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ABSTRACT

Dengue fever is a mosquito-borne disease that has been declared as one of the
major public health problems in many tropical climate countries. Rising dengue
dissemination could be caused by population growth and urbanisation, long-distance
travel, lack of sanitation, and ineffective mosquito population control. In light of this
issue, this study introduces deterministic models for optimal control problems
pertaining to dengue transmission. The first new model incorporates nonlinear
incidence and treatment function since disease occurrences are inherently nonlinear
and treatment might be delayed as public health resources are sometimes limited.
Although nonlinear incidence functions in dengue transmission models have been
proposed in previous studies, the use of both nonlinear incidence and treatment
functions are limited. Another model based on a compartment of asymptomatically
infected humans with the appearance of constant immigration into the compartment is
also introduced. This is in accordance with the fact stated by the World Health
Organization, that the majority of dengue disease cases are asymptomatic. Several
dengue transmission models with asymptomatic compartment can also be found in the
literature, but none have assumed the existence of constant immigration for this
compartment model. Subsequently, a threshold governing disease persistence within a
population is determined and the existence of endemic equilibrium is identified.
Then, the analysis of the stability of equilibria and numerical simulations are
presented accordingly. Also, the optimal control problems are formulated based on
the two new deterministic models in which time-dependent control and prevention
measures are used. Then, the optimal control parameters are identified, and the
corresponding optimality systems are set up. Based on the formed optimality system,
numerical simulation is carried out. The results of numerical simulation can be used
as a guideline in implementing prevention and control measures for dengue
transmission. The results also revealed that self-protection strategy, such as using
mosquito repellents and wearing protective clothes, is an important preventive
measure in combating dengue transmission.
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ABSTRAK

Demam denggi adalah penyakit sebaran nyamuk yang telah diisytiharkan
sebagai salah satu masalah kesihatan awam yang utama di banyak negara beriklim
tropika. Peningkatan dalam penyebaran denggi boleh disebabkan oleh faktor
pertumbuhan penduduk dan urbanisasi, perjalanan jarak jauh, kurang penjagaan
sanitasi dan kawalan populasi nyamuk yang tidak berkesan. Disebabkan oleh isu ini,
penyelidikan ini memperkenalkan model berketentuan untuk masalah kawalan
optimum berkaitan dengan penyebaran denggi. Model baru yang pertama
menggunakan fungsi kejadian dan rawatan tak linear berikutan penyebaran penyakit
yang tak linear secara semula jadi dan penerimaan rawatan adakalanya lewat akibat
kekurangan sumber kesihatan awam. Walaupun fungsi kejadian tak linear dalam
model penyebaran denggi telah dicadangkan dalam kajian yang sedia ada, namun
penggunaan kedua-dua fungsi kejadian dan rawatan tak linear adalah terhad. Satu lagi
model berdasarkan satu kelas populasi manusia yang dĳangkiti tanpa sebarang gejala,
dengan imigrasi secara tetap ke dalam kelas tersebut telah juga telah diperkenalkan.
Ini adalah selari dengan fakta daripada Pertubuhan Kesihatan Sedunia, bahawa
kebanyakan kes penyakit denggi adalah tidak bergejala. Beberapa model penyebaran
denggi dengan kelas pesakit yang tidak bergejala juga boleh didapati dalam kajian
sedia ada, namun tiada yang mengandaikan kewujudan imigrasi secara tetap dalam
kelas model tersebut. Seterusnya, satu aras yang menjadi tanda kebolehupayaan
penyebaran penyakit telah ditentukan dan kewujudan keseimbangan endemik telah
dikenal pasti. Kemudian, analisis ke atas kestabilan keseimbangan dan simulasi
berangka telah diberikan. Juga, masalah kawalan optimum telah diformulasi
berdasarkan dua model berketentuan yang baru tersebut di mana langkah kawalan dan
pencegahan yang bergantung-masa telah digunakan. Setelah itu, parameter kawalan
optimum dikenal pasti dan sistem optimum berkaitan ditentukan. Berdasarkan sistem
optimum yang telah dibentuk, simulasi berangka telah dĳalankan. Keputusan
daripada simulasi berangka boleh dĳadikan sebagai panduan dalam menjalankan
langkah kawalan dan pencegahan dalam penyebaran demam denggi. Keputusan juga
menunjukkan bahawa langkah perlindungan-kendiri, seperti penggunaan ubat
penghalau nyamuk dan pakaian pelindung, adalah sangat penting dalam membanteras
penyebaran demam denggi.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Pathogenic microorganisms such as bacteria, viruses, parasites or fungi are

the common causes of infectious diseases. Some common infectious diseases include

