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ABSTRACT 

Machine-to-Machine communication today is increasing with the help of 

powerful computing capabilities remotely operated through the advancement in 

automation devices and the Internet of Things (IoT), known as machine-type 

communication (MTC) devices. MTC devices consist of small and cheap onboard 

computers that can execute few tasks due to limited computational, memory and 

energy capabilities. These devices are used for autonomous monitoring, storing 

sensory data, and controlling actuators based on shared data. Moreover, these 

resource-constrained MTC devices are utilized in remote environments and places 

where human intervention is either unfeasible or immensely complicated. Due to the 

sensitivity of the data and dynamic topology of MTC devices, it is challenging to 

trust and rely on autonomous and remote devices in a shared network. Additionally, 

the data sharing procedures must endure several basic and modern security features 

such as securing mutual authentication, confidentiality, computationally affordable 

encryption, key agreeing techniques and effective handling strategies during 

communication failures. The schemes developed to provide robust security lack 

performance efficiencies to overcome modern security attacks due to operational 

costs and computational unaffordability. With inefficient performance and 

inadequate security, resource-constrained MTC devices face various types of modern 

Man-in-the-Middle (MiTM), data spoofing, and enforced data leakage-related 

security attacks. Moreover, most schemes ignore enforced data leakage and 

communication failure scenarios. Therefore, this research was designed to develop a 

machine-to-machine physical layer lightweight mutual authentication scheme for 8- 

bit MTC devices that could withstand modern security attacks and achieve all basic 

security features, including an anti-communication failure strategy. The scheme 

consists of three major sections. First, a curve25519 driven lightweight end-to-end 

encryption which efficiently provided data transmission security to resource- 

constrained MTC devices. Second, an elliptic-curve Diffie-hellman-based effective 

mutual authentication with lightweight, encrypted keys enabled the 8-bit devices to 

achieve authentication, anonymity, and confidentiality. Third, the inclusion of data 

availability where anti communication failure strategy enabled MTC devices to 

execute their basic functionality during communication disruption. With offloaded 

computation, curve25519 driven end-to-end encryption technique produced heavy 

keys at low cost. Moreover, the lightweight mutual authentication produced 

comparatively lower network and computational overheads. Additionally, the anti 

communication failure strategy completely prevented circumstantial and enforced 

data losses. The results showed that the scheme lost no data during communication 

failures. Furthermore, the end-to-end encryption achieved 192-bit security with 

minimum resources, and the mutual authentication in machine-to-machine 

communication networks produced comparatively lesser network and computation 

overheads. 
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ABSTRAK 

Komunikasi Mesin-ke-Mesin hari ini meningkat dengan bantuan keupayaan 

pengkomputeran berkuasa yang dikendalikan dari jauh melalui kemajuan dalam 

peranti automasi dan Internet of Things (IoT), yang dikenali sebagai peranti 

komunikasi jenis mesin (MTC). Peranti MTC terdiri daripada komputer onboard 

yang kecil dan murah yang boleh melaksanakan beberapa tugas kerana keupayaan 

pengiraan, ingatan dan tenaga yang terhad. Peranti ini digunakan untuk pemantauan 

autonomi, menyimpan data deria, dan mengawal penggerak berdasarkan data yang 

dikongsi. Selain itu, peranti MTC yang dikekang oleh sumber ini digunakan dalam 

persekitaran terpencil dan tempat di mana campur tangan manusia sama ada tidak 

boleh dilaksanakan atau sangat rumit. Disebabkan oleh sensitivti data dan topologi 

dinamik peranti MTC, adalah satu cabaran untuk dipercayai dan bergantung pada 

peranti autonomi dan jauh dalam rangkaian kongsi. Selain itu, prosedur perkongsian 

data mesti menanggung beberapa ciri keselamatan asas dan moden seperti 

mendapatkan pengesahan, kerahsiaan, penyulitan berpatutan secara pengiraan, 

Teknik persetujuan utama dan strategi pengendalian yang berkesan semasa kegagalan 

