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ABSTRACT 

Natural ventilation, a sustainable alternative to conventional air conditioning 

systems, has become an attractive solution for providing a good indoor air 

environment. The importance of maintaining sufficient Ventilation Rate (VR) and 

Temperature Performance (TP) particularly in schools is recognized as the main 

contributing factor to health and learning performance of students. One of the oldest 

natural ventilation systems that is still being used today is the windcatcher. Although 

many advancements were made in windcatcher design, there are still unexplored areas 

especially in terms of design parameters including cross-section, height and its 

placement on the building roof as well as combination with window. Thus, the present 

study aims to develop a windcatcher configuration that is appropriate for school 

building in the hot and dry climate of Iran. The research method involved experimental 

wind tunnel test and computational fluid dynamics (CFD) simulation. Firstly, a small-

scale test in a wind tunnel was conducted to compare the CFD simulation with the 

experimental results. Secondly, to determine the optimum configuration, a four-faced 

square windcatcher with varied configurations at different locations on the classroom 

roof was simulated. The results showed that the average difference between CFD and 

experimental results was 13% which was in the acceptable range. The findings also 

proved the potential of the windcatcher centrally positioned on the roof in delivering 

fresh air inside the classroom. Finally, the windcatcher performance in terms of VR 

and TP was evaluated at different wind speeds and directions along with a closed/open 

window of a classroom in Yazd climate. It was found that in both window conditions, 

the windcatcher can meet ASHRAE recommendation of 8 L/s per person ventilation 

rate at outdoor wind speed of 3 m/s which is the average of wind speed in Yazd. 

Moreover, the windcatcher was able to provide maximum temperature performance 

up to 95% at an air incident angle of 15° in open window condition. The study also 

demonstrated the positive effect of the combination with an openable window on the 

windcatcher performance. Overall, it can be concluded that the developed windcatcher 

contributes significantly to improving VR and TP inside the school classroom in the 

hot and dry climate of Iran.  
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ABSTRAK 

Pengudaraan semula jadi, sebagai alternatif yang mampan kepada sistem 

penyaman udara konvensional, telah menjadi penyelesaian yang menarik untuk 

menyediakan persekitaran udara dalaman yang baik. Kepentingan menjaga Kadar 

Pengudaraan (VR) dan Prestasi Suhu (TP) khususnya di bangunan sekolah diakui 

sebagai faktor penyumbang kepada prestasi kesihatan dan pembelajaran pelajar. Salah 

satu sistem pengudaraan semula jadi tertua yang masih digunakan hingga kini adalah 

penangkap angin atau windcatcher. Walaupun banyak kemajuan dilakukan dalam 

teknologi penangkap angin, namun ada bidang yang belum diterokai dalam penerapan 

sistem lestari ini. Oleh itu, kajian ini bertujuan untuk mengembangkan konfigurasi 

penangkap angin yang sesuai untuk bangunan sekolah di Iran yang beriklim panas dan 

kering. Kaedah penyelidikan melibatkan ujikaji  ujian terowong angin dan simulasi 

(CFD). Pertama, ujian berskala kecil dalam terowong angin telah dijalankan untuk 

membandingkan CFD dan keputusan eksperimen. Kedua, untuk menentukan 

konfigurasi optimum, penangkap angin persegi empat muka dengan konfigurasi yang 

berbeza di tempat yang berbeza di atas bumbung bilik darjah telah disimulasikan. 

Keputusan menunjukkan bahawa purata perbezaan antara CFD dan keputusan 

eksperimen adalah 13% yang berada dalam julat yang boleh diterima. Penemuan juga 

membuktikan potensi penangkap angin yang diletakkan secara berpusat di atas 

bumbung dalam menyampaikan udara segar di dalam bilik darjah. Akhir sekali, 

prestasi windcatcher dari segi VR dan TP dinilai pada kelajuan dan arah angin yang 

berbeza bersama-sama dengan tingkap tertutup/terbuka bagi bilik darjah dalam iklim 

