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ABSTRACT 

The discharge of oilfield produced water (OPW) causes disruption of the 
ecosystem and environmental degradation. Herein, novel hybrid membrane coupled 
absorption-filtration technology is proposed for the recovery of oil from OPW. The 
present study aims to develop a superhydrophobic-superoleophilic kaolin-based 
hollow fibre ceramic membrane using phase inversion and sintering technique for the 
recovery of oil from synthetic OPW. To achieve the superhydrophobic-superoleophilic 
modification, organosilanes sol-gel coating was performed on kaolin-based hollow 
fibre ceramic membranes. Membrane morphology and surface roughness was 
analysed using field emission scanning electron microscopy (FESEM) and atomic 
force microscopy. The membrane surface functionality was studied using Fourier 
transform infrared, X-ray photoemission spectroscopy (XPS) and X-ray diffraction 
analysis. The membrane filtration performance was evaluated using cross flow 
module. In the first stage of the work, feasibility studies of Malaysian kaolin (MK) and 
Nigerian kaolin (NK) were studied on fabrication of kaolin-based hollow fibre 
membrane by varying the loading composition (34 to 37 wt.%) and sintering 
temperature (1200 to 1500˚C). Experimental results show that increase of kaolin 
concentration and sintering temperatures decreases the flux rate. The physiochemical 
and performance analysis showed that 34 wt.% MK ceramic membrane exhibits better 
water flux (565.06 L/m2h) with desired pore size and stability than 34 wt.% NK 
membrane.  It owes to the MK which hold higher degree of crystallinity and smaller 
particle size. In the second stage, for effective oil absorption-filtration, organosilane 
agents such as methyltriethoxysilane (MTES), fluoroalkylsilane, 
octadecyltrimethoxysilane, chlorotrimethylsilane chlorotrimethylsilane, and 
trichloro(octadecyl)silane were used for the modification of superhydrophobic-
superoleophilic kaolin hollow fibre membrane. XPS and FESEM analysis clearly 
indicated that the organosilanes are bound firmly on the surface of kaolin membranes. 
The effect of coating cycle and oil concentration were also studied.  Among the coated 
membranes, MTES coated kaolin membrane showed the maximum water contact 
angle of 161.3° and lowest oil contact angle of 0o. Resultantly, this depicts that the 
superhydrophobic-superoleophilic property were attained. In the third stage of the 
study, the oil recovery performance of the kaolin membranes with different 
organosilane agents were evaluated and compared. MTES-coated membranes showed 
maximum oil absorption capacity of 10 g/g, oil flux of 80 L/m2h, and oil separation 
efficiency 90%. The optimized MTES coated membranes were adopted to further 
optimization of process condition (oil concentration, feed flow and feed pH) in cross 
flow module for the effective oil flux and separation efficiency using response surface 
methodology (RSM). From the central composite design, maximum oil flux of 97.67 
L/m2h and separation efficiency 98.41% were observed at oil concentration of 50 
mg/L, feed flow of 300 mL/min, and feed pH of 4. The RSM model was good coherent 
with experimental data. Overall, this study portrays the development of economically 
viable superhydrophobic-superoleophilic kaolin hollow fibre membrane for the 
absorption combined filtration process for the separation of oil from produced water. 
This study would pave the way for researchers to eliminate the pollutants using hybrid 
absorption-filtration process. 
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ABSTRAK 

