetik 
cepat, kadar penjerapan sederhana. Tambahan lagi, mempelbagai jarak antara magnet 
dan acuan filem mendedahkan membran bulatan/12wt% ZnFe/15mm jarak (MB1215) 
menunjukkan prestasi fotopemangkinan yang tinggi dengan penyusutan foto yang 
stabil selepas tiga kitaran penjanaan semula pada 1736, 1706, dan 1693 mg/g pada 
setiap kali kitaran penjanaan semula. Pemanjangan tempoh fotopemangkinan 
menunjukkan membran MB1215 merendahkan 98% fenol selepas 510 min.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Membrane comes in various types: mixed matrix, thin-film, hollow fiber, 

nanofiber, and ceramic membrane [1,2]. Although membranes come in different 

shapes, the function is similar for selective removal. A mixed matrix membrane has a 

unique structure, divided into either symmetric or asymmetric [3]. Meanwhile, the 

mixed matrix term refers to the particle being immobilized in the membrane [4]. Thus, 

a mixed matrix membrane with an asymmetric structure is a membrane that has a 

distinct dense and porous layer. The thin layer is usually has a dense structure with a 

finger-like structure. A thin layer in the mixed matrix membrane act as the sieving 

filter that performs selective removal. Meanwhile, the support layer in the mixed 

matrix membrane typically presents a porous structure with apparent macrovoids 

formed throughout the layer—the support layer functions as the pillar that holds the 

thin layer together [5].

Although membrane with its current form would sieve the targeted particle or 

molecules from the feed solution, particle inclusion within its matrix could introduce 

a new ability or improve the existing function. Some functions other than sieving that 

could be offered through particle immobilization are adsorption and photocatalysis 

[6,7]. Adsorption involves the attachment of a targeted molecule or particle onto the 

adsorption site of an adsorbent either through physisorption or chemisorption [8]. In 

general, most of the adsorption that occurs on an immobilized adsorbent takes place 

through physisorption. Therefore, when the feed solution permeated the membrane, 

the large molecule or particle would be sieved through its small pores by the thin 

membrane layer. However, the molecules or particles smaller than the membrane pore 

radius would permeate. Hence, the adsorbent is introduced to absorb the small particles 

without modifying the pore radius to remedy the situation.



Meanwhile, as the name suggests, photocatalysis is a process associated with 

a catalyst activated by light [9]. Although photocatalysis is usually performed by 

suspending the catalyst in the raw solution, the method required tedious catalyst 

recovery at the end of the photocatalysis process [10]. Therefore, incorporating 

photocatalyst into the membrane eliminates the extra step to recover the catalyst. 

Besides, a membrane with a photocatalyst would perform two functions 

simultaneously; sieving and photocatalysis [11].

In normal circumstances, for a mixed matrix membrane, the immobilized 

particles are randomly distributed, and homogenous particle distribution is ideal for a 

mixed matrix membrane [4]. Although homogenous particle distribution would benefit 

the membrane from particle aggregation and consistent membrane performance, the 

selective removal feature of the immobilized particles such as adsorption and 

photocatalysis would be affected by the homogenous distribution. The systematic 

particle migration and distribution would give the mixed matrix membrane a massive 

advantage, mainly used for adsorption and photocatalysis application.

The primary sources of phenol and its derivatives presence in the environment 

are through landfill untreated leachate, municipal sewage, and industrial effluent. Even 

at low concentrations, the presence of phenol is known to develop cancerous cells, and 

it has been classified as toxic when released to the environment [12]. So far, the 

probable cause of phenol leaching into the water ecosystem is due to poor waste 

management. Therefore, several stages of water treatment must be introduced to clean 

the water from phenol and its derivatives before being discharged, such as introducing 

a membrane technology at the polishing stages. It has been categorized under priority 

pollutants by the US Environmental Protection Agency (USEPA) and Canada through 

the National Pollutant Release Inventory (NPRI) [13]. Even the international 

regulatory bodies have set a strict limit of phenol discharge to the environment, i.e., 