Yazd. Didapati bahawa dalam kedua-dua keadaan tingkap, penangkap angin boleh 

memenuhi pengesyoran ASHRAE sebanyak 8 L/s kadar pengudaraan setiap orang 

pada kelajuan angin luar 3 m/s iaitu purata kelajuan angin di Yazd. Selain itu, 

penangkap angin mampu memberikan prestasi suhu maksimum sehingga 95% pada 

sudut keadaan udara 15° dalam keadaan tingkap terbuka. Penilaian menunjukkan 

kesan positif terhasil dari kombinasi dengan tingkap yang boleh dibuka Secara 

keseluruhan, dapat disimpulkan bahawa penangkap angin memberikan sumbangan 

yang signifikan untuk meningkatkan VR dan TP di dalam bilik darjah sekolah di Iran 

yang beriklim panas dan kering. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction  

This chapter is an introductory explanation of the study accomplished in this 

research. The chapter includes the following sections; background of study, problem 

statement, aim and objectives, scope of study, research framework, significance of 

study and thesis outlines. 

1.2 Background of Study 

Global warming is considered as one of society's greatest and most important 

challenges today because of the potential range and severity of impacts to 

communities, the nature and environment. Greenhouse gas (GHG) emissions 

particularly CO2 emissions originating from fossil fuels consumption in buildings 

further amplified the global warming trend much intensively. Buildings are accounted 

for about 40% of the global energy consumption and contribute to over 30% of the 

total world CO2 emissions. Moreover, this sector is responsible for almost 60% of the 

global electricity consumption (Jomehzadeh et al., 2017). The fact is that among all 

building services, space heating, ventilating, and air conditioning (HVAC) systems are 

the largest energy consumers in buildings (40% - 60%) which are mostly supplied by 

fossil resources (Zhang et al., 2021). Energy sector like other aspects of life has 

significantly affected by COVID-19 pandemic. In this situation, the energy and 

electricity consumptions are exacerbated in buildings (Klemeš, Fan and Jiang, 2020). 

In the last few decades, there has been an accelerating trend with 8% yearly 

rate in Iran energy consumption, originating from rapid industrialization and 
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urbanization. In Iran, cooling and heating systems in the building sector are accounted 

for around 60% of the total energy consumption. The average energy consumption in 

school buildings in Iran, as a major category of public buildings, is over 160 kWh/m2, 

which is 2.5 times more than the energy consumed in high-performance schools in 

developed countries (Tahsildoost and Zomorodian, 2015). Moreover, the total energy 

consumption of schools in hot and dry climate of Iran is 41.91% of the total energy 

consumed by school buildings across the country. Hence, it is broadly accepted that a 

drastic decrease in energy consumption is needed in Iran educational buildings 

(Mohammadnejad et al., 2011). 

In addition to high share of energy expenditure, the HVAC systems may result 

in the spread of infectious diseases including COVID-19 through the buildings 

(ASHRAE, 2020a). Moreover, a considerable source of indoor air quality problems 

may be related to these systems. Fungal and mold are produced by organic dusts which 

contaminate the cooling coils and condensate trays (Jomehzadeh et al., 2017). 

Indoor air pollution is placed as five major environmental health threats. 

According to World Health Organization (WHO) report, indoor air contaminations are 

responsible of 2.7% of the world burden of sickness such as asthma allergies, acute 

illness and Sick Building Syndrome (SBS) (WHO, 2009). Skin allergy; throat, nose, 

eye irritation; tiredness; headache; and low concentrations are the observed SBS 

symptoms. In air-conditioned buildings, SBS symptoms are 30% to 200% more 

frequent (Sarkhosh et al., 2021). Since people spend on an average 80% - 90% of their 

time on working and living indoors, therefore it is vital to maintain the indoor 

environment in a good quality (Chenari et al., 2016). Environmental Protection 

Agency (EPA, 2020) stated that ventilation (removing or diluting indoor pollutants 

with outdoor fresh air) is the main element of good indoor air quality. In this regard, 

WHO (2020) and other pertinent guidelines (ASHRAE, 2020a; ECDC, 2020; EPA, 

2020; ISHRAE, 2020; REHVA, 2020) emphasize on significance of ventilation to 

controlling the aerosol transmission of COVID-19. Decrease in the concentration of 

airborne pollutants can be achieved by adequate ventilation of interior environment 

with outdoor air (EMG, 2020). 
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Indoor air quality is mostly significant in schools where students tend to stay 

together for learning and there is the potential for children to sustain long lasting 

damage because their tissue and organs are still growing, they breath more air than 

adults (Harrouz, Ghali and Ghaddar, 2021; Stabile et al., 2016). Low ventilation rate 

enhances the risk of an outbreak of infectious diseases including COVID-19. 