Pembuangan air keluaran dari medan minyak (OPW) telah menyebabkan berlakunya 
gangguan terhadap ekosistem dan kemerosotan alam sekitar. Oleh itu membran hibrid baharu 
yang digabungkan dengan teknologi penyerapan-penapisan telah dicadangkan untuk 
perolehan minyak daripada OPW. Kajian ini bertujuan untuk menghasilkan membran seramik 
gentian berongga berasaskan kaolin superhidrofobik-superoleofilik menerusi penggunaan 
teknik penyongsangan fasa dan pensinteran bagi perolehan minyak daripada OPW sintetik. 
Bagi melaksanakan pengubahsuaian superhidrofobik-superoleofilik, penyalutan sol-gel 
organosilana telah dilakukan terhadap membran seramik gentian berongga berasaskan kaolin. 
Morfologi dan kekasaran permukaan membran telah dianalisis menggunakan mikroskopi 
elektron imbasan pancaran medan (FESEM) dan mikroskopi daya atom. Kefungsian 
permukaan membran dikaji menggunakan analisis daripada inframerah jelmaan Fourier, 
spektroskopi pelepasan cahaya sinar-X (XPS), dan belauan sinar-X. Prestasi penapisan 
membran telah dinilai menggunakan modul aliran silang. Pada peringkat pertama, 
kajiankebolehlaksanaan telah dilaksanakan terhadap kaolin Malaysia (MK) dan kaolin Nigeria 
(NK) bagi penghasilan membran gentian berongga berasaskan kaolin, dengan 
mempelbagaikan komposisi bahan (34 sehingga 37 wt.%) dan suhu pensinteran (1200 
sehingga 1500˚C). Hasil kajian telah menunjukkan bahawa peningkatan kepekatan kaolin dan 
suhu pensinteran mengurangkan kadar fluks. Hasil analisis terhadap fiziokimia dan prestasi 
menunjukkan bahawa membran seramik MK dengan 34 wt.% menghasilkan fluks air yang 
lebih baik (565.06 L/m2h) pada saiz liang dan kestabilan sasaran berbanding membran NK 
dengan 34 wt.%. Keputusan ini berpunca daripada MK yana mempunyai darjah kehabluran 
yang lebih tinggi dan saiz zarah yang lebih kecil. Pada peringkat kedua, bagi mencapai 
keberkesanan penyerapan minyak-penapisan, agen organosilana seperti metiltritoksisilana 
(MTES), fluoroalkilsilana, oktadesiltrimetoksisilana, klorotrimetilsilana, dan 
trikloro(oktadesil)silana telah digunakan untuk pengubahsuaian membran gentian berongga 
kaolin superhidrofobik-superoleofilik. Hasil analisis daripada XPS dan FESEM jelas 
menunjukkan bahawa organosilana telah melekap dengan kuat pada permukaan membran 
kaolin. Kesan kitaran penyalutan dan kepekatan minyak turut dikaji. Dalam kalangan 
membran bersalut, membran kaolin bersalut MTES menunjukkan sudut sentuh air maksimum 
yang bernilai 161.3° dan sudut sentuh minyak paling rendah, iaitu 0°. Ia menunjukkan bahawa 
sifat superhidrofobik-superoleofilik berjaya diperoleh. Pada peringkat ketiga kajian, prestasi 
perolehan minyak bagi membran kaolin dengan agen organosilana yang berbeza turut dinilai 
dan dibanding. Membran bersalut MTES menunjukkan keupayaan serapan minyak yang 
maksimum iaitu 10 g/g, fluks minyak sebanyak 80 L/m2h dan kecekapan pemisahan minyak 
pada tahap 90%. Membran bersalut MTES teroptimum telah digunakan untuk pengoptimuman 
keadaan proses yang seterusnya (kepekatan minyak, aliran suapan dan pH suapan) dalam 
modul aliran silang untuk meningkatkan fluks minyak dan kecekapan pemisahan 
menggunakan kaedah sambutan permukaan (RSM). Berdasarkan reka bentuk komposit pusat, 
fluks maksimum minyak dan kecekapan maksimum pemisahan masing-masing bernilai 97.67 
L/m2h dan 98.41% telah dicapan pada kepekatan minyak bernilai 50 mg/L, aliran suapan 
bernilai 300 mL/min, dan pH suapan bernilai 4. Model RSM yang diperoleh adalah setanding 
dengan data uji kaji. Secara keseluruhan, kajian ini menunjukkan pembangunan membrane 
gentian berlubang kaolin superhidrofobik-superoleofilik yang berdaya maju secara ekonomik 
untuk proses gabungan penyerapan dan penapisan bagi pemisahan minyak daripada air 
keluaran. Kajian ini mampu membantu para penyelidik dalam menyingkir bahan cemar 
menggunakan proses hibrid penyerapan-penapisan. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of Research 

