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ABSTRACT  

The rapid growth of free applications in the android market has led to the fast 

spread of malware apps since users store their sensitive personal information on their 

mobile devices when using those apps. The permission mechanism is designed as a 

security layer to protect the android operating system by restricting access to local 

resources of the system at installation time and run time for updated versions of the 

android operating system. Even though permissions provide a secure layer to users, 

they can be exploited by attackers to threaten user privacy. Consequently, exploring 

the patterns of those permissions becomes necessary to find the relevant permission 

features that contribute to classifying android apps. However, with the era of big data 

and the rapid explosion of malware along with many unnecessary requested 

permissions, it has become a challenge to recognize the patterns of permissions from 

these data due to the irrelevant and redundant features that affect the classification 

performance and increase the complexity cost overhead. Ensemble-based Extra Tree - 

Feature Selection (FS-EX) algorithm was proposed in this study to explore the 

permission patterns by selecting a minimal-sized subset of highly discriminant 

permission features capable of discriminating against malware samples from non-

malware samples. The integrated Information Gain with Ensemble-based Extra Tree - 

Feature Selection (FS-IGEX) algorithm is proposed to assign weight values to 

permission features instead of binary values to determine the impact of weighted 

attribute variables on the classification performance. The two proposed methods based 

on Ensemble Extra Tree Feature Selection were evaluated on five datasets with various 

sample sizes and feature space using nine machine learning classifiers. Comparison 

studies were carried out between FS-EX subsets and the dataset of Full Permission 

features (FP) and the two approaches of the FS-IGEX method - the Permission-Binary 

(PB) approach and the Permission-Weighted (PW) approach. The permissions with 

PB were represented with binary values, whereas permissions with PW were 

represented with weighted values. The results demonstrated that the approach with the 

FS-EX was promising in obtaining the most prominent permission features related to 

the class target and attaining the same or close classification results in terms of 

accuracy with the highest accuracy mean of 96%, as compared to the FP. In addition, 

the PW approach of the FS-IGEX method had highly influential weighted permission 

features that could classify apps as malware and non-malware with the highest 

accuracy mean of 93%, compared to the PB approach of the FS-IGEX method and the 

FP. 
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ABSTRAK 

Pertumbuhan pesat aplikasi percuma dalam pasaran android telah membawa 

kepada penyebaran pantas aplikasi perisian hasad yang cepat kerana pengguna 

menyimpan maklumat peribadi mereka pada peranti mudah alih mereka apabila 

menggunakan aplikasi tersebut. Mekanisme kebenaran direka bentuk sebagai lapisan 

keselamatan untuk melindungi system pengendalian android dengan mengehadkan 

akses kepada sumber sistem tempatan pada pemasangan masa dan masa jalankan 

untuk versi terkini sistem pengendalian android. Walaupun kebenaran menyediakan 

lapisan selamat kepada pengguna, ia boleh dieksploitasi oleh penyerang untuk 

mengancam privasi pengguna. Oleh itu, penerokaan corak kebenaran tersebut menjadi 

satu keperluan untuk mencari ciri-ciri kebenaran yang berkaitan yang menyumbang 

kepada pengklasifikasian android. Walau bagaimanapun, dengan era data besar dan 

ledakan pesat perisian hasad bersama-sama dengan banyak permintaan yang tidak 

perlu kepada kebenaran, ia telah menjadi cabaran untuk mengenali corak data 

disebabkan oleh ciriciri yang tidak relevan dan berlebihan yang boleh mempengaruhi 

prestasi pengelasan dan meningkatkan kerumitan kos perbelanjaan. Algoritma Pokok 

Tambahan Berasaskan Ensemble - Pemilihan Ciri (FS-EX) telah dicadangkan dalam 

kajian ini untuk meneroka corak kebenaran dengan memilih subset bersaiz minimum 

ciri kebenaran yang sangat diskriminasi yang mampu mendiskriminasi sampel perisian 

hasad daripada sampel bukan perisian hasad. Algoritma bersepadu Pemilihan 

Maklumat dengan Pokok Tambahan Berasaskan Ensemble – Pemilihan Ciri (FS-

IGEX) telah dicadangkan untuk memberikan nilai pemberat kepada ciri kebenaran dan 

bukannya nilai perduaan untuk menentukan kesan pembolehubah atribut berwajaran 

pada prestasi pengelasan. Kedua-dua kaedah yang dicadangkan berdasarkan Pemilihan 