HIV and AIDS, measles, ebola virus disease (EVD), tuberculosis, malaria and dengue

fever. These diseases can be transmitted from one person to another, either directly or

indirectly. By direct transmission, disease can be passed on from one person to another

by direct physical contact with blood or body fluids. On the other hand, airborne

transmission, contaminated food and water, and animal-to-person contact are some of

the mechanisms for indirect transmission of infectious diseases.

Dengue fever is a type of infectious disease that is indirectly transmitted from

one host to another where mosquitoes act as the mechanism transmitting the virus.

Virus transmission from infected human occurs through the bite of a female mosquito

of Aedes aegypti, which then may be transmitted to another healthy individual through

an effective bite. As far as dengue is concerned, Malaysia is listed as one of the countries

located within dengue endemic regions (Shepard et al., 2013; Pang and Loh, 2016).

Due to this, prevention and eradication of dengue transmission is always a priority and

is becoming a major public health problem.

In the case of an outbreak of infectious disease, health authorities, other than

the individual itself, are amongst the people in the community who are affected the

most. These authorities need to evaluate appropriate treatment and prevention

programmes and, at the same time, need to consider the incurring cost. This is so that

affected individuals can receive appropriate treatment and prevention measures

without further infecting other susceptible individuals, and eventually disease can

efficiently be eradicated.
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Cost is one of the main factors that is usually considered in implementing a

prevention and control strategy for infectious diseases. Prevention measures might

include treatment, vaccination (if any, for a specific disease), quarantine, and others.

In some cases, resources needed to implement prevention measures might be scarce

and eventually lead to a higher incurred cost. Moreover, as in the case of infectious

diseases in animals and plants, the prevention measures usually involve culling of the

affected population. Nonetheless, it is not always practical to remove all of them.

Therefore, consideration of cost and other decisive factors in disease control,

such as the optimal use of limited resources for treatment and prevention, has become

one of the motivations for the study of mathematical modelling of infectious disease. It

has been acknowledged that the study of mathematical modelling of infectious disease

assists in the attempts to describe and analyse the behaviour of disease spread through

a population in order to make predictions, to evaluate control programs, and to suggest

prevention strategies (Hethcote, 2000; Zaman et al., 2008; Huang and Li, 2009; Kar

and Batabyal, 2011). With regard to this matter, deterministic models consisting of

systems of ordinary differential equations and optimal control problems pertaining to

dengue transmission will be formulated in this study.

1.2 Background of the Study

"Vector-borne diseases" is a general term that is used to describe the types of

infectious diseases which are transmitted by organisms that carry infectious pathogens

from one host to another. These organisms can be mosquitoes, sandflies, ticks, snails

and others. Malaria, West Nile virus, yellow fever, dengue fever, Zika and Chikungunya

viruses are the types of diseases that are caused by vector transmission. According

to WHO, dengue fever and severe dengue haemorrhagic fever (DHF) are the world’s

fastest growing vector-borne diseases (WHO, 2009). A majority of dengue cases are

asymptomatic, which leads to an underreported and misclassified dengue incidence.

Dengue fever is a type of vector-borne disease that is transmitted by female

mosquitoes, mainly the Aedes aegypti mosquito, and in some occasional occurrences,
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may also be transmitted by Aedes albopictus. Mammals’ blood is needed in the maturity

of the mosquitoes’ eggs and therefore only the female bites for blood, which eventually

be the ones that transmit the disease (Nevai and Soewono, 2014). It is reported by

the WHO that approximately 3.9 billion people in 128 countries are at risk of dengue

virus infection (WHO, 2019). More than 100 countries in Africa, the Americas, the

Eastern Mediterranean, South-East Asia and the Western Pacific have been declared as

endemic regions for dengue by WHO. Amongst these, the Americas, South-East Asia

and Western Pacific regions are the most greatly affected.