Furthermore, low ventilation rate may lead to SBS in the classroom which is associated 

with lowered attention, ability to concentrate and increase in absenteeism from class 

(Morawska et al., 2020). In spite of the great importance of the indoor environment 

quality in the school buildings, not many studies have been done in the field of indoor 

comfort in educational buildings especially in primary school in comparison to office 

buildings over the world (Zomorodian, Aminian and Tahbaz, 2017).  

In Iran, most of the existing schools have been constructed without any concern 

for the student’s comfort and the adaptation to the local climate (Zahiri, 2014). The 

results of the field studies conducted in different cities of the hot and dry climate of 

Iran indicated that low air quality and uncomfortable indoor environment were the 

main problems experienced by the students in the primary schools (Tahsildoost & 

Zomorodian, 2015; Zahiri, 2014; Zomorodian et al., 2017). In this regard, Zahiri 

(2014) concluded that it is necessary to utilize the appropriate passive design strategies 

to create a high quality indoor environment and to increase the learning performance 

of the students. Therefore, to harness the current trend on buildings energy 

consumption and indoor air quality problems, as a result of reliance on conventional 

air conditioning systems, it is essential to explore alternative ventilation methods.  

Generally, there are three types of building ventilation systems including 

mechanical ventilation which use electricity for the operation, natural ventilation 

which relies on wind, and hybrid ventilation which is a combination of the two 

mentioned systems (Sha and Qi, 2020). Natural ventilation, as an energy efficient 

alternative for reducing the building energy consumption, has become a promising 

passive cooling strategy to mitigate the problems which originated from conventional 

air conditioning systems (Daghigh, 2015). Natural ventilation is the process by which 

airflow through ventilation openings is driven by the natural driving forces of wind 

and thermal buoyancy (Hirose et al., 2021). It is stated that the energy cost of an air-

https://www-sciencedirect-com.ezproxy.utm.my/topics/engineering/natural-ventilation
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conditioned building is typically 40% more than that of a naturally ventilated building 

(Stavrakakis et al., 2010; Tahsildoost and Zomorodian, 2015). The two main functions 

of natural ventilation concepts are (1) improving thermal comfort by ventilating the 

users and (2) providing good indoor air quality without any electricity demand by 

supplying fresh and clean air (Faggianelli et al., 2014; Wang and Malkawi, 2019). In 

WHO guideline, natural ventilation was considered among the effective environmental 

approaches to diminish the risk of infections spread in buildings (WHO, 2009). Natural 

ventilation has attracted more and more attention of research community and scholars 

in the 21st century, especially under the negative circumstance of COVID-19 due to 

providing fresh air and saving building energy consumption (Liu et al., 2021). 

One of the traditional natural ventilation systems applied in buildings in the 

Middle East for many centuries is the windcatcher. It is an environmental friendly and 

sustainable system which aims to reduce buildings energy consumption, while 

improving indoor air quality and thermal comfort inside the buildings (Varela-Boydo 

et al., 2021). Windcatcher is defined as a tower designed and mounted on the roof of 

a building to ‘‘catch’’ the wind at higher elevations and direct it into the inner 

environment of a building (Jomehzadeh et al., 2017). A windcatcher is divided into 

shafts by internal partitions, which allow fresh air to enter the room because of positive 

air pressure on the windward side and the warm and stale air to expel with the 

assistance of the suction (negative) pressure on the leeward side of windcatcher 

(Calautit et al., 2020) as shown in Figure 1.1. 
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Figure 1.1 Flow diagram representing ventilation through a traditional 

windcatcher system (Ghodsi, 2013) 

Bahadori et al. (Bahadori, Mazidi and Dehghani, 2008) stated that the main 

benefit of windcatchers, like other passive technologies, is that they exploit wind 

renewable energy for their operation; hence, they are considerably cost effective and 

more healthier. In addition to improving human comfort, windcatchers have low 

maintenance cost due to having no moving parts. Besides, it exploits clean and fresh 

air at roof level compared to low level windows  (Fanood, 2014; Valipour and Oshrieh, 