komunikasi. Skim dibangunkan untuk menyediakan keselamatan yang teguh, 

kekurangan kecekapan prestasi untuk mengatasi serangan keselamatan moden 

disebabkan oleh kos operasi dan ketidakmampuan pengiraan. Dengan prestasi yang 

tidak cekap dan keselamatan yang tidak berkesan, peranti MTC yang dikekang oleh 

sumber menghadapi pelbagai jenis Man-in-theMiddle (MiTM) moden, pemalsuan 

data dan serangan keselamatan berkaitan kebocoran data yang dikuatkuasakan. Selain 

itu, kebanyakan skim mengabaikan kebocoran data yang dikuatkuasakan dan senario 

kegagalan komunikasi. Oleh itu, penyelidikan ini direka bentuk untuk 

membangunkan skim pengesahan bersama ringan lapisan fizikal mesin ke mesin 

untuk peranti MTC 8-bit yang boleh menahan serangan keselamatan moden dan 

mencapai semua ciri keselamatan asas, termasuk anti-strategi kegagalan komunikasi. 

Skim ini terdiri daripada tiga bahagian utama. Pertama, penyulitan hujung ke hujung 

ringan didorong lengkung25519 yang menyediakan data keselamatan penghantaran 

dengan cekap kepada peranti MTC yang dikekang sumber. Kedua, pengesahan 

bersama berkesan berasaskan lengkung eliptik Diffie-hellman dengan kekunci yang 

ringan dan disulitkan membolehkan peranti 8-bit mencapai pengesahan, tidak 

dikenali dan kerahsiaan. Ketiga, kemasukan ketersediaan data di mana strategi 

kegagalan anti komunikasi membolehkan peranti MTC melaksanakan fungsi asasnya 

semasa gangguan komunikasi. Dengan pengiraan yang dilepaskan, teknik penyulitan 

hujung ke hujung dipacu lengkung25519 menghasilkan kunci berat pada kos yang 

rendah. Selain itu, pengesahan bersama yang ringan menghasilkan overhed rangkaian 

dan pengiraan yang agak rendah. Selain itu, strategi kegagalan anti-komunikasi 

menghalang sepenuhnya kehilangan data mengikut keadaan dan dikuatkuasakan. 

Keputusan menunjukkan bahawa skim itu tidak kehilangan data semasa kegagalan 

komunikasi. Tambahan pula, penyulitan hujung ke hujung mencapai keselamatan 

192-bit dengan sumber minimum, dan pengesahan bersama dalam rangkaian 

komunikasi mesin-ke mesin menghasilkan overhed rangkaian dan pengiraan yang 

lebih rendah. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

Kevin Ashton (Ashton, 2009) introduced the world to interconnected devices 

called as Internet of Things (IoT). Network of tiny ubiquitous computational devices 

connected together called “Internet of Things” processing information and data, 

creating and sharing new data with machines and users (Singh et al., 2014). It 

brought immense revolution and enabling human race to technologically enter to a 

new era of advancements. With the help of industrial developments, a big sized 

expensive computer is now very tiny and cheap. With the passage of time, sensors 

were developed that enabled these computers to translate the physical world into 

digital. Very soon, the computers were able to measure pressure, humidity, 

temperature, distance, light and proximity(Aman et al., 2018). When the sensors got 

more advanced, the computers were able to measure complex and tiny physical 

objects and particles like the amount of carbon dioxide in air, viscosity of liquid, 

heartbeat of human and voices were recognized. With the help of computer vision, 

computers can now see and recognized objects, and to some extent understand 

human behaviors all with the help of advancements in IoTs. 

Network of small computational devices called microcontrollers and 

microprocessors which are capable of processing small information with the ability 

to work remotely, requiring less internal memory and power compared to the 

standard personal computers. These devices are then connected to small sensors, 

keyboards, small Liquid Crystal Displays (LCDs) and Radio-Frequency 

Identifications (RFIDs) devices etc. to mimic a functional computer. These IoT 

devices work autonomously in remote areas and do not necessarily require human 

intervention. 
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With the development of Industrial revolution 4.0, These Machine-Type 

Communication (MTC) devices are used in almost all type of new industries. It has 

been vastly used in medical care where patients are equipped with devices that 

monitor heartbeat, temperature, and blood sugar level. The devices store the data and 

share it online with the concerned doctor and patient. Similarly, smart homes are 

controlled through such IoT devices. Network of microcontrollers is spread in home 

controlling doors, water supply, providing security through surveillance, buzz alarms 

and store all the activity within home. The same happens in a computer vision 

equipped with MTC device through which the devices can identify human behavior 

and act accordingly. In industries, these devices are responsible for automation such 

as maintain optimal temperature of the factory through smart ventilation, provide 

sensory data to robots and many more. These devices form a machine-to-machine 

networks where several MTC devices communication with each other autonomously. 