USEPA has imposed a strict water purity standard where phenol concentration in water 

surface must be lower than 1 ppb [14]. However, human and animal toxicity level to 

phenol exposure was as high as 9-25 mg/l [15]. The strict rule regarding phenol 

discharge was due to its high reactivity, meaning phenol was susceptible to interact or 

react with other compounds present in the water. Membrane technologies are a reliable
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method to separate phenol, and it has several advantages such as small footprint, 

moderate power consumption depending on the pressure requirement with stable 

effluent quality, and easy to scale up to treat higher feed flow rate. The drawback of 

any membrane was fouling, mostly when particles and colloids were deposited on the 

membrane. Several membrane configurations focus on removing phenol from 

wastewater, such as hollow fiber membrane, membrane bioreactor, photocatalytic 

membrane, high-pressure membranes such as nanofiltration and reverse osmosis. So, 

to combat membrane fouling and, at the same time, utilize it as support for catalysts, 

the researcher has introduced a photocatalytic membrane [16]. The generated reactive 

oxygen species (ROS) resulting from photocatalysis reaction would assist in degrading 

the pollutant presence in feed solution and mitigate the formation of the fouling cake 

layer on the membrane surface. The addition of photocatalyst by immobilization would 

minimize fouling rate, reduce cleaning frequency, and stabilized pumping rate.

A photocatalyst requires access to light for activation. The light harnessing 

catalyst will perform its full potential when the photon energy from the light can excite 

an electron for a photocatalytic reaction to occur [17]. Typically, a photocatalysis 

process is carried out by suspending the catalyst in a sample solution [18]. Therefore, 

when the light was irradiated inside or directly toward the sample solution, the catalyst 

will easily harness the light to start the photocatalytic reaction. Although suspended 

photocatalysis can efficiently perform the photocatalytic reaction, an extra step is 

needed to recover the catalyst at the end of the process. Hence, by immobilizing the 

catalyst inside a membrane, the extra step for recovering the catalyst can be omitted. 

A photocatalytic membrane will have two functions operated simultaneously, sieving 

by the membrane pore and photocatalysis degradation. The particle positioned within 

the membrane will dictate the performance of the photocatalytic reaction due to light 

availability [19].

Another argument that implies the importance of dispersing the catalyst near 

the membrane surface is the light penetration depth. The light penetration depth is a 

phenomenon of light penetrating the solid surface [20]. Unlike translucent material 

such as glass, the polymer membrane usually restrict light from penetrating its 

structure. Hence, based on the Beer-Lambert law, the light penetration depth can be
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estimated by the inverse of the absorption coefficient [20,21]. Although the light can 

penetrate a solid up to a certain distance, Beer-Lamber law dictates that the light 

intensity will reduce farther the light travels from the point of entry [22]. Besides 

reducing light intensity, the light, which, according to Arthur H. Compton, comprises 

photons, would experience a loss in photon energy when colliding with an electron 

[23]. The transfer of photon energy onto the electron of the catalyst will excite the 

electron of the catalyst, thus initiate a photocatalytic reaction [24,25]. Thus, both 

factors will directly affect the performance of photocatalyst in producing electrons 

required for photocatalytic reaction. By accommodating all factors, a catalyst 

positioned near the membrane surface surmount the random particle distribution and 

benefits photocatalysis in the long term.

1.2 Problem Statement

The particle position in the membrane influences its effectiveness when 

encountered with the targeted molecules [26]. Hence, several methods have been 

developed to address this issue by coating the particle on the membrane surface 

through interfacial polymerization, dip-coating, and vapor deposition [27-29]. 