2012). Despite all benefits of traditional windcatcher, this sustainable technology has 

some limitations including huge structure, making it possible for the rain and small 

birds to enter through openings into the space (as shown in Figure 1.2), efficiency 

reduction in low wind speed conditions and little control of the volumetric flow rate in 

windy conditions (Bahadori and Dehghani-sanij, 2014; Farouk, 2020). 
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Figure 1.2 Traditional windcatcher with massive structure (Bahadori and 

Dehghani-sanij, 2014) 

In order to minimize the limitations of traditional windcatchers and improve 

their efficiency, current architects and engineers have developed contemporary 

windcatchers to adopt them with advanced building principles and technologies 

(Hughes and Ghani, 2008; Kwon, 2013). Main characteristic of contemporary 

windcatchers which make them applicable for modern buildings in urban environment 

relates to their compact and smaller size as compared to traditional windcatchers. 

Moreover, some limitations of traditional windcatchers are eliminated by adding some 

new components such as dampers for control of flow rate in high external wind speed 

conditions, and horizontal louvers for increasing air flow rate inside the windcatcher 

channel as well as preventing rain and small birds from entering (Monodraught, 2011). 

It should be noted that in this study the term of contemporary windcatcher refers to the 

natural system of windcatcher without combination with mechanical ventilation such 

as fan. Figure 1.3 illustrates a schematic diagram of a contemporary windcatcher. 
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Figure 1.3 Schematic diagram of a contemporary windcatcher (Monodraught, 

2011) 

 1.3 Problem Statement  

Generally, the ventilation performance of the windcatcher is mainly dependent 

on windcatcher design and climate parameters affected by the outdoor environment 

such as sun path, shading factors, heat island reflections and also building materials 

(Bahadori and Dehghani-sanij, 2014). The windcatcher operates according to the 

condition of the wind and sun radiation in the region (Shahamat, 2014). Sun path is 

the apparent significant seasonal and hourly positional changes of the sun as the earth 

rotates and orbits around the sun. Consideration of the sun path is essential in saving 

energy through passive building design. Early and late in the day when the sun shines 

inclined, the solar gains through a building (and also the windcatcher) is low. 

Therefore, the windcatcher’s efficiency is desired. On the other hand, in the middle of 

the day when the sun is at its strongest and also highest point, the sun hits a building 

at a steep angle so the air temperature in and around the windcatcher is high (Sari, 

Rauzi and Mahmud, 2021). 
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In addition, the sun path affects the buildings through the daylight access and 

the shadings (Sari et al., 2021). In urban environments, buildings are often located 

close to each other, and will be strongly influenced by the surrounding structures. In 

fact, the tall structures cast shadows on the surrounding buildings. This phenomenon 

can lead to the air temperature reduction in and around the windcatcher; consequently, 

the windcatcher is able to provide the air flow with lower temperature for ventilation 

(Bahadori & Dehghani-sanij, 2014).  

Another climatic factor is Urban heat island (UHI). Urban areas typically have 

high building density, reduced green cover and various anthropogenic sources of 

excess heat generation (Kandya and Mohan, 2018). These factors significantly alter 

the heat exchange between the ground and buildings which affect the air temperature 

in urban microclimate. Subsequently, the air temperature in the densely built-up areas 

is higher than the air temperature of the surrounding areas which is commonly referred 

to as the ‘heat island effect’ (Han, Taylor and Pisello, 2015). Therefore, it is obvious 

that the cooling effect of natural ventilation systems such as windcatcher decreases in 

urban heat islands.  