The applications of M2M communication directly connect the people with everyday 

security to strengthen human security awareness and norms of human behavior (Jing 

et al., 2014). 

Machine-Type communication refer to communication between tiny and low-

cost resource constrained independent IoT devices that operate where human 

involvement is either not needed or possible due to the nature of operation. As 

discussed in previous chapters, according to Cisco’s survey reports in, 48% of world 

population is using internet (Aspects, 2012) with more than 5 billion such devices 

connected to WSN and the amount is to reach 50 billion by 2025. We discussed End-

to-End encryption feature in this chapter, but only encryption cannot guarantee 

secure communication because of the heterogeneous nature of M2M communication 

protocols. 
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The functionality of MTC devices generally consists upon four levels. Figure 

1.1 shows a four level architecture of these resource constained MTC devices. 

 

Figure 1.1 : Generic Architecture of M2M communication network 

 

(a) The First layer is called a perception layer that contains several sensors such 

as Temperature, humidity, RFID, barcode readers, gyro, motion and  

heartbeat and is responsible for collection of data from real world using these 

sensors (Zhang, 2011). The data in generated from sensors in this layer, can 

be transmitted to the attached devices through RFID Readers, Bluetooth, Wi-

fi ZigBee and radio frequency transmission medias. 

(b) Second layer is called Network layer which is responsible to transmit the 

received and collected data to any information processing mechanism devised 

in existing communication networks for instance the internet, via Bluetooth 

or any other network (Yang et al., 2012). 

(c) Third layer “Middle-ware Layer” is consisted upon information processing 

mechanisms used to automate the flow of actions based on received data. 

This layer also links the mechanism with the database for storage purposes. 

The layer has extra work of ensuring the protocols on both sides of 

transmitter and receiver are same (Khan et al., 2012). 
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(d) The fourth layer is called an application layer which has many purposes from 

a representation of the collected data to a good graphical interface to 

automating the framework for which devices are being used. This layer 

translates the collected data and converts the whole mechanism into a smart 

home, smart business, smart industry and smart environment (Yan-rong and 

Tao, 2013). 

M2M communication idea reflects in making more immersive and pervasive 

internet by allowing variety of MTC devices such as smart home appliances, 

monitoring sensors, smart visual displays, automated actuators and motors, cameras 

and even vehicles to communicate with one another thus making a vast network of 

heterogeneous devices which generates enormous data. This data is further used for 

predicting market behaviours, data analysis services to citizens including individuals, 

companies, industries, private and public administrations (Zanella et al., 2014). 

However, for a heterogeneous network of remote MTC devices, it is a huge 

challenge in making the distinguishing proof of security of all MTC devices fit for 

satisfying the prerequisites of all conceivable applications. This challenge has 

prompted the expansion of various and, some of the time, incongruent solutions for 

the applicable acknowledgment of M2M frameworks. In this regard, from a 

framework point of view, the acknowledgment of an M2M framework, together with 

the required additional servers and gateways still comes up short on real-time 

applications because of its complexity and uniqueness. Hence, the reception of the 

M2M communication is additionally obstructed by the absence of an unmistakable 

and generally acknowledged security scheme that can put such advance 

organizations in ventures (Laya et al., 2013). One of the reason is that there lacks a 

sophisticated security scheme in M2M has not yet been given any monitoring polices 

or standards of interconnected heterogeneous individual M2M networks (Zanella et 

al., 2014). 