Although coating the membrane would position the particle strategically, the coating 

would interfere with the membrane pore by blocking or shrinking the pore radius and 

affect the membrane [30]. Moreover, the coated particle was prone to leaching and 

coating delamination [31]. Therefore, for an ideal mixed matrix membrane, the 

immobilized particles should be beneath the membrane surface to simulate the coating 

technique.

It is challenging to manipulate the particles in a homogeneously mixed polymer 

solution during membrane fabrication. However, in recent years, particle manipulation 

has been accomplished by external forces such as magnetic fields or with chemical 

assistance [19,26]. For particle manipulation via chemical pathways, the particle 

migration within the membrane is accomplished by phase inversion [26]. During phase 

inversion, the additive would diffuse out along with the solvent into the non-solvent, 

which migrated the particle within the cast film to the membrane surface. Although
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the chemical approach has successfully migrated the particles, the controlled 

manipulation relies upon additive and homogeneity in the dope solution, influencing 

its repeatability.

In contrast, particle manipulation through a magnetic field would produce a 

consistent migration and distribution [32]. The major drawback of magnetic field- 

assisted particle manipulation is that it only applies to magnetically attracted particles 

such as metal. Besides the limitation, the magnetic field would be a perfect method to 

induce particle migration and distribution with endless configuration. In recent years, 

magnetic induce casting for membrane fabrication has been applied in many areas of 

membrane technology, such as reverse osmosis, nanofiltration, ultrafiltration, fuel cell, 

and photocatalysis [33-36]. However, the application of magnets during membrane 

fabrication is limited to hovering the magnet parallel to the cast film. Although the 

approach will migrate the particles, the particle distribution depends on the magnetic 

field lines [37]. The magnetic field lines of a permanent magnet are based upon the 

magnet shape. For instance, a bar magnet will produce different magnetic lines 

compared to a horseshoe shape magnet.

Moreover, another factor influencing particle manipulation by a magnet was 

its magnetic force strength [38]. The intensity of the magnetic force would determine 

the distribution of particles across the membrane matrix, and a strong magnetic 

attraction force could eventually pull out the particle from the cast film. Hence, at an 

ideal condition, the magnetic force strength would sufficiently distribute the particles 

and migrated them without causing the particles to leap out of the cast film and stick 

on the permanent magnet. For a mixed matrix membrane with adsorption 

characteristics, the adsorbent order in its matrix would determine the effectiveness of 

the overall membrane efficacy in adsorbing the targeted material. Hence, by dispersing 

the adsorbent as close as possible to the membrane surface, the travel time before 

adsorbate interacts with the adsorbent can be reduced, thus increasing the probability 

of adsorption. In contrast, if  the adsorbents were randomly distributed throughout the 

membrane, the time taken before the adsorbent interacts with the adsorbate would 

increase, which simultaneously lower the probability of adsorption.
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Therefore, it is justifiable to disperse the particle to be as close as possible to 

the membrane surface. Besides, the particle positioned inside the membrane matrix 

would be less prone to leaching, thus allowing for regeneration and prolonged 

application. Figure 1.1 illustrates the effect of the particle positioned within the 

membrane on its adsorption performance. Hence, an optimum position for catalyst 

immobilized in a photocatalytic membrane is close to the membrane surface, similar 

to an adsorptive membrane. Based on this inference, the magnetic induce approach is 

better suited for migrating and distributing the particle than the chemical-assisted 

particle manipulation. Albeit chemical-assisted particle manipulation will cause a 

similar outcome to the magnetic induce method, i.e., particle manipulation, the 

inclusion of chemicals in a dope solution will cause an unwanted reaction with the 

catalyst. Therefore, the photocatalytic membrane would benefit more by magnetic 

induce particle manipulation to avoid unnecessary reactions to the catalyst.

Figure 1.1 Schematic diagram illustrating the effect of particle distribution on 
adsorption. Case 1: systematic particle accumulation near the membrane surface and 
Case 2: random particle distribution in the membrane.