Ciri Pokok Tambahan Ensemble dinilai pada lima set data dengan pelbagai saiz sampel 

dan ruang ciri menggunakan sembilan pengelas pembelajaran mesin. Kajian 

perbandingan telah dijalankan antara subset FS-EX dan set data ciri-ciri Kebenaran 

Penuh (FP) dan dua pendekatan kaedah FS-IGEX, pendekatan Binari Kebenaran (PB) 

dan pendekatan Wajaran Kebenaran (PW). Keizinan dengan PB diwakili dengan nilai 

binari, manakala kebenaran dengan PW diwakili dengan nilai wajaran. Keputusan 

menunjukkan bahawa pendekatan dengan FS-EX menjanjikan dalam mendapatkan 

ciri kebenaran yang paling menonjol berkaitan dengan sasaran kelas dan mencapai 

keputusan pengelasan yang sama atau hampir dari segi ketepatan dengan min 

ketepatan tertinggi sebanyak 96%, berbanding dengan FP. Selain itu, pendekatan PW 

bagi kaedah FS-IGEX mempunyai ciri wajaran kebenaran yang sangat berpengaruh 

yang boleh mengklasifikasikan aplikasi sebagai perisian hasad dan bukan perisian 

hasad dengan min ketepatan tertinggi sebanyak 93%, berbanding pendekatan PB bagi 

kaedah FS-IGEX dan FP. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Mobile devices such as tablets, smartphones, and PDAs have become the most 

important technology in our daily life and the concern of many research communities 

and commercial industry as well. That consideration is due to the fast development in 

the hardware of mobile technology such as better processing power, larger wireless 

network bandwidth, and enhances capabilities of mobile devices. Additionally, the 

rapid growth of mobile platforms has led to the development of mobile applications as 

well such as social networks, mobile banking, mobile health, online learning 

applications, etc. (Idrees et al., 2017; Jaenke et al., 2021; López-Moranchel et al., 

2021). Generally, mobile applications are 1.5 times faster than mobile websites and 

they perform actions much faster too. The data of applications are stored on mobile 

devices which could be restored in the blink of an eye. Examples of spreading apps as 

happened nowadays with mobile health apps for COVID-19 management such as 

contact tracing, managing patient care, and access to information about COVID-19 

apps. The contact tracing app used Bluetooth technology to identify individuals who 

have been in close contact with patients who have been diagnosed with COVID-19 

such as Covidsafe in Australia and Trace together in Singapore (Salehinejad et al., 

2021). However, these technologies come up with many advantages, there are some 

new risks that must be considered. Sharing information with others through 

smartphone apps that store sensitive information could cause damage to the privacy of  
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the user (Appice et al., 2020). Moreover, mobile devices got the attention of attackers 

and hackers who take advantage of some features of communication-related to 

smartphones like Short Message Service (SMS), Multimedia Messaging Service 

(MMS), WIFI networks, and Global System for Mobile Communications (GSM) to 

inject the system with malicious software. Additionally, they exploit the vulnerabilities 

of software of the web browser and operating system and leak knowledge of users to 

launch an attack (Alazab, 2020). Malware is defined as a malicious application that 

intends to gain access to computer systems and network resources, disrupts computer 

operations, gathers personal information without the knowledge of the system’s user, 

and puts the user’s privacy at risk (Yan & Yan, 2018). Many studies have been 

concerned with android apps and identifying malicious applications and discovering 

the patterns of malware samples. Consequently, malware detection of the Android 

platform becomes a topical matter for many researchers (Su et al., 2020), since the 

Android platform dominates the market of mobile devices (Peynirci et al., 2020; Garg 