1.2 Problem background 

In an M2M network where almost everything is connected and exchange data 

with one another, there arises several security issues. Cyber criminals exploit these 
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issues. Because of less computational power and memory, standard security 

protocols and traditional cryptographic techniques cannot be applied on these 

resource constrained MTC devices since the standard protocols and techniques are 

not sufficient enough or not available, and a need for a new infrastructure is required 

by M2M communication networks with optimum security level (Mukherjee, 2015). 

As there are no security standards to the network of such heterogamous devices, the 

developer has to self-secure the data exchanged by MTC devices. It was concluded 

that there are numerous designing options for M2M communication infrastructure 

that standardized protocols usage cannot be put into consideration rather a topology 

specific solutions might envision the solutions (Mahmoud et al., 2015) . 

This research is based on security provision to tackle security issues afflicted 

in the perception layer of MTC devices thus relating to the  

Figure 1.1 as perception layer faces many challenges. The security provision 

is developed for an M2M communication network driven resource constrained 

autonomous MTC (Machine Type Communication) devices which are mainly 

unsupervised by the user or cloud. Such MTC devices face several security issues, 

especially in perceptual layer communication (Mukherjee, 2015). 

In an M2M communication network consisting of several unsupervised MTC 

devices by user or cloud, few of which might transmit data remotely, it is very vital 

to recognize that the data is being transferred from the right sender or data is not 

tempered during the transmitting as M2M communication is primarily based on 

exchanging the data. This points to data integrity which imposes a feature of End-to-

End encryption during the communication. Even if the data traffic is controlled via 

strict usage of firewalls and security protocols, the perception layer security of such 

devices could not be fully guaranteed (Mahmoud et al., 2015). 



6 

Due to numerous devices in a strict network, MTC devices are vulnerable to 

data mutation by attacker through replacing the device with another device that sends 

tempered data to affect the next in-line set of instruction. It is common 

troubleshooting solution where the technician would replace any device that is either 

sending wrong or corrupt data to the network or the device malfunctions and needs to 

be replaces with a new one. However, the similar device behavior can also be via 

attacker. This points to another trust issues between MTC devices within the M2M 

communication network in which finding a tempered device could be a lot of work 

where several heterogeneous devices generate data simultaneously. Hence, the 

researchers adopted an easier way in which every device must authenticate itself to 

be marked as a trusted device. 

However, the procedure of authenticating all devices in M2M network costs 

CPU performance, memory usage, produce network overheads and consume more 

power. Moreover, the process face security robustness challenges. The topology of 

an M2M network could be such that several MTC devices are dependent on a central 

gateway device. Sometimes, task of several devices, is to collect and send the data to 

a central device (gateway) which is responsible to send the data over the network. In 

a topology where a master device controls several slave devices, attacking the master 

device usually disrupts the slaves as well. Thus, the slave devices must not cease to 

function even if the master device (gateway) is under attack and the devices must not 

get failed rather keep executing basic tasks until the gateway is restored. 

Furthermore, three main challenges with the IoT are protection for users, 

classification of business applications and device anonymity (Lai et al., 2016b). It is 

recognized that in the IoT framework, there are four interconnected, collaborating 

sections (i.e., users, devices, software, and network) that communicate over open and 

untrusted networks. These will undoubtedly be vulnerable to security protection and 

open trust issues. In this manner, issues mentioned in (Li et al., 2017a) concerning 

central gateways, users and outsider attacks must be tended to. In circumstances 

where security can be characterized as a composed system comprising of encryption 
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algorithms, security schemes, network standards, device topologies, and overall 

protocols must be focused to ensure plausible resilience of either a specific 

framework or general framework in against any unexpected risk. Every one of these 

associations should be anchored to guarantee data security and trustable devices, 

provisioning of every single noteworthy vulnerability and limit risk occurrences that 

might impact the whole network as statistical attacks can reclaim data from the 

system without affecting its executions. In this regard, vulnerabilities are 

encountered due to certain risk and attacks applied on M2M communication 

network. Therefore, M2M network now faces different statistical and dynamic 

attacks that may effortlessly upset its usefulness and invalidate the advantages of 

utilizing its purpose.  