Moreover, using the material to reduce/increase moisture on the internal 

surface of a windcatcher can reduce/increase the rate of relative humidity of inlet 

airflow. Transparent materials can also be used in the manufacturing of the 

windcatcher to maximize use of natural light inside the building (Dehghani-sanij, 

Soltani and Raahemifar, 2015). In Yazd city, the windcatcher surface colour is 

plastered with cob colour, which has covered windcatchers and thus, its brightness 

greatly helps the reflection of sun radiation from windcatcher surface and its non-

absorption by that surface (Azami, 2005). According to literature (Ameer, Chaudhry 

and Agha, 2016; Calautit and Hughes, 2014b; Elmualim, 2006a; Farouk, 2020; Hughes 

and Cheuk-Ming, 2011; Jones and Kirby, 2009a; Li and Mak, 2007; Sangdeh and 

Nasrollahi, 2022; Varela-Boydo et al., 2021), the most important climatic factors 

which directly affect the windcatcher performance are wind speed and direction. Thus, 

the windcatcher performance was analysed based on these two climatic parameters.  
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Furthermore, key design parameters are cross-section size and form of air 

channel, tower height, opening, the placement of the tower on the building roof, 

internal partition, the shape of tower roof, as well as angle and number of louvers and 

dampers (Afshin et al., 2016; Jomehzadeh et al., 2017). This research identified two 

main gaps including design aspect and application aspect. As shown in Table 1.1, there 

are many works available in the literature on the windcatcher (both traditional and 

contemporary) design parameters including form of cross-section, internal partition, 

opening, roof, damper, louvre. However, there is no study on cross-section size and 

height of windcatcher as well as the placement of the tower on the building roof. 

Therefore, different sizes for cross-section and height of a contemporary windcatcher 

as well as different places of windcatcher on the building roof are unexplored areas 

requiring further investigation.  
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Table 1.1 Previous studies on windcatcher design parameters to identify the 

research gap  

No Author(s)/Year Windcatcher Design 
Parameters  

Windcatcher 
Type 

1 Mahmoudi, 2009 Internal partition & opening Traditional 

2 Dehghan et al., 2013 Roof Traditional 

3 Hosseinnia et al., 2013 Internal partition Traditional 

4 Zendehboudi et al., 2014 Opening Traditional 

5 Cruz-Salas et al., 2014 Internal partition & opening Traditional 

6 Benkari et al., 2017 Cross-section form & roof Traditional 

7 Montazeri, 2018 Opening Traditional 

8 Varela and Moya, 2020 Opening Traditional 

9 Sheikhdehkordi et al., 
2020 

Internal partition Traditional 

10 Gage and Graham, 2000  Cross-section form & opening Contemporary  

11 Elmualim and Awbi, 
2002 

Cross-section form Contemporary  

12 Elmualim, 2006 Damper Contemporary  

13 Hughes and Ghani, 2009 Damper Contemporary  

14 Hughes and Ghani, 2010 Louver Contemporary  

15 Liu et al., 2011 Louver Contemporary  

16 Haw et al., 2012 Roof Contemporary  

17 Maneshi et al., 2012 Cross-section form Contemporary  

18 Calautit et al., 2013 Internal partition & opening Contemporary  

19 Farouk, 2020 Cross-section form Contemporary  

Present study 

• Windcatcher height 
& cross-section size  

 
• Placement of the 

tower on the 
building roof 

Contemporary  
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Buildings all over the world are naturally ventilated by relying on the porosity 

of the envelope and windows or other openings. One of the parameters that evaluate 

the thermal performance of a building envelope is Overall thermal transfer value 

(OTTV). It is the value that represents the average rate of heat transfer to a building 

via building facades. It is generally utilized to compare different building designs in 

terms of thermal performance (Chan and Chow, 2014). In 1975, the concept and 

application of OTTV were firstly proposed by the American Society of Heating, 

Refrigerating and Air-conditioning Engineers (ASHRAE) (ASHRAE, 1975). 

OTTV has been proposed and applied in many countries as a guideline for 

enhancing energy-efficient building envelopes to restrict excessive external heat gains 

due to solar heat gain and outdoor–indoor temperature difference then to achieve 

energy savings in buildings (Hagentoft and Pallin, 2021; Hwang, Huang and Chen, 

2021). Smaller the OTTV, less will be the energy used for cooling. There is no doubt 

that regulating the OTTV of a building can enhance energy-efficient design of 

building envelope and mitigate the emission of greenhouse gas (Chan and Chow, 

2013). 