& Baliyan, 2021). As stated by (Liu et al., 2020), around 86.6% of smartphone devices 

sold in 2019 were based on the Android operating system, and by the end of the 2020 

year will be more than 2.8 million applications distributed to the official store of 

Android applications ( Google Play). That fast growth of android apps is due to the 

open-source of the Android platform and its ability for invoking third-party code (Liu 

et al., 2020). The design of the android operating system security model is based on 

application-oriented mandatory access control and sandboxing that restricts access to 

local resources by using the permission constraints (Arora et al., 2019). Permission is 

used as a type of secure layer in the android platform to protect the privacy and data 

of the user. For instance, applications request permissions to access certain sensitive 

information of a user such as text messages and contacts, as well as various system 

components such as the camera, microphone, and network. That permissions could be 

requested at installation and run time for updated versions of the android operating 

system. However, they could be abused by attackers and threaten user privacy (Arora 

et al., 2019). Several reported works have been conducted to handle the malicious apps 

of the android platform based on machine learning techniques due to their ability in 

keeping cope with malware development (Ucci et al., 2019; Gibert et al., 2020). The 

approaches of detecting and classifying android malware using machine learning  
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methods are grouped into three types based on the features extracted; static approach 

in which attribute variables are obtained before execution of the application, while the 

features in the dynamic method are extracted after execution of the application. The 

hybrid approach includes both static and dynamic features (Yan & Yan, 2018; Gibert 

et al., 2020; Garg & Baliyan, 2021). Classifying Android applications to malicious and 

non-malicious using permissions is more popular and effective than other features 

(Yuan et al., 2020). For instance, classifying android apps based on static permissions 

is less expensive because the apps are not executed (Milosevic et al., 2017). However, 

classifying Android apps based on permissions extracted at run time is more efficient 

but it consumes much time (Milosevic et al., 2017). Hybrid features are more 

comprehensive in classifying Android apps. In the domain of machine learning along 

with the era of big data and the tremendous explosion of mobile apps, detecting and 

classifying malware apps from non-malware apps among those massive data becomes 

more challenging (Zhang et al., 2019). Therefore, finding the discriminative and 

relevant permission features that distinguish malware apps from non-malware apps 

becomes the interest of many researchers. Consequently, numerous researchers have 

been adopted feature selection and classification methods to detect and classify 

android malicious apps from non-malicious apps. For instance, (Aminordin et al., 

2018; Singh et al., 2019; Alazab, 2020; Faris et al., 2020; Mahindru, 2020; Sangal, 

2021) used feature selection approaches to obtain the most discriminative features 

subset from the original features that are capable to classify malware apps from non-

malware apps and improve the classification performance with less computational cost 

overhead by using a small number of significant features. However, designing a 

promising and robust approach that deals with a large dataset with large features is the 

concern of this research study. 

1.2 Problem Background 

With the development of smartphones and the combination of their 

applications currently, people depend mostly on their mobile devices for accessing the  
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Internet, online banking, shopping, emails, social media access, online learning, and 

mobile-health, etc. (Ghasempour et al., 2020; Jaenke et al., 2021; López-Moranchel et 

al., 2021). Those facilities have led to the development and distribution of free Mobile 

apps for Android platforms in particular on the market which attracts many users to 

download them without awareness. As a result, users attend to store their sensitive 

personal information such as passwords, mail, and bank account details on their mobile 

devices along with using those apps. That trend has led to the dramatic growth of the 

number of malware threats (Kouliaridis et al., 2020; Feng et al., 2021). As reported by 

McAfee, there are some hidden apps that are able to hide their existence after 

installation and disturb user victims with an irritating advertisement, representing the 

most active threat to mobile users (Kouliaridis et al., 2020). That type of app is 

designed with encrypted code and is able to spread throughout the program 

(Kouliaridis et al., 2020).  Mobile malware is malicious software designed to exploit a 

mobile device without the owner’s knowledge with bad intentions. It can be 

categorized as a virus, trojan, worm, or botnet (Appice et al., 2020; Alazab et al., 2020). 