Data in perception layer, can be transmitted over a wired network, WSN 

however the challenge lies in both wired and wireless sensor networks. The 

challenge is not receiving accurate data from sensors but to transmit the received data 

from sensor accurately, at the perception layer. Figure 1.2 shows the IoT security 

architecture. 

Intruder’s perceptive model is one of the distinctive kinds of threat to the IoT 

network.  A Dolev-Yao (DY) sort of intruder which is a result of the system and may 

block all or any message at any point transmitted between MTC devices and 

gateways. Nevertheless, its abilities are marginally unrealistic, "attacks just improve, 

they never deteriorate" said by “Bruce Schneider in (Srilaya and Velampalli, 2020)”. 

Similarly, security will be a lot more grounded if our M2M communication is 

intended to be DY interloper versatile. Be that as it may, the DY interloper needs one 

ability that common interlopers may have which is a physical trade off. In this way, 

carefully designed devices are additionally extraordinarily alluring. This objective is 

unattainable, yet obstruction for physical modification in devices, is in any case an 

essential objective, which, together with alter recognition abilities might be an 

adequate first-line resistance. 
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Figure 1.2:  IoT security architecture adopted from (Hansch et al., 2019) 

Physical attacks are kind of attacks that alters devices’ data or hardware. Due 

to the unattended and circulated nature of IoT, most devices ordinarily work in 

outside situations, which are exceptionally helpless to physical attacks (Mosenia and 

Jha, 2017). Attacks on security is common since the M2M makes huge volumes of 

data effectively accessible through remote access components, security assurance in 

the network, is moved toward becoming progressively testing. The enemy is not 

required to be physically present to complete observation, however data collected 

should generally be safe. The most well-known attacks on client protection are as per 

the following (Burhan et al., 2018) are spying and detached checking which is most 

normal and simplest type of assault on information protection. If messages are not 

ensured by cryptographic systems, a foe could without much of a stretch comprehend 

the substance. Moreover, traffic investigation requests to adequately assault, security 

and listening are joined with traffic investigation. Through viable traffic 

investigation, an enemy can recognize certain data with exceptional jobs and 

exercises in IoT devices and information. Additionally, the information mining 

empowers aggressors to find data that is unforeseen in specific databases. This could 
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be a security and protection issue in M2M communication, and if data is made 

accessible it will leak all the data (Farooq et al., 2015).  

1.2.1 Security features in perception layer of machine type communication 

devices 

According to (Mahmoud et al., 2015) , the security features are divided into 

two categories; technological and security challenges. The technological challenge is 

due to dynamic topologies of connected devices and ubiquitous nature of M2M 

communication. Technological challenges mainly focuses on energy, power and 

distributed nature of the devices while security challenges primarily focuses on the 

ability of devices to ensure authentication, scalability, confidentiality, end-to-end 

security and data integrity (Mahalle et al., 2013). Our research remains in the area of 

security challenges primarily with the inclusion of integrity, confidentiality, 

authentication and availability. Main features are as follows. 

1.2.1.1 Data integrity 

It is based on the accuracy of the data being exchanged between various 

heterogeneous devices. Since the main purpose of numerous MTC devices is to 

collect data and share with neighboring devices, store the data, or take prescribed 

action against it. That is why it is very important for the data to be accurate, and 

sender of the data must be cleared from intended or unintended interference during 

transmission. This feature is mostly imposed by lightweight end-to-end 

cryptography. 



10 

1.2.1.2 Data availability 

Purpose of MTC devices is to serve the user with the constant flow of data in 

all circumstances. This feature emphasizes on constant flow of data no matter what 

happens to the network which mainly points to the scenarios where performance of 

these devices must not affect the assigned tasks, even if the communication is either 

disrupted or attacked that can result in functionality and loss of critical data  

1.2.1.3 Confidentiality 

Device’s privacy must be protected in all case primarily because the data 

being transmitted is very sensitive to the end user that is why data must be kept 

encrypted even from the unauthorized nodes in the same network. To achieve this 

feature, many researchers have proposed encryption techniques. Confidentiality is 

generally achieved with the combination of the authentication of devices and 

encrypting the transmission processing. 