People infected with dengue virus experience symptom of flu-like illness and

some of the common symptoms include sudden high fever, severe headaches, joint and

muscle pain and skin rash which may appear two to five days after the onset of fever.For

a more serious case, known as dengue hemorrhagic fever (DHF), it may cause lymph

and blood vessel damage, nose and gum bleeding, liver enlargement and circulatory

system failure. It can also progress to a stage of dengue shock syndrome (DSS) where

it causes massive bleeding, shock and fatality.

Dengue virus (DENV) can be classified into four distinct serotypes (also known

as strains), DENV-1, DENV-2, DENV-3 and DENV-4, which belong to the genus

of Flavivirus, a family of Flaviviridae (WHO, 2009). Recovery from infection by

one type provides lifelong immunity against that serotype but confers only partial and

temporary protection against subsequent infection by the other three (Rodenhuis-Zybert

et al., 2010). Moreover, studies have shown that secondary infection increases the risk

of more serious disease, resulting in dengue hemorrhagic fever (DHF). Therefore, it

should be noted that complex antibody-mediated occurrences, such as cross-protection

and infection enhancement, can be generated from the co-circulation of the four different

dengue viruses (Halstead, 2007).

Once a mosquito acquires the virus from an infected human, it will go through

an extrinsic incubation period ranging from 8 to 12 days (Rodenhuis-Zybert et al.,

2010). The extrinsic incubation period is defined as the time required for the mosquito

to become infective (Pooja et al., 2014). Humans also undergo an incubation period

once the virus is transmitted to them, which ranges from 3 to 15 days (usually 5 to
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8 days), and will afterwards experience symptoms of the fever (Henchal and Putnak,

1990).

It is mentioned by WHO that a vast majority of dengue incidences are

asymptomatic (also known as inapparent, subclinical), which implies a situation

where a person is infected with dengue virus but exhibits inapparent symptoms. The

prevalence of asymptomatic infection has been reported in several studies including,

Méndez et al. (2006); Yoon et al. (2012); Gordon et al. (2013); Wang et al. (2015);

Rafique et al. (2017); Castro-Bonilla et al. (2018). Cases of asymptomatic dengue

infection have also been detected in blood donors (Stramer et al., 2012; Harif et al.,

2014; Slavov et al., 2019).

Figure 1.1 Representation of clinical manifestation of DENV infection in a pyramid
form. Source: Kyle and Harris (2008).

Figure 1.1 is extracted from Kyle and Harris (2008) where it classifies the

prevalence of dengue cases according to clinical manifestation. This is in line with the

fact published by WHO that a vast majority of dengue incidences are asymptomatic,

also known as inapparent or subclinical (WHO, 2019). It is also indicated by Chastel

(2012) that a proportion of asymptomatic cases may pass the dengue virus to competent

mosquitoes if it reaches a sufficient viraemia level. Moreover, it is stated in the
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study by Duong et al. (2015) that dengue virus can be transmitted to mosquitoes

by people with natural DENV infections but exhibit no clinical symptoms. It is also

mentioned that asymptomatic and presymptomatic infections may result in an increment

of transmission potential. From these findings, it can be seen that asymptomatic

infection may contribute to a major part of the worldwide dengue burden.

Even though mosquitoes are the medium that is responsible for transmitting

dengue virus from one human to another, humans might be a major contributing factor

in the worldwide dissemination of the disease. Rather than mosquitoes, humans, acting

as the host of dengue virus, rapidly move the virus within and between communities.

New vectors and pathogens are constantly introduced into novel geographic areas by

human migration and international trade and travel (Grange et al., 2014). Furthermore,

studies found that mosquitoes, in this case, Aedes aegypti, have a limited flying range,

which further strengthened the fact that humans may be the major contributing factor

in the spread of the virus (Maidana and Yang, 2008; Stoddard et al., 2013).

In consideration of this particular issue, infected human, especially the one

who has inapparent symptoms (asymptomatic or presymptomatic), may travel to a non-

endemic region and eventually results in the spread of the disease. Returned travellers

from dengue endemic regions may also be the cause of dengue virus transmission

in their country of origin. It has been reported by Punzel et al. (2014) that dengue

virus has been detected in a blood stem cell donor who recently travelled to Sri Lanka.