Another similar term used for this assessment is roof thermal transfer value 

(RTTV) which reflects the average heat gain into the building through the roof.  It is a 

quick tool to quantitatively estimate heat gain or loss through roofs (Hagentoft and 

Pallin, 2021). Same as OTTV concept, building with a lower RTTV uses less energy 

for space cooling and the higher RTTV means  more  energy  consumption  by  air-

conditioning system (Yang He et al., 2021).  

The building envelopes are the main factors influencing building energy 

efficiency and consequently human thermal comfort, as they represent a skin of the 

building's body. Solar radiation has a significant influence on mean radiant 

temperature. The radiant temperature can be calculated from measured values of the 

temperature of the surrounding walls and surfaces and their positions with respect to 

the person (Atmaca, Kaynakli and Yigit, 2007). Thus, there is a direct relationship 

between mean radiant temperature in building’s envelopes and OTTV (as well as 

RTTV). So that warm surfaces may cause a person to feel warmer than the surrounding 
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air temperature (Sohrabiasl, 2015). Therefore, it can be stated that both OTTV and 

RTTV can affect thermal comfort conditions inside the buildings.   

Since windows as conventional natural ventilation strategies are widely used 

in naturally ventilated buildings, its effect should be taken into account in natural 

ventilation studies such as windcatcher. However, based on literature review findings 

(Elmualim and Awbi, 2003; Ji, Su and Khan, 2012; Jones and Kirby, 2011), there are 

few works in windcatcher studies which investigated the effect of open windows on 

the windcatcher performance. Jones & Kirby (2011), Ji et al., (2012) as well as 

Elmualim and Awbi (2003) studied the performance of contemporary windcatchers 

along with open windows only at specific air speed and/or angle, whereas it is 

comprehensively evaluated at different wind speeds (0.5 m/s - 4 m/s) and directions 

(0° - 180°) in present study.  

Moreover, utilization of contemporary windcatcher is now widespread, 

particularly for indoor spaces with high occupant numbers such as schools and office 

buildings (Jones and Kirby, 2011). For instance, in recent years over 7000 

contemporary windcatchers installed for public buildings in the UK (Monodraught, 

2011). According to Table 1.2, all previous studies focused on the traditional 

windcatchers in residential buildings in Iran. It reveals the existence of a gap related 

to the contemporary windcatcher application for buildings particularly educational 

ones in climatic condition of Iran. Thus, the present study evaluates the ventilation 

performance of a contemporary windcatcher in school building in Yazd, Iran. Table 

1.2 also shows the potential of Yazd city for application of windcatcher. On the other 

hand, Jones et al. (Jones, 2010) stated that most investigations of ventilation rates in 

school classrooms in the literature are for mechanically ventilated classrooms. 

Consequently, it is essential to conduct such studies in classrooms which are naturally 

ventilated.  
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Table 1.2 Previous studies on windcatcher in Iran to identify the research gap 

No Author(s) Windcatcher 
Type 

Building 
Functionality 

Case-
Study  

1 Mazidi et al., 2007 Traditional Palace Yazd, Iran 

2 Kalantar, 2009 Traditional Palace Yazd, Iran 

3 Mahmoudi, 2009 Traditional House Yazd, Iran 

4 Ghadiri et al., 2011 Traditional - Yazd, Iran 

5 Ahmadikia et al., 2012 Traditional Palace Yazd, Iran 

6 Ghadiri et al., 2012 Traditional House Yazd, Iran 

7 Hosseinnia et al., 2013 Traditional House Iran 

8 Dehghan et al., 2013 Traditional House Yazd, Iran 

9 Mahdavinejad et al., 
2013 

Traditional House Yazd, Iran 

10 Zendehboudi et al., 2014 Traditional House Shiraz, Iran 

11 Aini & Ahmadnia, 2014 Traditional Water cisterns Yazd, Iran 

12 Abouseba & 
Khodakarami, 2014 

Traditional - Yazd, Iran 

13 Mostafaeipour et al., 
2014  

Traditional Warehouse Yazd, Iran 

14 Hedayat et al., 2015 Traditional House Yazd, Iran 

15 Hosseini et al., 2016 Traditional House Yazd, Iran 

16 Afshin et al., 2016 Traditional House Yazd, Iran 

17 Mohamadabadi et al., 
2018 

Traditional House Yazd, Iran 

18 Sheikhdehkordi et al., 
2020  

Traditional - Yazd, Iran 

19 Miri & Babakhani, 2021 Traditional Mosque Kermanshah, 
Iran 

Present study Contemporary School Yazd, Iran 

1.4 Aim and Objectives of Study 

The aim of current research is to develop a windcatcher configuration 

appropriate for the school building in hot and dry climate of Iran. To achieve this aim, 