1.2.1.4 Authentication 

Due to heterogeneity and numerous devices working autonomously within an 

M2M network, the MTC devices can be easily duplicated or captured, and data can 

be tempered and transmitted over the network. Which is why all the devices in the 

network must be trusted and authentication must be carried out between the 

exchanges of messages. Device must know who it is sending and receiving data 

from. 
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1.2.2 Integrity and confidentiality of data in Machine-to- Machine 

communication network 

M2M Communication network faces challenges in data confidentiality and 

integrity as mentioned in previous sections. In a heterogeneous network of numerous 

connected resource constrained MTC devices, sharing and perceiving information 

from neighboring devices, there comes an issue in trusting the incoming data. While 

in process of communication, data or information could be modified by the 

cybercriminals or then again could be influenced by different elements that are 

beyond human control including the server crash or an electromagnetic disruption 

(Yang et al., 2017). Data Integrity points to the safety of valuable information from 

the cybercriminals or the outer interference during transmission and reception with 

some basic following strategies, so the data cannot be altered without endangering 

the framework (Farooq et al., 2015). The techniques to guarantee the accuracy and 

originality of data incorporates strategies like checksum and cyclic redundancy check 

(CRC), which are common error detection mechanism for a segment of data. 

Moreover, persistent adjusting of the data for reinforcement purposes and the feature 

such as version control. Version control keeps a record of the document changes in a 

framework to reestablish the record on the off chance that of accidental erasure of 

data can likewise guarantee the respectability of data with the end goal that the data 

on IoT based devices is in its unique frame when gotten to by the allowed clients. 

While data confidentiality refers to the data being monitored by unauthorized users 

or external interference. It mainly points to the ability of confidence the user faces 

for sharing sensitive data. Security mechanism for provision and assurance of data 

confidentiality is achieved in many security mechanisms by researcher mainly in 

terms of encryption techniques (Farooq et al., 2015) (which is not enough). This 

could be achieved by the combination of authentication of MTC devices with 

encryption technique to stay anonymous from neighboring devices.  Researchers 

have found many ways for data encryption i.e. random hash lock protocols also 

known as hash functions, hash chain mechanisms and infinite extraction key 

channels (Jing et al., 2014). That is why, to secure transmission confidentiality 

within nodes, encrypting the data seems extremely necessary. Encryption requires 

great consumption of resources i.e., computational power and memory both of which 

the resource constrained MTC devices lack in general. That is why, lightweight 



12 

cryptography techniques are the best solutions to be adopted that includes algorithms 

related lightweight cryptographies  (Aman et al., 2018). 

Typically, the symmetric encryption calculation is utilized to encode 

information for classification. Advance Encryption Standard (AES) block Cipher; 

Asymmetric algorithms is regularly used to digital signatures and key transport, more 

often used algorithm is the Rivest Shamir Adelman (RSA); the Diffie-Hellman (DH) 

Asymmetric key agreement algorithm is utilized to key manipulation and agreement; 

and the SHA-1 and SHA-256 secure hash algorithms will be connected for 

integrality. However, implementing these algorithms will require processor speed 

and memory. In this regard, elliptic curve cryptography (ECC) is noteworthy 

asymmetric algorithm that can deliver affordable security by utilization of shorter 

length keys. 

1.2.3 Authentication of machine type communication devices in Machine-to- 

Machine communication network 

Based on tight security requirements in autonomous and data sensitive 

industrial application, hundreds of MTC devices interconnect with one another and 

share data. It is very difficult to monitor all the devices personally, as many works 

remotely or in places where human intervention is either very risky, costly, or 

extremely difficult. Such security challenges are worsened by the steep number of 

devices and the normal barriers in user interfaces. Among others, certain security 

angles such as authorization and data protection require creative methodologies. As 

of authentication, there is a need to characterize an object validation component to 

guarantee that as it remained accepted and can access certain segments of data 

exchanged within M2M communication network. In such environment, all the 

devices need to validate one another and in order to establish the trust through 

authentication where every device will authenticate itself the first time connected to 

the network. The process is known as identity authentication. 
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Identity authentication can assess the data transmission between both sides 

i.e., transmitter and receiver; and can confirm each side’s identity. This mechanism 

can help prevent disguised threats and outsider attacks to ensure authenticity and 

validity of data. Many identity authentication techniques in wired and wires sensory 

networks have been proposed. As IoT devices consists of low computational power 

and memory with very open environment and dynamic topology, an authentication 

mechanism must surpass these limitations. Most of the recent research such as (Lai et 

al., 2016a), (Li et al., 2018b) and (Parne et al., 2018) has been based on MD5 and 