The reported case happened in Germany, and the transmission of dengue virus to the

recipient of the blood stem cells is confirmed. As mentioned in Ratnam et al. (2013), the

incidence rate of dengue infection in short-term travellers to dengue-endemic countries

is of considerable importance. The prevalence of dengue infection amongst returned

travellers has also been reported in Olivero et al. (2016). Therefore, this thesis is going

to investigate the effect of asymptomatically infected immigrants on the dynamic of

dengue virus transmission.

There is no specific antiviral treatment available for dengue infection. People

are usually advised to take acetaminophen (also known as paracetamol) and to drink

plenty of fluids if they develop symptoms of dengue fever. In the case of severe dengue
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fever, hospitalisation may be needed. People with severe dengue fever will usually be

treated by intravenous (IV) fluid and electrolyte replacement, blood pressure monitoring

and transfusion to replace blood loss. As for prevention, one way is to isolate dengue

patients so that the virus cannot be transmitted to mosquitoes. Personal protection and

environmental management are some of the other methods that can be implemented to

prevent dengue infection. In account of personal protection, people can wear repellent

and suitable clothing to avoid mosquito bites. As for environmental management,

possible breeding areas for mosquitoes need to be properly eliminated and disposed

of. Also, dengue transmission is usually being controlled by health authorities using

mosquito fogging and another more recent technique called outdoor residual spraying

(ORS).

From a mathematical modelling point of view, dengue transmission is often

formulated as an interaction between the affected population, particularly between

human and mosquito. The population for each of them is then categorized into several

distinct classes, also known as compartments, with each of them portraying human

and mosquito disease status. The most common classes that are frequently used are

susceptible (𝑆), infected and infectious (𝐼), and recovered or removed (𝑅). Based on a

review of the literature, some authors, such as Esteva and Vargas (1998), developed

dengue transmission model in the form of 𝑆𝐼𝑅-𝑆𝐼 (for human and mosquito

respectively), while others, such as Garba et al. (2008), developed the transmission

model as 𝑆𝐸𝐼𝑅-𝑆𝐸𝐼, where 𝐸 represents the compartment of exposed human and

mosquito. Several other formulations have also been established and will be further

discussed in Chapter 2.

One of the important concerns that should be considered in formulating a

mathematical model of infectious disease is the incidence rate. The occurrence of new

cases of disease within a population over a particular time period is referred to as

incidence. In other words, it is a rate that implicates susceptible becoming infectious

(Esteva and Matias, 2001; Ujjainkar et al., 2012). It should be noted that bilinear and

standard incidence rates are frequently used in modelling the dynamics of dengue

transmission (Esteva and Vargas, 1998; Pongsumpun and Tang, 2003; Derouich and

Boutayeb, 2006; Garba et al., 2008; Tewa et al., 2009; Syafruddin and Noorani, 2013;
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Sardar et al., 2015; Agusto and Khan, 2018). Nevertheless, due to the fact that

susceptible individuals may be taking preventive measures or due to crowding of

infective individuals at high infectious levels, the rate of effective contact between

infective and susceptible individuals may saturate (Ruan and Wang, 2003). Therefore,

Capasso and Serio (1978) introduced a saturated incidence rate to address the

phenomena of saturation which may arise at large numbers of infectives. With regard

to this matter, Cai et al. (2009) used the combination of saturating and bilinear

incidence rate to investigate the dynamics of dengue transmission. However, it is

necessary to extend this model by integrating saturated incidence rate to both human

and mosquito population.

Constant sufficiency of medical resources for disease treatment is another

assumption that is usually made in epidemiology modelling (Zhou and Fan, 2012). In

the language of mathematical modelling, removal or recovery rate of infectives is

frequently assumed to be in proportion to the number of infectives (Wang and Ruan,

2004). However, this is not always true in reality as each community may have limited

capacity of medical resources (Eckalbar and Eckalbar, 2011). Therefore, it is also

necessary to employ saturated treatment function as it can describe the effect of

delayed treatment to infected individuals (Zhang and Lu, 2008). The issue of

asymptomatic dengue infection has been addressed using mathematical model in

studies by Pongsumpun and Samana (2006); Sriprom et al. (2007); Pongsumpun

(2009); Vargas (2009); Anggriani et al. (2013) and Jan et al. (2020). Nevertheless, it

is necessary to extend these studies as the usage of saturated incidence rate was not

considered by these authors.