the objectives are: 
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(a) To develop the control model for comparison between the simulation and 

experimental results of natural ventilation on a classroom 

(b) To determine optimum configuration (cross-section and height) and placement 

on the classroom roof for a four-faced square contemporary windcatcher. 

(c) To evaluate indoor natural ventilation on air velocity and indoor temperature 

performance achieved by the windcatcher along with both closed/open window 

of a classroom at different wind speeds and directions in Yazd climate. 

1.5 Scope of Study 

This section indicates scope of this study on indoor air movement, natural 

ventilation performance, climate and building type as following: 

i. Indoor Air Movement: Due to the important effect of indoor air movement on 

students learning, performance and productivity; key factors including 

ventilation rate (Q) and air change rate per hour (ACR) were assessed in present 

study. 

ii. Natural Ventilation Performance: Natural ventilation is used not only for 

providing an acceptable air quality inside a building, but also for improving 

comfort conditions. Hence, this study investigated the windcatcher 

performance in terms of important factors including indoor air velocity (V) and 

air temperature (T).  

iii. Climate:  Hot and dry climate of Iran was selected for conducting this study. 

In fact, the experimental test was carried out in month of June in UTM wind 

tunnel. Based on weather station data (JB Weather Station, 2022), the mean 

temperature in June month was 32 °C in Skudai, Johor Bahru. As presented in 

Chapter 2 (Section 2.7), the mean temperature is 33 °C in Yazd, Iran during 
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summer season. Since there is a slight difference between these two 

temperatures, it can be assumed that an outdoor temperature in wind tunnel can 

represent the outdoor temperature in Yazd, Iran.  

iv. Building Type: This study focused on one floor school in urban area of Yazd 

city, Iran which is recommended by Iran’s Ministry of Education (2020) for 

primary schools in Iran. It should be noted that due to the earthquake threat as 

well as safety issues of low aged students in primary schools, most school 

buildings are low rise in Iran. 

v. Ventilation type: Among three types of building ventilation which are 

mechanical ventilation, natural ventilation, and hybrid ventilation; this study 

only focused on the natural ventilation system of a contemporary windcatcher 

(without aid of mechanical systems such as fans). 

1.6 Research Framework 

This section presents the research design and the methods used in this study. 

Detailed explanation of the research framework will be presented in Chapter 3. To 

achieve the aim and objectives of the study, the research framework consists of five 

main phases as shown in Figure 1.4.  Phase I is ‘literature study’, Phase II is 

‘experimental test’, Phase III is ‘pilot study’, Phase IV is ‘development of windcatcher 

configuration’ and Phase V is ‘evaluation of windcatcher efficiency’. 

1.6.1 Phase I: Literature Study 

This phase conducted a comprehensive review on natural ventilation, comfort 

condition requirements, windcatcher technology, Iran climatic conditions and 

common predicting methods for natural ventilation performance. 
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1.6.2 Phase II: Experimental Test 

For collecting experimental data, a small-scale test in a wind tunnel lab was 

conducted. The obtained data will be used in the next phase for validation of 

computational fluid dynamics (CFD) simulation. 

1.6.3 Phase III: Pilot Study 

Before any detailed CFD simulations, it is essential to conduct pilot study 

because some levels of error and uncertainty are typically observed in numerical 

(CFD) simulations. This phase was designed to fulfil objective 1. Control 

(comparison) of CFD results against experimental data meant that CFD simulation 

procedure was reliable and accurate; consequently, it can be applied for the next 

objectives.  