A large volume of oilfield produced water (OPW) is generated as refinery by-

product during crude oil production, enhanced oil recovery and exploitation processes 

which are carried out in both offshore and onshore. The constituents are carcinogenic, 

toxic and persistent due to the presence of oils, hydrocarbons, dissolved formation 

minerals, suspended solids, dissolved gases, and injected chemical such as biocides, 

corrosion inhibitors, emulsion and reverse emulsion breakers [1–3]. Discharge of 

OPW to the environment can contaminates the quality of drinking water, groundwater, 

degrade soil, and deplete oxygen [4–6]. Furthermore, the discharge also unavoidably 

resulted to a great loss of valuable energy resources due to the presence of vast amount 

of unexplored crude oil in OPW. 

Therefore, recovery of oil from OPW is a prerequisite to cost saving method to 

oil and gas industry as well as the protection of environment. Conventional methods 

of oil removal are gravity separation, coagulation and air flotation, electrocoagulation 

and electrostatic separation, microwave and heat treatment methods, oil absorbing, 

biodegradation, sonication, cyclones filters, sand filter, oxidation, photocatalytic 

treatment, ozone treatment, electrochemical process, Fenton process, flocculation, 

adsorption and ion exchange [7–14]. However, the aforementioned techniques have 

drawback such as less energy efficient, low product quality and creation of huge 

amount of sludge, high energy cost, requirement of large space for installation, 

complex separation equipment, use of toxic compounds, and difficult to clean up or 

recycle. To overcome this limitation, membrane technology has gained interests in 

treatment of water as well as recovery of oil in oil and gas industries. 
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Membrane is a selective barrier to separate the solute molecule based on size 

and charge based interaction. Globally, membrane technology has been implemented 

in various industrial wastewater treatment and public sewage as well as municipal 

waste management. The main advantage of membrane technology is low cost, high 

emulsion separation efficiency, no phase change, no addition of chemicals and 

simplicity of operation [15–17]. Polymer and ceramic are the common membrane 

material for industrial scale applications. Polymeric membranes are widely adopted in 

wide range of versatile applications such as desalination, wastewater treatment and 

bio-product purification [18, 19]. Ceramic membranes are not well explored but it has 

the unique characteristics of chemical and thermal stability, excellent resistance to 

fouling, pressure resistance, long lifetime, ease of cleaning and mechanical stability. 

Nonetheless, its shortcoming is in its limitation for large scale operation due to high 

cost. In this regards, recently low-cost raw materials such as kaolin [15–17], natural 

clay [20–22], waste material such as rice husk ash [23] and fly ash [24–26] corn cob 

ash [27] and palm oil fuel ash (POFA) [28, 29] are attempted. Among all the ceramic 

materials used for fabrication of ceramic membrane, kaolin is one of the most used 

and applied due to its distinct features like abundant availability, cost-effectiveness, 

low plasticity, ease of processing and high refractory properties to the membrane [30, 

31]. 

Superhydrophobic-superoleophilic materials are preferred in the absorption 

and recovery of the low surface tension oil molecules. However, ceramic membranes 

are rich in hydrophilic groups thus tend to absorb water molecules. For the oil 

molecules absorption/recovery, hydrophobic-oleophilic modification is necessary to 

the ceramic membranes. Silica sol coating is a single step sol-gel technique which 

provides a cost effective and simple approach to improve the hydrophobic property of 

membrane through the decrease of surface free energy. There are several reports on 

various chemicals used in lowering the surface energy of a substrate which include; 

organophosphonic acids, steric acids, fatty acids, alkanethiols and organosilanes [32–