Optimal control theory deals with the notion of determining a law of control for a

dynamical system over a period of time in a way that an objective function is optimized.

It is frequently being used in mathematical models of infectious disease as an approach

to determine the optimal strategies in controlling disease transmission. Amongst the

earliest studies on the application of optimal control theory in the field of infectious

disease model are done by Gupta and Rink (1973) and Sethi and Staats (1978). As

far as dengue is concerned, several authors including Caetano and Yoneyama (2001);

Thomé et al. (2010); Aldila et al. (2013); Rodrigues et al. (2014); Agusto and Khan
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(2018); Zheng and Nie (2018) and Jan and Xiao (2019) have applied the theory of

optimal control to dengue transmission model. Although the works by these authors

have considered the use of optimal control theory in dengue transmission models, the

utilization of saturated incidence rate and saturated treatment function have not been

taken into account which then motivate the studies done in this thesis.

1.3 Statement of the Problem

The occurrence of saturation phenomena which may arise at a high number of

infectives has led to the establishment of a saturated incidence rate proposed by Capasso

and Serio (1978). Another concern which often occurs in the event of epidemic outbreak

is deficiency of treatment resources. The implication of health authorities having

limited medical resources, particularly at a non-endemic region, need to be evaluated.

To address this situation, Zhang and Lu (2008) has proposed a type of saturated

treatment function which characterizes a situation of treatment delay. Though there are

numerous published works regarding dengue transmission model, only a part of these

studies have utilized this type of saturated incidence rate (Cai et al., 2009; Ozair et al.,

2012), nonlinear recovery rate (Abdelrazec et al., 2016) and piecewise linear treatment

function (Nugraha et al., 2019). Motivated by these factors, a formulation of a dengue

transmission model with saturated incidence and saturated treatment function, which

is an extension and modification to the model by Cai et al. (2009), will be presented in

this study. With this formulation, theoretical analysis, including investigation on local

and global stability of disease-free and endemic equilibrium will be presented.

The issue of clinically inapparent dengue infection or asymptomatic infection

has been a major worldwide burden. Though asymptomatically infected human exhibit

clinically inapparent symptoms, a high viraemia level in their body may cause dengue

virus to be transmitted to mosquito (Duong et al., 2015). Therefore, another issue that

will be addressed in this thesis is the existence of asymptomatically infected immigrants.

This will be integrated into the model through the inclusion of asymptomatically

infected class.
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Furthermore, considering the fact that curtailing dengue transmission highly

depends on prevention, supportive treatment and mosquito control, optimal control

problems should be formulated so that an optimal trajectories of control and prevention

measures with corresponding implication on the dynamic of human and mosquito

population within a specific time period can be determined.

1.4 Objectives of the Study

The aim of this study is to develop deterministic models implying dynamics of

dengue transmission and identifying optimal prevention, treatment and control

strategies through the application of optimal control theory. The main objectives are

as listed below.

1. To develop a deterministic model for dengue transmission with saturated

incidence and saturated treatment function.

2. To develop a deterministic model for dengue transmission with saturated

incidence and inclusion of asymptomatically infected class with constant

immigration.

3. To formulate optimal control problems for models in Objective 1 and 2

respectively by introducing time dependent prevention, treatment and control

strategies.

1.5 Scope of the Study

Mathematical models in this study are formulated based on the notion of

deterministic compartmental model. A deterministic model implies that the

predictions of these models are entirely determined by the initial conditions, input

parameter values and the underlying set of equations. The formulated deterministic

compartmental models are made up of ordinary differential equations system. These
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models focus on the interaction between human and mosquito population in a way that

the dynamic of dengue transmission can be investigated and explored.

For the first deterministic model, human population is categorized into

compartments of susceptible, infective and recovered while mosquito population

consists of susceptible and infected compartment. A nonlinear incidence and

treatment function of saturating form will be integrated into this model. A saturated

incidence rate imitates a situation where preventive measures are taken by susceptible

individuals or crowding of infectives which may happen at high number of infections.