A malicious app could steal the sensitive information of a user, make phone calls and 

send text messages. For example, svpeng malware could steal bank IDs and credit card 

numbers by tricking the user to enter information in the window as shown in Figure 

1.1 below, and breaking user privacy (Maiorca et al., 2015). 

 

 

Figure 1.1  The svpeng malware with a phishing window asking credit card 

details 

In addition, the design of the android operating system security model is based 

on application-oriented mandatory access control and sandboxing that restricts the 
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access to local resources by using the permission constraints (Arora et al., 2019). For 

example, each application must assign a unique User ID and a set of permissions at 

the installation time of the app to provide a limitation for accessing different features 

as a type of protection (Bhandari et al., 2017; Kumar et al., 2018; Wang et al., 2019). 

However, the requested permissions at installation time were implemented in earlier 

versions of Android (5.1 and below) as an ask-on-install (AOI) policy that requires 

users to grant permissions at installation time while the new updated permissions 

mechanism in Android 6.0 rely on the ask-on-first-use (AOFU) policy that requires 

user authorization to be provoked at runtime for user decision (Gao et al., 2020). Even 

though permissions provide a secure layer to users by restricting access to local 

resources, they can be exploited by the attackers to threaten user privacy. That 

exploitation could be done via camera, SMS, call, audio, and image or location 

exploitation by attacking the system call, permission, or API inside the Android 

smartphone (Saudi et al., 2017; Alenezi & Almomani, 2018; Ghasempour et al., 2020; 

Garg & Baliyan, 2021). When granting some permissions, they could compromise user 

privacy and cause a financial cost for a mobile user such as (send_sms, receive_sms, 

read_contacts, etc.). For instance, (send_sms) permission enables the app to send text 

messages without user knowledge and an attacker might abuse it by communicating 

with a third party or sending text messages to specific numbers, without user consent. 

Moreover, malicious apps may cost users money by sending messages without user 

confirmation and could cause financial loss with unexpected charges (Deypir, 2019). 

In addition, there are some permissions that can cause integrity threats to the operating 

system (OS), files, and the physical device (Dini et al., 2018) such as 

(change_wifi_state, install_packages, write_external_storage). For example, the 

permission (write_external_storage) allows an app to write or modify the external 

storage of a mobile device and can damage the memory of the device by filling it and 

controlling or modifying files constantly. An example of malware using this 

permission is (Moghava) malware that can destroy all the photos of the user gallery by 

loading an advertising image instead (Dini et al., 2018). Consequently, many reported 

works intend to explore the permissions mechanism and analyze them to find the 

patterns of permissions that are associated with malicious apps by utilizing machine 

learning techniques. These approaches of machine learning can be categorized based 

on features extracted to static analysis in which features are extracted at installation 
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time and dynamic analysis where features are extracted at run time and hybrid analysis 

that includes both static & dynamic features (Wang et al., 2019). For example, Wang 

et al. (2014), analysis the risk of permissions that are requested at installation time 

(static features) based on three phases. Firstly, they analyzed the risk of the individual 

permission features followed by studying the risk of a combination of permission 

features to investigate the critical permissions that are related to suspicious apps. The 

study done by Talha et al. (2015) analyzed android permissions (static features)  by 

building a system called APK Auditor on a server based on assigning scores to the 

requested permissions by apps (Talha et al., 2015). However, they explore only the 

permissions that are requested at installation time (static permission features). Jin et 

al. (2018) designed the (SIGPID) method to investigate the importance of requested 

permissions in differentiating between malware and non-malware apps. They used 

ranking methods with negative rate and association rules to select the most important 

permission features. And they used different classifier algorithms to classify 

suspicious apps from non-suspicious ones. 

Doǧru & Önder (2020) designed a system called AppPerm Analyzer to extract 

the permissions of analysed applications and computes risk scores of these permissions 

and they created permission groups according to their usage rates in suspicious and 

non-suspicious applications and calculate the total risk score of that analyzed 

applications. The permissions that are explored in their study represent the static 

permissions obtained at installation time. 