37]. Organosilanes are the most widely and frequently used chemicals in both research 

and technology for alignment of proper surface topology and lowering of substrate 

surface energy through the hydrolytic condensation of tetraethylorthoxysilicate 

(TEOS) and organosilanes. It is preferred due to its simplicity, creation of 

superhydrophobic-superoleophilic substrate, cost-effective  and less toxic [38]. 
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Most of the organosilane agents used in superhydrophobic-superoleophilic 

modifications of substrates are methyltriethoxysilane (MTES), fluoroalkylsilane 

(FAS), octadecyltrimethoxysilane (OTMS), chlorotrimethylsilane (CTMS), and 

Trichloro(octadecyl)silane (TCOS). And also, these organosilanes are mostly used in 

surface coating of fabric, filter paper, porous glass, polymeric membranes, nanofibre 

mats, sponge substrates. Wen et al. [39] produced a superhydrophobic surface with 

water contact angle of 156o on a glass substrate via a sol-gel derived organic-inorganic 

hybrid emulsion. The hybrid sol-gel was prepared by co-hydrolysis and co-

polycondensation reactions of TEOS, MTES and tri(isopropoxy)vinylsilane (TIPVS). 

Wang et al. [40] prepared a silica sol by co-hydrolysis and co-condensation of TEOS 

and FAS for superhydrophobic fabric, nanofibre mat, filter paper, glass slide and 

silicon wafer coatings. The coated substrates were reported to have a high degree of 

water contact angle above 170o. Another group of researchers [41] fabricated a robust 

superhydrophobic fabric bag for oil absorption and collection of oily water. The fabric 

bags were immersed into TEOS and OTMS, and ammonia solution, respectively.  

While SiO2 nanoparticles functionalized with OTMS on the fabric surfaces. The 

substrate was reported to possess water contact angle above 150o. Meng and co-

workers [42] also fabricated a hydrophobic nano-structure porous glass membrane by 

deposition of SiO2
 nanoparticles followed by grafting with CTMS on the membrane 

surface. Zhang and Seeger [43] used chemical vapour deposition of 

trichloro(octadecyl)silane (TCOS) to produce superhydrophobic-superoleophilic 

polyester textile material for selective oil absorption application. The resultant material 

showed a high-water contact angle above 150o demonstrating the superhydrophobic 

features. 

For oil-water separation, ultrafiltration (UF) and microfiltration (MF) are 

widely deployed for the treatment of oil-water mixture. However, clogging of oil on 

the membrane pore and surface is a critical issue in filtration of oily wastewater feed, 

which leads to decline of the flux rate and membrane lifecycle. Hence, membrane 

modification gained more interest in tailoring of ceramic membranes for versatile 

applications. Adsorptive membranes are showing promising effect on the removal of 

pollutant such as metal ions, hydrocarbons and dyes from the contaminated sources.  
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In ceramic membrane, there are three types of modification process, which are 

chemical vapour deposition (CVD), immersion, and sol gel method. Immersion 

method is the simplest method but do not possessed any oil absorption capabilities. 

Meanwhile, CVD is dangerous method due to the thermal process involved. From 

literatures, it was reported that modification via sol gel method is always applied for 

the application of oily wastewater separation. As stated by Pierre (2013), there are 

many definitions of sol gel process exist. For instance, sol gel process takes into 

account multicomponent oxides that are homogeneous at the atomic level. In fact, the 

term “sol gel” is restricted to the gels synthesized from alkoxides in which from 

colloidal dispersion or from metal alkoxides. In other word, grafting process through 

sol gel method can be defined as a colloidal route used to synthesize ceramics with an 

intermediate stage including a sol and/or gel state. Literatures on the absorption of oil 

using ceramic membranes are less studied. Therefore, this study aimed to recover the 

oil from produced water using silane functionalized ceramic membranes. 

The Jabatan Mineral dan Geosains Malaysia (JMG)) minerals reported that, 

Peninsular Malaysia produces up to 112 million tons of raw kaolin with three kaolin 

processing industries all located in Perak state [44]. However, most of the kaolin 

produced by these three industries are mainly used in production of paper as such less 

emphasis is given other research related application such as membrane fabrication. On 

the other hand, the raw material research and development council of Nigeria reported 

that, Nigeria have about 3 billion metric tons of kaolin deposit [44, 45]. The kaolin 

clay is mainly used in producing household, office utensils and for pharmaceutical 

used in the country. Also, they are used in fabricating ceramic utensils, paper, 

porcelain, white incandescent light bulbs, and paint, among others. The kaolin mineral 

from Nigeria are used for other purposes but its application for the fabrication of 

membrane is elusive in literature. This research both used Nigerian kaolin and 

Malaysian in fabrication of ceramic membrane for recovery of oil from produced 

water. 
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1.2 Problem Statement 

Membrane fouling is a critical issue in filtration of oil-water emulsion and it 

causes the decline of the membrane performance and life span. To overcome this 

limitation, the advent of hybrid absorption combined membrane filtration technology 

has lured in specific removal of target pollutants. It is based on the mechanism of 

absorption of feed components with respect to surface functionality of membranes. 