On the other hand, a saturated treatment function mimics a situation of treatment

delay or limited public health resources.

In view of the second deterministic model, human population is classified into

four compartments which are susceptible, asymptomatic and symptomatic infective

and recovered. Whereas, mosquito population is categorized into compartments of

susceptible and infected. A fraction of immigrants is assumed to be asymptomatically

infected. A nonlinear incidence rate of saturating form is integrated into this model

which signifies a crowding effect of the infective individuals.

Computing an exact solution of models involving a high degree of nonlinearity

is commonly analytically intractable. Instead of determining a general solution, which

is often difficult to accomplish, stability analysis is conducted as a way to get a sense

of solution behaviour. Particularly, long term behaviour of the underlying dynamical

system can be predicted from the results of stability analysis. With regards to this,

analysis of local and global stability of equilibrium points are often investigated in

literatures.

Therefore, for the given underlying dynamical system of Model 1 and Model 2

which will later be formulated in Chapter 3 and 4 respectively, qualitative analysis

which includes finding the existence and stability of equilibria will be carried out. The

existence of two types of equilibria, named as disease-free and endemic for each model

will be investigated. Several established methods will be used to perform the analysis of

stability and also bifurcation including the theory of centre manifold (Castillo-Chavez
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and Song, 2004) and geometric approach (Li and Muldowney, 1996). Computation of

a threshold parameter which rules the spread of disease will be demonstrated. This

threshold parameter, known as the basic reproduction number, denoted as R0 will be

computed based on the approach of next generation operator (Van den Driessche and

Watmough, 2002) and done with the help of Maple software.

In the second part of this study, optimal control theory will be applied to both first

and second models to formulate optimal control problems. Time dependent prevention

and control strategies, which include personal protection, supportive treatment for

symptomatic patients, mosquito control and immigrant screening in eradicating the

spread of infectious disease are incorporated into the respective models. Necessary

conditions for the optimal control problems which are part of the qualitative analysis

of optimal control problems will be identified. Also, respective optimality systems

which consist of ordinary differential equations from the state and adjoint equations are

determined through the use of Pontryagin’s maximum principle.

For the purpose of numerical simulation, value of parameters and initial

conditions are extracted from related literatures and some are being assumed. This is

due to limitations in securing actual data for the related parameters. In the first part of

this study, numerical simulations are executed in Matlab by utilizing a built-in

function known as ode45 where it employs a type of Runge-Kutta method. For the

second part, numerical results for optimal control problems are solved using an

indirect approach known as forward-backward sweep method (FBSM).

1.6 Thesis Organization

This thesis is made up of six different parts with three parts of them presenting

the original contribution of this study. The first part, which is as presented in this

chapter, introduced motivation, a brief background, objectives, research problems and

scope related to this study.
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The second part concerns the review of literatures which will be presented in

Chapter 2. In this chapter, discussion on a brief history of the mathematical model

of infectious diseases is presented. Subsequently, topics on current progression in

mathematical models and optimal control of infectious disease particularly on vector-

borne disease and dengue transmission are reviewed.

The third and the fourth part, which will be presented in Chapter 3 and

Chapter 4 respectively, concern the formulation of dengue transmission models. The

first model describes dengue transmission dynamics using nonlinear incidence and

treatment function. Meanwhile, the second model introduces a class of

asymptomatically infected human with constant immigration. Respectively, for each

of this model, a threshold governing disease persistence is determined. Then, the

existence of equilibria is identified and eventually stability analysis of equilibria and

numerical simulation are presented.

The fifth part, as will be presented in Chapter 5, concerns the formulation of

optimal control problems based on the proposed model presented in Chapter 3 and

Chapter 4 respectively. Time-dependent prevention, treatment and control measures

are incorporated into respective models. Then, investigation on the existence of optimal

control is presented and an optimality systems for each of the problem is established.

Thereafter, numerical simulation is executed to study the effect of different possible

combinations of prevention and control measures.

This study concludes in the sixth part which will be presented in Chapter 6. In

this chapter, discussion on research summary, contributions and some possible direction

of future works are provided.
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