Ikwuegbu (2020) proved that mobile application attributes such as 

permissions, ratings, and number of installations have an impact on identifying the 

violence of mobile applications. They utilized different machine learning classifiers 

such as (K-NN and RF) to evaluate the security risk of mobile apps based on the 

mentioned attribute features. 

Most of the mentioned previous studies concentrate mostly on studying the 

permissions at installation time. These permissions are more important to be explored  
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because a security model that would inform users about permission settings only once 

during application installation has been considered insufficient. Moreover, many users 

are careless about these permissions and that leads to security and privacy threats 

(Alepis & Patsakis, 2017; Arora et al., 2019). However, the updated version of the 

android platform requests permissions during runtime to restrict access to some 

respective resources of the mobile devices. These permissions are categorized as 

dangerous permissions based on android website developers (Alepis & Patsakis, 2017) 

& (Mahindru & Singh, 2017) and they are more critical because they describe how 

sensitive information of the user is handled by the applications. Therefore, this 

research study explores the permissions extracted at installation time (static permission 

features) along with hybrid permissions that include static and (dynamic permissions 

that are extracted at run time; which means permissions extracted after executing the 

apps). For example, the study conducted by (Mahindru & Singh, 2017) used hybrid 

permission features (static and dynamic permission features) to detect android 

malware by utilizing machine learning classifiers. In this research study, the new 

version of the dataset used in the work of (Mahindru & Singh, 2017) has been used 

along with other datasets as described in chapter 3. That dataset has 25458 samples 

(8643 malware apps & 16815 benign apps) with 173 permission features. 

Since many research studies investigate different feature variables along with 

permission, the motivation of this study is to explore only permissions as features for 

the dataset by utilizing machine learning classifiers to build a classifier model. 

Different machine learning classifiers are utilized to find out which classifier model is 

suitable for Android malware classification. Ensemble classifier algorithms such as 

random forest and extra tree are employed in this study to investigate the effectiveness 

of these classifiers on classification performance as well. However, with the era of big 

data and the explosive growth of mobile apps distribution currently along with the 

rapid growth of malware apps (Wang et al., 2019; Doǧru & Önder, 2020), the 

interpretation of a dataset becomes more difficult and visualization of that high 

dimensional dataset with many redundant and irrelevant features becomes also more 

challenging and not clear (Wang et al., 2019). Furthermore, the number of permissions 

requested by android apps is growing exceedingly with the growth of the android apps  
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as well; could be more than 300 permissions, as reported by (Alswaina & Elleithy, 

2018) and malicious apps request many unnecessary permissions (Arora et al., 2019; 

Qiu et al., 2019; Shrivastava et al., 2019). And these growing numbers of that 

permission features will make it complex and would misguide classifiers by over-

fitting of data. Thus, analysing and classifying apps with that huge permission features 

comprising of non-relevant and redundant permission features will increase the 

computational overhead and also will decay the classification performance (Xu et al., 

2017; Wang et al., 2019; Salah et al., 2020). Further, learning with a large dataset with 

whole features will cause data redundancy and increase data noise which leads to 

degeneration of classification, increasing the complexity of understanding the model 

and raising the computational cost overhead (Feng et al., 2018; Yuan et al., 2020). In 

addition, analysing permissions and extracting useful knowledge and patterns from 

such a huge number of applications and noisy data presents a challenging task since 

applications request many different permissions and will be there more redundant or 

irrelevant permission features. Additionally, non-relevant permission features are not 

related to class label and will affect the learning process and redundant permissions 

features are useless and do not add anything to the target concept which leads to lower 

the classification performance and increase the complexity overhead (Dash & Liu, 

1997; Wang et al., 2019). Therefore, extracting a small number of optimal and relevant 

permission features subset in classifying Android apps instead of using all features 

becomes necessary and desirable to enhance the learning accuracy for classification, 

lower computational cost, and decrease memory usage (Goecks et al., 2020). 