Figure 1.2 illustrates the effect of light penetration depth on catalyst 

immobilized in a membrane. A suitable particle for magnetic induce casting must be 

magnetically attracted metal such as ferrite-based materials. Zinc ferrite possesses 

such properties, and besides being attracted to a magnet, it is also capable of adsorbing
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and degrading organic pollutants such as phenol [39,40]. Therefore, by incorporating 

zinc ferrite in a mixed matrix membrane and with the assistance of magnetic induce 

casting, it is possible to disperse zinc ferrite near the membrane surface. A mixed 

matrix membrane that consists of a systematically dispersed zinc ferrite would perform 

efficiently to adsorb the permeating phenol. Meanwhile, exposure to a light source 

would transform the mixed matrix membrane from an adsorptive membrane to a 

photocatalytic membrane. Zinc ferrite would make a suitable particle for a magnetic 

induce casting prepared mixed matrix membrane capable of adsorption and 

photodegrading phenol for water treatment. An optimum mixed matrix membrane to 

be considered in water treatment would possess a good sieving ability with added 

functionalities such as adsorption and photocatalysis, which could be obtained by 

dispersing the particle inside the membrane near its surface.

Random distribution Systematic distribution
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Figure 1.2 The benefit of particle accumulating close to membrane surface in a 
photocatalytic membrane.

In order to investigate the influence of particle dispersion by the magnetic field, 

a set of objectives was devised to investigate the effectiveness of systematic particle 

dispersion on adsorption and photocatalytic membrane. The magnets are arranged in a 

pattern resulting in a unique magnetic field to assist in zinc ferrite dispersion. Besides 

arranging the magnets, the magnetic strength was also varied to observe its effect on 

zinc ferrite dispersion. Therefore, the novelty of this work lies in utilizing magnets in 

terms of pattern and strength to induce particle dispersion.
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1.3 Research Objectives

Based on the problems mentioned earlier, the following objectives are 

formulated to explore the systematic particle migration and distribution in the 

membrane via magnetic field:

(a) To analyze the effect of magnet arrangement in magnetic induce casting on 

zinc ferrite distribution in the membrane for phenol adsorption;

(b) To elucidate the impact of different zinc ferrite dosage on magnetic induce 

casting at varied initial phenol concentrations via adsorption kinetic, isotherm, 

and diffusion model;

(c) To investigate the effect of varied magnetic strength on the distribution of zinc 

ferrite particles in the membrane for photocatalytic degradation of phenol

1.4 Research Scopes

The following research scopes presented a parameter boundary when 

examining each objective for a detailed and in-depth study:

Objective 1:

(a) Zinc ferrite was synthesized according to the co-precipitation method with zinc

nitrate hexahydrate (Zn(NO3)3-6H2O, > 99% crystallized) and iron nitrate 

nonahydrate (Fe(NO3)3-9H2O, > 99.999% trace metals basis) supplied by 

Sigma Aldrich as the precursor. The zinc ferrite composition is fixed at 12 wt% 

and calculated based on per total solid basis. The total solid refers to the 

composition of polyethersulfone (PES, C 12H8O3S, Radel A300, Ameco 

Performance) that makes up the membrane. The polyethersulfone composition 

was fixed at 18 wt%. Therefore, the zinc ferrite composition was 12 wt% from 

the overall weight of PES. Polyvinylpyrrolidone (PVP, (C6H N O )n, K30,
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Sigma Aldrich) 1 wt% was added to assist pore formation and weighed based 

on a per total solution basis. The total solution refers to the total composition 

of the dope solution, which comprises a polymer and solvent. The solvent was 

82 wt% N-methyl-2-pyrrolidone (NMP, C5H9NO, V-Chem). The membrane 

was fabricated by a non-solvent induced phase separation process (NIPS) 

method with water as the non-solvent.