SHA hash functions with public key authentication features. Since public key 

cryptography needs much more computation and memory, the mechanism has been 

ineffective. (Li et al., 2018b) imposed that (Shi and Gong, 2013) , (Choi et al., 2014) 

and (Shi and Gong, 2013) techniques lack password guessing and changing attacks 

and aren’t suitable IoT environment due to messages directly being exchange with 

nodes. Rather (Li et al., 2018b) worked on mutual three factor authentication 

between user, device and gateway while (Lin et al., 2018b) presented Local 

authentication modes; imposing further weakness in user-less network, data spoofing 

and Eavesdropping attacking techniques. 

1.2.4 Data availability of devices during disrupted Machine-to- Machine 

communication network 

Availability is one the main feature of a robust IoT or M2M communication 

network mentioned in (Farooq et al., 2015) which points to a scenario when data 

transmission is either attacked or malfunctions then the devices must not cease to 

function. In other words, the devices must not malfunction even if transmission lines 

or media malfunctions (Hossain et al., 2015a). For instance, a device connected to a 

terminal being responsible for granting access to doors to different users while also 

recording the user information and sending it to another device. In this case, if the 

data sending process has been compromised then the device should keep granting 

access to the recent users, brought up by (Hussain et al., 2017). Data availability has 

been highlighted by (Aman et al., 2018). Moreover, the scenario in which a master 

device controls several slave devices which then perform their own specified tasks, 
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connect via I2C communication or SPI configuration also known as mode of 

communication (Chen et al., 2016) where the types of communication takes place 

includes one to one, one to many and many to many. In general cases, the slave 

device will also malfunction if the master device stops working or the 

communication media malfunctions. Feature of data availability must ensure the non-

malfunctioning of slave devices, rather the devices should keep working as far as it 

can rather malfunctioning(Hussain, 2016). Whereas the collection of data is not the 

only purpose of M2M communication in IoT; devices and services must be 

accessible and available when required in a timely fashion to achieve for 

uninterrupted smooth operations of IoT (Kamble and Bhutad, 2018).  

Similarly, attacks such as sinkhole attack, black hole attack , wormholes 

attack , sybil attack , hello flood attacks and desynchronization attacks; attack the 

sensor nodes or any part of the M2M network and end up influencing the 

survivability of the entire network (Burhanuddin et al., 2018). Therefore, the data 

availability requirement is vital for maintaining the operational services of M2M 

communication network and likewise in maintaining the whole network throughout 

its life cycle. In addition, the severity of data loss and services mainly depend on the 

type of operation driven by the overall network application; ignoring such feature 

pose a major security threat and is considered a security risk that provides an open 

ground to the adversary to carry away any desired attack on the IoT network. In this 

regard, researchers such as (Hossain et al., 2015b), (Ali and Awad, 2018) , (Ahanger 

and Aljumah, 2018) and (Gupta et al., 2018) have addressed such threat by inducing 

a feature in basic security architecture of IoT network known as data availability. It 

has been recognized as one of the main four security provisions that an IoT network 

must endure, especially in remotely operated IoT applications. However, data 

availability feature has been widely neglected in recent developments on IoT driven 

applications. This is because of either predicting high communication system 

reliability or insensitive data. Despite the consideration of data insensitivity, it is a 

huge security vulnerability. 
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1.3 Problem statement 

In M2M communication, resource constrained autonomous MTC devices in 

current security schemes lack in countering modern attacks such as DoS, MiTM and 

data spoofing efficiently in terms of computational cost and memory consumptions. 

Adoption of end-to-end encryption gained data integrity but did not address 

confidentiality. Whereas, mutual authentication schemes gained data confidentiality 

at unaffordable cost of computation, network overheads and memory consumption. 