Thereby, it prevents the blocking of solutes on membrane surface which endured for 

longer duration filtration. Surface modification are prevalently used to tailor the 

membranes for better oil-water separation. Literatures on various pollutants such as 

metal ions, ammonia, arsenic etc. are reported using ceramic membranes [46–48]. 

However, ceramic membranes are quite expensive and low-cost ceramic materials 

such as clay and biomass based green silica materials are paid more attention in 

development of membranes. Hence, this study aimed to develop low cost kaolin based 

hollow fibre ceramic membrane for the recovery of oil from produced water. 

Malaysian kaolin based ceramic membranes are used in versatile application for liquid 

[49] and gas separation [50, 51], owes to chemical and thermal stability. Similarly, 

Nigerian kaolin has a rich of silica groups required for ceramic membrane and used 

extensive as additives in cement industries and pharmaceutical applications [52–54]. 

Hence, the feasibility study of each kaolin was performed to aid comparative analysis 

for the development of low cost ceramic membranes. The main advantage of 

utilization of kaolin is low cost, abundant in nature and rich of hydroxyl silica groups.    

Yet, the conventional ceramic ultrafiltration membrane retains the oil molecules on 

surface and cause adsorption of oil. Thus, cost effective hybrid kaolin-based 

absorption membrane was proposed for the recovery of oil from produced water. 

Surface hydrophobic modification are prevalently used to tailor the hybrid 

absorption-based membranes for better oil-water separation. Silane functionalization 

is the common method to enhance the super hydrophobic (anti-wetting properties) and 

superoleophilic (wetting properties) properties in ceramic membrane. Meng and co-

workers [42] fabricated a hydrophobic nano-structure porous glass membrane by 

deposition of SiO2
 nanoparticles followed by grafting with chlorotrimethylsilane 

(CTMS) on the membrane surface for oil absorption. Similarly, Hubadillah et al [55] 
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used methyltriethoxysilane (MTES) to develop superhydrophobic-superoleophilic 

ceramic membrane for efficient oil separation. Another group of researchers used 

1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS) to fabricate superhydrophobic 

ceramic membrane for carbon dioxide capture [50]. Based on the literature, different 

organosilane agents have significant influence in control of membrane hydrophobic 

properties. However, mechanistic study of different silane agents on 

superhydrophobic-superoleophilic ceramic membrane modification is limited for the 

oil-absorption. Hence, methyltriethoxysilane (MTES), fluoroalkylsilane (FAS), 

octadecyltrimethoxysilane (OTMS), chlorotrimethylsilane (CTMS) and 

trichloro(octadecyl)silane (TCOS) were chosen as organosilane agents for the 

modification of kaolin ceramic membrane to absorb the oil molecules such as hexane, 

kerosene and crude oil. Moreover, membrane filtration involves hydrodynamic 

conditions such as oil concentration, cross flow velocity and feed pH. Therefore, it is 

necessary to optimize the condition for enhanced filtration for longer durations. 

Response surface methodology   is widely recognized tool to optimize the parameter 

and evaluation of interaction of parameters with minimal experiments. RSM was also 

used in this study to design the experiments and evaluation of parameters on oil 

absorption. 

To the best of our knowledge, literatures on absorption and filtration of oil 

using ceramic membranes are limited, owes to ceramic membranes are expensive. 