(b) The permanent magnet used to achieve the objective was 60 button-shaped 

magnets (200 mT/each, Neodynium, One Magnet) arrangement in a circular, 

chain, and rod pattern. The magnet in the particular pattern was suspended 

above the cast film at a fixed distance of 40 mm. For circular patterns, each 

loop contains 6 button magnets with 9 loops fixed across a steel plate. For the 

chain pattern, 12 button magnets were bound side-by-side to form 5 lines of 

chain pattern fixed next to each other on a steel plate. Meanwhile, the rod 

pattern magnet was arranged by binding the button magnet surface-to-surface, 

creating a long magnet rod with 60 button magnets. For the rod pattern, the 

magnetic induce casting was conducted by placing the rod in a hollow glass 

tube. The glass tube was used to spread the membrane across the glass plate, 

and with a rod pattern, the magnetic rod was moved along with the glass tube, 

creating direct magnetic exposure onto the cast film. Unlike rod patterns, the 

other two patterns would be conducted by suspending the magnet above the 

cast film.

(c) The membrane was characterized by scanning electron microscopy (SEM), 

energy dispersive X-ray (EDX), atomic force microscopy (AFM), Fourier 

transform infrared spectroscopy (FTIR), a gravimetric method for porosity 

measurement, contact angle analysis, water flux test at 1 bar, and zeta potential.

(d) The phenol adsorption was conducted by the dead-end filtration method. 

Phenol initial concentration was fixed at 30 ppm, with a total volume of 1 liter 

per adsorption test, and the adsorption interval was standardized at 120 min. 

All adsorption test was conducted at room temperature (26-28 °C). The 

adsorption data were fitted to several adsorption isotherms categorized as 

chemical adsorption, physical adsorption, Polanyi potential adsorption, and
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empirical adsorption. Ultraviolet-visible spectrometry (UV-vis) analyzed the 

permeated solution at 270 nm wavelength.

(e) The membrane regeneration was conducted in three cycles with sodium 

chloride.

(f) Two magnetic arrangements that produce the best performance membrane will 

be chosen for studying objective 2.

Objective 2:

(a) The membrane fabrication condition was similar to scope (a) of objective 1, 

with changes to zinc ferrite composition. The composition was varied for 3, 

12, and 30 wt% per total solid basis.

(b) The magnetic pattern was limited to circular and chain patterns. The magnetic 

induce casting procedure was similar to the scope (b) of objective 1.

(c) The initial phenol concentration was varied, starting from 5, 13, and 30 ppm. 

The adsorption test was conducted on dead-end filtration for 120 min at 1 bar, 

and data were fitted into the adsorption kinetic models. The kinetic model was 

categorized into adsorption reaction, external and internal diffusion, and 

adsorption onto active sites. UV-vis was used to analyze the permeated solution 

at 270 nm wavelength.

(d) Membrane characterization was similar to the scope (c) of objective 1.

(e) Membrane regeneration was similar to the scope (e) of objective 1.

(f) The zinc ferrite loading that produces the best performance membrane and 

magnetic arrangement from scope (e) of objective 1 will be used to study 

objective 3.
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Objective 3:

(a) The zinc ferrite composition was fixed at 12 wt% while the magnetic pattern 

was circular and chain pattern with membrane fabrication similar to scope (a) 

and (b) of obj ective 1.

(b) The magnetic strength was varied by manipulating the distance between 

magnet and cast film. The distances were 10, 15, and 40 mm, and in term of 

the magnetic field were 150, 70, and 10 mT measured by portable Gauss meter 

(WT103 digital Tesla meter, China).

(c) The photocatalysis was conducted with UV light (254 nm) for 330 min while 

for stability test, the photocatalytic interval increased to 550 min. The 

adsorption period was fixed at 30 min before photocatalysis begins. The 

photocatalysis setup was conducted via submerged flat sheet membrane. High- 

performance liquid chromatography (HPLC) was used to analyze the 

membrane permeate. Initial phenol concentration was standardized at 5 ppm 

for a total volume of 0.9 L and solution regulated to pH 5. The amount of 

catalyst in the membrane was calculated based on 12 wt% of membrane mass 

and applicable for determining the adsorbed phenol at equilibrium (qe).