Feature selection is a method of dimensionality reduction that deals with the 

issues of high-dimensional datasets and reducing the number of features or variables 

by selecting small subsets of features that are correlated to the target object with 

preserving the information of the dataset (Dash & Liu, 1997; Aggarwal et al., 2014). 

Feature selection is widely employed in classifying and detecting android malware to 

select a subset of features from the original feature set without any transformation and 

maintain the physical meanings of the original features. Several reported works such 

as (Gillies, 2015; Vinod et al., 2019; Zebari et al., 2020) have demonstrated the effect 

of feature selection methods in minimizing redundancy and maximizing relevance to  
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the target such as the class labels in classification. The studies conducted by (La & 

Mar 2018; Salah et al., 2020; Arvind Mahindru, 2020; Sangal, 2021) pointed out that 

using a huge number of features leads to an increase in the time of learning, raises in 

memory usage, and decays the classification performance; and feature selection 

approaches represent one of the strategies used to handle that issues. Generally, there 

are three kinds of feature selection methods: filter, wrapper, and embedded methods. 

Filter methods select features based on their relevance to the class label without 

involving any machine learning algorithm, such as information gain (IG). Wrapper 

methods identify the best features based on the optimal performance of learning 

algorithms, such as particle swarm optimization (PSO). Embedded methods 

incorporate feature selection as a step of the machine learning process, such as decision 

tree (DT), L -support vector machine (SVM), and sparse logistic regression  (Xu et al., 

2017). 

The study done by (Altaher, 2016) used the Information Gain algorithm (IG) 

to select the most important permission features and then used three classifiers 

algorithms (Naïve Bayesian, Random Forest, and J48) to classify android apps based 

on that reduced permission features. However, they used a small dataset of (100 

malware and 100 non-malware apps) and they explored only permissions extracted at 

installation time. In addition, IG computes an IG value for every feature. The larger 

the IG value is, the more information the feature contains, and the more important the 

feature is. IG does not consider the influence of the feature on the classifiers. 

This study attempts to answer the questions of how permission features 

contribute in differentiating between malware and non-malware and how to explore 

the patterns of the most important permission features for a dataset using the extra tree 

algorithm. This study is based on the work of (Alswaina & Elleithy, 2018). However, 

they have examined the permissions that are requested at installation time (static 

permissions) to classify the applications into their proper malware families by utilizing 

the extra tree algorithm to reduce the number of permission features from 59 to 42 (by 

0.28%) while this research study focuses on classifying apps to malicious and non-

malicious based on static and hybrid permissions (static and dynamic permissions) as 
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well.  Also, this study is different from the study of Alswaina & Elleithy (2018) by 

selecting a small number of the best features (top 5, 10, and 20 features) from the list 

of most reduced important features by utilizing the largest (n) function as explained in 

the next chapters. 

 Many research studies have leveraged the extra-tree algorithm classifier to 

compute the importance score of each attribute based on the feature selection approach 

such as (Pektaş & Acarman, 2018; Suarez-tangil et al., 2017; Vinod et al., 2019). They 

also proved its robustness and its computational efficiency in selecting subsets of 

optimal and discriminative features that contribute towards enhancing the 

classification performance. Extra tree algorithm utilized feature importance property 

which is an inbuilt class with an extra tree model that extracts features based on 

assigning scores to input features of the predictive model by computing (Gini Index) 

in the decision of feature spilled of the data to determine the features with the relative 

importance towards the class label. And that helps in understanding the dataset better 

and since that features are scored based on the extra tree classifier algorithm in which 

the dataset has been fitted, that leads to a better understanding of the model by 

determining which feature attributes that are most and least prominent to the classifier 

model. While information gain approach selects features based on their information 

towards the class target regardless of which classifier models or ML algorithms are 

used. In addition, selecting a less number of important features instead of using all 

features helps in reducing the time of processing, helps in better learning performance, 

and helps in lowering computational cost overhead (Das & Das, 2017; Kumar et al., 