Based on the literature, the study is organized into three section and it includes (i) 

Fabrication of kaolin hollow fibre ceramic membrane via phase inversion/sintering 

method using Malaysian and Nigerian Kaolin, (ii) Comparison of different 

organosilane agents (MTES, FAS, OTMS, CTMS and TCOS) on super hydrophobic-

oleophilic modification of kaolin ceramic membrane, (iii) Performance evaluation and 

optimization of process variables on optimized super hydrophobic-oleophilic kaolin 

hollow fibre ceramic membrane in cross flow filtration set up. 
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1.3 Research Objectives 

i. To investigate the feasibility of Malaysian and Nigerian kaolin as the main 

ceramic materials for the fabrication of kaolin-based hollow fibre ceramic 

membrane at different ceramic loadings and sintering temperatures. 

ii. To examine the effects of different organosilane agents on the 

superhydrophobic-superoleophilic modification of kaolin-based hollow fibre 

membrane regarding surface morphology, phase transformation, wettability, 

surface topology, pore size and porosity distribution. 

iii. To evaluate the filtration performance of the superhydrophobic-

superoleophilic kaolin-based hollow fibre membranes and the optimization 

process variables using response surface methodology (RSM) for the recovery 

of oil from synthetic OPW.  

1.4 Scope of Study 

The scope of this research is devised as follows; 

i. Screening and characterization of Nigerian and Malaysian kaolin 

precursor material for the fabrication of the kaolin-based hollow fibre 

ceramic membrane. Physiochemical properties of each kaolin were 

analyzed using particle size analyzer (PSA), 

thermogravimetry/differential thermal analysis (TG/DTA) and X-ray 

fluorescence (XRF), X-ray diffraction (XRD) and Brunauer-Emmett-

Teller (BET) (to accomplish objective 1) 

ii. Fabrication of Nigerian and Malaysian kaolin based hollow fibre ceramic 

membrane based using kaolin loading composition of 34 to 37 wt.% and 

sintering temperature of 1200 to 1500 oC.  Comparison of physio-

chemical characterization and pure water flux performance of the 

Nigerian and Malaysian kaolin based hollow fibre ceramic membrane for 

water filtration studies. Physio-chemical characterization involves field 
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emission scanning electron microscopy (FESEM), X-ray diffraction 

(XRD), atomic force microscopy (AFM), mercury intrusion porosimetry 

(MIP), contact angle measurements (CA (to accomplish objective 1) 

iii. Superhydrophobic-superoleophilic modification of optimum kaolin 

based hollow fibre ceramic membrane using different organosilane 

agents such as methyltriethoxysilane (MTES), fluoroalkylsilane (FAS), 

octadecyltrimethoxysilane (OTMS), chlorotrimethylsilane 

chlorotrimethylsilane (CTMS) and trichloro(octadecyl)silane (TCOS) 

through surface coating technique. Also, evaluation of 1 to 4 coating 

cycles of the organosilane agents on the kaolin-based hollow fibre 

ceramic membrane for the superhydrophobic-superoleophilic 

modification (to accomplish objective 2) 

iv. Confirmation of individual silane agent modification of kaolin-based 

hollow fibre ceramic membrane using (FESEM), X-ray diffraction 

(XRD), energy dispersion spectroscopy (EDS), X-ray photoelectron 

spectroscopy (XPS), atomic force microscopy (AFM), Fourier transform 

infrared spectroscopy (FTIR), mercury intrusion porosimetry (MIP), 

contact angle measurements (CA) (to accomplish objective 2) 

v. Optimum oil recovery with respect to different silane agent modified 

kaolin-based hollow fibre ceramic membrane for oil absorption capacity 

and filtration efficiency using synthetic produced water of oil 

concentration of 1000 mg/L, 1500 mg/L and 2000 mg/L (to accomplish 

objective 3) 

vi. Studying the optimum parameters and conditions of the 

superhydrophobic-superoleophilic kaolin-based hollow fibre ceramic 

membrane towards optimization of the oil recovery from synthetic 

oilfield produced water by set of independent parameters (oil 

concentration of 50-10000 mg/L, feed pH 4-10 and feed flux of 150-300) 

with responses of oil flux and oil separation efficiency) (to accomplish 

objective 3)  
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1.5 Significant of the Study 

Water crisis is a serious issue across the world in the present era. The produced 

water constitutes of various organic and inorganic substances, which are toxic to 

environment.  The permissible limit of discharge of produced water is 10-15 ppm [56]. 