(d) The adsorption kinetics and isotherm model was conducted according to the 

scope (d) of objective 1 and scope (c) of objective 2.

(e) Membrane regeneration was conducted similar to the scope (e) of objective 1.

(f) Membrane fouling was carried out via protein sieving. The model protein was 

bovine serum albumin (BSA, Sigma Aldrich), and initial concentration was 

regulated to 1,000 ppm for a total volume of 1 L. The fouling test was 

conducted by dead-end filtration, and membrane permeate was analyzed by 

UV-vis at 280 nm wavelength. Membrane regeneration for fouling test 

implemented by soaking in water.
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1.5 Significance of the study

This study explored the possibility of achieving systematic particle 

arrangement within the membrane matrix. The membrane was exposed to a series of 

magnetic patterns that induce the particle migration and assist its distribution across 

the membrane surface. Hence, from this study, the significance findings would be a 

membrane that possesses particles aligned close to the membrane surface, exhibiting 

higher adsorption and photocatalysis performance. Therefore, this study would offer 

an alternative view of the influence of particle distribution on the existing concept of 

a mixed matrix membrane. The alternative view would be the particles distributed 

upwards towards the membrane surface were preferable to the former concept that 

suggests homogenous particle distribution throughout the mixed matrix membrane. 

From membrane fabrication perspective, the magnetic induce casting would be the 

most straightforward and cost-effective approach for attaining a membrane with 

consistent particle distribution.

1.6 Thesis outline

This thesis is structured in seven chapters, mainly zinc ferrite synthesis and 

membrane fabrication by various magnetic patterns and strength with different zinc 

ferrite compositions. The membrane was tested on phenol adsorption and phenol 

mineralization by photocatalysis. Chapter 1 emphasizes the problem statement, which 

is the motivation of this work. From the problem statement, a set of objectives were 

formulated to address the problem. The research scopes were proposed to achieve the 

objectives and provide a perimeter around the objective.

Chapter 2 introduced the current mixed matrix membrane, followed by particle 

manipulation. The particle dispersion is divided into chemical, and magnetic force 

approaches. A review of the current chemical and magnetic approach for particle 

dispersion was presented, which revealed a research gap worth exploring. Next, an 

alternative view was presented, which features the importance of a mixed matrix 

membrane in which the particle was systematically aligned near the membrane surface
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instead of randomly scattered within the membrane matrix. Then, a theory was 

presented to highlight the light penetration on solid surfaces, such as membrane and 

photon-electron collision relationships, showing the significance of systematic particle 

distribution in the photocatalytic membrane.

Chapter 3 presents the methodology of particle synthesis, membrane 

fabrication, adsorption study, fitting of adsorption data to kinetic and isotherm model, 

membrane regeneration, fouling studies, and photocatalysis.

Chapter 4 explains the effect of various magnetic patterns on particle 

dispersion on phenol adsorption. The adsorption mechanism was proposed by fitting 

the adsorption data into several isotherm models.

Chapter 5 report the effect of different zinc ferrite composition on particle 

dispersion under different magnetic pattern exposure. The findings in this chapter 

revealed the optimum zinc ferrite composition for magnetic induce casting. The effect 

of zinc ferrite composition was evaluated by phenol adsorption at various initial 

concentrations. The adsorption data were fitted in several kinetic models to assert a 

mechanism of phenol adsorption.

Chapter 6 explore the impact of magnetic strength on particle migration and 

distribution within the membrane in which the membrane was fitted in a submerged 

membrane module for photocatalytic degradation of phenol. The magnetic strength 

shows that ordered particle dispersion is a significant factor in improving the 

photocatalysis process.

Chapter 7 concludes each chapter in result and discussion and suggests 

recommendations to extend the present study.
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