1.6.4 Phase IV: Development of Windcatcher Configuration 

After comparison of CFD results with experimental data, CFD analysis to 

achieve objective 2 is carried out. To determine optimum configuration for a four-

faced square contemporary windcatcher, different sizes of cross-section and height are 

simulated for the windcatcher. Moreover, different places of the windcatcher on the 

classroom roof is analyzed to find an optimum placement. The findings of these two 

parts lead to the development of the windcatcher configuration.  

1.6.5 Phase V: Evaluation of Windcatcher Efficiency 

This phase was designed to fulfil the final objective. In this phase, performance 

of the developed windcatcher was numerically evaluated at different wind speeds and 

directions along with both closed and open window conditions of a classroom. It was 
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also assessed in terms of natural ventilation and temperature performance in hot and 

dry climate of Yazd, Iran. It should be noted that this study only focused on the natural 

system of a contemporary windcatcher. 
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1.7 Significance of Study 

The research addresses the following significance of studies, ‘ventilation role’, 

‘natural ventilation and temperature performance assessments’, ‘windcatcher field’ 

and ‘building energy sector’. 

Ventilation Role: Natural ventilation has attracted more and more attention of 

research community and scholars in the 21st century, particularly under the negative 

condition of COVID-19 due to providing fresh air and saving building energy 

consumption. It is well accepted that ventilating the indoor environments with outdoor 

air (as much as possible) is the best measure to decrease the concentrations of interior 

air pollutants including any viruses. During the pandemic of infectious diseases 

including COVID-19, conducting studies such as present research is of great 

importance. 

Natural ventilation and temperature performance Assessments: The 

natural ventilation and temperature performance are principally significant in schools 

where there is the potential for children to sustain long lasting damage. Poor ventilation 

rate in the classroom could have negative impacts on children’s health, learning, 

attention, and performance. Previous researchers have mostly focused on ventilation 

rates in mechanically ventilated school classrooms. Moreover, there is lack of natural 

ventilation and temperature performance assessments in Iran school classrooms 

ventilated by a contemporary windcatcher. Therefore, it will be considered in present 

study. 

Windcatcher Field: There is lack of study on the effect of different sizes of 

cross-section and height of a contemporary windcatcher and different places of 

windcatcher on a building roof on its performance in Iran. Thus, this study planned to 

conduct them. Furthermore, no work has been done regarding the contemporary 

windcatcher application for a school building in the climatic condition of Iran. Hence, 

this study planned to investigate it. In addition, there are few works in windcatcher 

studies which investigated the windcatcher performance along with open windows, 
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especially at different wind speeds and directions. Consequently, it will be evaluated 

in present research. 

Building Energy Sector: Currently, a key challenge in the building sector is 

increasing the buildings energy efficiency, while providing a healthy and comfortable 

indoor environment. The energy consumption and cost of a naturally ventilated 

building is much less than that of an air-conditioned building. Numerous scholars and 

academicians proved the significance of windcatcher natural ventilation system on 

energy consumption reduction in buildings. For example, Ji et al., (2012) claimed that 

17% of cooling load inside the building could be reduced after applying windcatchers, 

and this can be increased up to 31% in case of utilizing openable windows along with 

the windcatcher. In another windcatcher study conducted by Mostafaeipour et al., 

(2014) in Yazd city, 35% energy saving was observed in the building with windcatcher 

system compared to that of with absorption chiller system. Moreover, Goudarzi and 

Mostafaeipour (2017) stated that a windcatcher is the most efficient passive system for 

saving the cooling energy (up to 43%) for the buildings in hot and dry climate of Iran. 

1.8 Thesis Outlines 

The thesis outlines are as follows: 

Chapter 1, Introduction: This chapter includes background of research, 

problem statement, aim and objectives, scope of study, concise research methodology 

and significance of study. 

Chapter 2, Literature Review: This chapter conducts a comprehensive review 

on natural ventilation, comfort condition requirements, windcatcher, Iran climate and 

predicting methods of natural ventilation performance. 

Chapter 3, Research Methodology: This chapter addresses the research 

methodology in detail which includes experimental and numerical (CFD) methods. 
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Chapter 4, Results and Discussion: This chapter presents the results of CFD 

simulations and wind tunnel test and related discussion about the findings. 

Chapter 5, Conclusion and Further Work: This chapter reviews objective 

findings of the research. Moreover, it suggests further works in the windcatcher field. 
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