In addition, almost all the recent schemes do not address data availability that 

emphasizes on robustness and survivability of devices and the network during 

enforced communication disruption and enforced data loss. Which is why, a 

communication failure resilient lightweight security scheme is required that can 

effectively counter modern attacks with affordable computational, network and 

memory costs. In addition, the scheme must also address all basic four basic 

perception layer security features i.e., data integrity, authentication, confidentiality, 

and data availability. A lightweight end-to-end encryption can help in achieving data 

integrity and privacy efficiently while a cost-effective ECDH based mutual 

authentication will achieve confidentiality and trust between the devices with 

affordable computation. To achieve data availability, an anti-failure strategy is 

required that enables devices to function during communication disruption. 

1.4 Research questions 

(a) How to achieve lightweight End-to-End encryption feature to effectively 

counter MiTM, data spoofing and other modern security threats in perception 

layer? 

(b) How to establish secure lightweight mutual authentication between the 

resource constrained MTC devices efficiently, in terms of affordable 

computational cost and memory overheads? 

(c) How to make MTC device function during communication failures to 

minimize data loss and improve device survivability? 
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(d) How to device a comprehensive authentication scheme that contains all basic 

security features in perception layer of MTC devices. 

1.5 Research goal 

The research aims to introduce a robust security scheme that focuses on 

integrity of data and mutual authentication of devices during machine-to-machine 

communication regardless of the user and cloud with an inclusion of anti-

communication failure strategy to avoid data loss in case the communication between 

the MTC devices is disturbed so that devices will not cease to function. 

1.5.1 Research objectives 

(a) To develop ECC based lightweight end-to-end encryption for resource 

constrained MTC devices in protection against modern MiTM and data 

spoofing attacks to ensure integrity of data.  

(b) To devise pre-shared keys driven lightweight ECDH (Elliptic Curve Diffie 

Hellman) authentication key exchange protocol during mutual authentication 

using a lightweight novel hash function in public key asymmetric 

cryptosystem to developed trust between resource constrained MTC devices. 

(c) To add anti-communication failure strategy as a secondary function in MTC 

devices in case of communication disruption and enforced data loss so that 

the basic function of MTC such as data generating, controlling, and 

monitoring is not disturbed, to achieve data availability feature. 

1.6 Research contributions 

(a) Addition of anti-communication failure strategy as a secondary function 

allocated to MTC devices addresses data availability for the first time. The 

strategy introduced thorough protection against enforced data loss attacks and 

minimized losses during enforce communication disruptions. 
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(b) An ECDH based mutual authentication via lightweight key exchange function 

will improve power and storage consumptions. Moreover, the use of small 

sized pre-shared keys (authentication frames) will reduce the transmission 

overheads significantly. It will ensure authentication and privacy for M2M 

communication networks. 

(c) An elliptic curve based lightweight end-to-end encryption will ensure random 

and robust encrypted keys. Moreover, use of proper light and robust curve 

results in affordable computation for resource constrained MTC devices in 

ensuring data integrity and confidentiality and protection against modern 

MiTM, data spoofing and other related attacks. 

1.7 Research scope/assumptions 

(a) The research does not include wired and wireless data transmission protocols 

such as TCP/IP, Wi-Fi, Bluetooth, and ZigBee. Rather, the perception layer 

prepares a block (MAC) which can be transmitted over any medium through 

serial communication protocol. 

(b) The study mainly focuses on end-to-end serial communication between 

perception layers in MTC devices. However, the communication can also be 

extended to work with SPI and I2C communication. 

(c) The machine-to-machine communication network is assumed static, 

hierarchical and can suffer communication disruption. Furthermore, the nodes 

(devices) are homogeneous, and time synchronized. 

(d) MTC devices are resource constrained, equipped with extremely limited 

internal memory capacity i.e., 4Kbytes RAM and less computational power 

i.e., 8-bit CPU. 

(e) MTC devices have constant supply of power during communication 

disruption. 
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(f) The ECC based keys are small sized and pre-shared. The encryption and 

decryption processes support limited ASCII characters so that the least 

possible internal memory is occupied. 
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