Membrane technology has acquired greater interest in production sustainable of 

quality potable water from industrial wastewater and to meet the strict environment 

regulation policy. This study contributes to development of cost effective 

functionalized superhydrophobic-superoleophilic kaolin hollow fibre ceramic 

membrane for the recovering oil from produced water. It also aids in novel scheme of 

hybrid absorption combined membrane filtration methodology for the recovery of oil 

from oily wastewater effluents. Apart, organosilanes functionalization effects also 

extend the frontier of knowledge on novel approach for modification of kaolin 

membrane for the effective filtration of low surface tension solutions. The developed 

prototype may also serve as a low-cost filtration module for the industrial wastewater 

treatment. 

1.6 Thesis Organization 

This section describes the organization of the different chapters of this thesis 

for the fabrication of superhydrophobic-superoleophilic kaolin-based hollow fibre 

ceramic membrane for the recovery of oil from oilfield produce water. The flow of the 

entire thesis is depicted in Figure 1.1 bellow. 
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Chapter 1 and 2
Introduction/Background of study and Literature Review

Chapter 3
Materials and methodology

Chapter 4
Feasibility studies of Malaysian and Nigerian Kaolin for hollow fibre membrane fabrication

Chapter 5
Surface modification and 

physiochemical characterization 
of the kaolin-based hollow fibre 

ceramic membrane

Chapter 6
Performance of the 

superhydrophobic-superoleophilic 
kaolin-based hollow fibre 

membranes and the optimization 
process variables using response 

surface methodology (RSM) for the 
recovery of oil from synthetic 

oilfield produced water

Chapter 7
Conclusions and Recommendations for future work

 

Figure 1.1 Summary of overall thesis structure 
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Chapter 1 briefly introduce the oilfield produce water contamination in the 

ecosystem and the current technologies used for the treatment which mainly devoted 

to this study. It followed by detail problem statement, objectives, scopes and the 

significance of the study. 

Chapter 2 describes the scientific literature review on the produce water, the 

composition, available methods for the treatment were comprehensively discussed, 

with much focus on the membrane technology separation techniques for oily 

wastewater treatments. The adverse effects and the toxicity of oilfield produced water 

to the ecosystem were also discussed. The chapter also discussed the current available 

methods of surface modification on different substrate materials as well as their 

advantages and limitations. 

Chapter 3 of the thesis describes the techniques, materials, working principles, 

modification process, characterization approaches used, membrane setup for oil 

recovery from produced water and complete operation framework. 

Chapter 4 discusses the characteristics features of two different kaolin 

powders as an alternative material to fabricate kaolin hollow fibre ceramic membrane 

for the modification and subsequent oil recovery purpose. The characterizations 

include evaluation of chemical composition of the both kaolin, particle size 

distribution, crystallinity, morphology and surface area analysis. Afterwards the 

fabrication and characterization of defect-free high-performance kaolin-based hollow 

fibre ceramic membrane from the selected kaolin material using various loading 

composition and sintering temperature. The effect of loading composition, sintering 

temperature and also the thermal stability, phase transformation as well as pure water 

flux were evaluated. This chapter also describe the preliminary ceramic membrane 

fabrication and pure water flux evaluation of the fabricated membrane. 

Chapter 5 discusses the processes of surface modification of the kaolin-based 

hollow fibre ceramic membrane. The effects of various surface coating agents on the 

membrane surface with respect to its concentration, coating cycle and coating time on 

the wettability, surface porosity and surface chemical composition. 
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Chapter 6 presents the potential of the oil recovery by the fabricated 

superhydrophobic-superoleophilic kaolin-based hollow fibre ceramic membrane was 

evaluated using the cross-flow filtration system. Also, the factors that influenced the 

separation efficiency were studied in detail. And it also discussed the optimization 

study of the superhydrophobic-superoleophilic kaolin-based hollow fibre ceramic 

membrane performance for 3 significant factors viz oil concentration, feed pH and 

feed flow rate via response surface research methodology approach. The desirability 

test was also performed to verify the adequacy of the developed model. 

Chapter 7 finally presents the conclusions from present study, suggestions and 

recommendations for future researcher. 
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