2018; Bruno, 2019; Haq et al., 2019). However, representing the discriminative 

features extracted based on feature selection methods with (Boolean values) instead of 

weighted values in the learning model will assume that all features are equally 

important but it is not always the case since some features have a stronger influence 

on malware classification while others have less impact (Xu et al., 2017; Cai et al., 

2021). For instance, the SMS permission features are often used in malicious 

applications but are used less often in non-malicious applications. Therefore, SMS-

related information has a powerful impact on Android app classification (Cai et al., 

2021). Thus, computing feature weight will help in determining the features with high  
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influence in distinguishing between malware and non-malicious apps. Moreover, 

representing features with weight values helps in improving classification performance 

as reported by many research works such as (Buckley, 1993; Unal et al., 2014; 

Alswaina & Elleithy, 2018; Kumar et al., 2018; Vinod et al., 2019). Additionally, many 

research works adopted a single feature selection method to obtain the most critical 

features. However, some single approaches of feature selection methods could have 

some limitations but some other techniques might not have those limitations. 

Therefore, combining two approaches of feature selection methods will help in getting 

rid of the limitations of one method by making use of each other’s strengths 

(Bhattacharya et al., 2018; Haq et al., 2019). Therefore, the aim of this research is to 

propose an approach that combines two methods of feature selection techniques to 

obtain more effective results. The Information Gain method (IG) is combined with the 

ensemble-based extra tree feature selection algorithm to compute the weights of the 

selected features. IG selects features based on their relevance to the class label with 

regardless of using any classifier model. Thus, using only values of IG as feature 

weights maybe not be appropriate to be used for each feature and not helpful in 

improving the accuracy of the final classifier for malware detection (Cai, Li, & Xiong, 

2021). Therefore, the extra tree algorithm is used in this study to compute the weights 

of features to get the most robust features by utilizing the feature importance property 

that comes with the algorithm. Several studies have been adopted the approach term 

frequency-inverse document frequency (TF-IDF) for assigning weights to feature 

variables to differentiate between their corresponding importance such as done in the 

works of  (Fan et al., 2018; Kural et al., 2018; Sahal et al., 2018; Su et al., 2018; Jannat 

et al., 2019; Deepa et al., 2019; Darabian et al., 2020; Dharmalingam & Palanisamy, 

2020; Salah et al., 2020; Yuan et al., 2020). Nevertheless, using (TF-IDF) methods for 

feature weighting is computationally expensive because many permission features 

occur many times, and computing the frequency statistics for all that features will be 

more expensive computationally. For instance, SMS-related permission features may 

appear several times in one application’s source code but may have a low frequency 

overall in the source code file (Xu et al., 2017). Hence, using the extra tree algorithm 

to compute weight is more efficient and saves time because the whole procedure is the  
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same in constructing the decision trees in which features are selected randomly based 

on Gini Index mathematical criteria (Moosmann et al., 2007). 

1.3  Problem Statement 

With the revolution of big data and the huge distribution of android mobile 

apps and malicious apps, android permissions play important role in differentiating 

between malware and non-malware apps as pointed out by many studies, however, the 

number of permission features is growing exceedingly with the growth of mobile apps. 

These growing numbers of permission features will increase the computational cost 

overhead and would lead to decreasing classification performance, so using a small 

number of significant permission features instead of using all permission features will 

decrease complexity and enhance the classification performance of classifying android 

apps. 

Based on the problem background presented previously, the problem statement 

for this study is: 

Given a binary class dataset of Android applications with malware and non–

malware samples and permission feature attributes, the challenge is to address the 

issues of reducing the irrelevant and redundant permission features that make the 

representation of the dataset difficult and decay the performance of the classification 

model. Ensemble-based extra tree algorithm is robust in extracting the most 

discriminative and relevant features that are related to the class target with preserving 

information of the dataset. Therefore, the weighted ensemble-based extra tree 

integrated with the information gain-based feature selection-based scheme is 

proposed to explore, analyse and obtain the most prominent and highly influential 

weighted permission features that contribute towards the target variable with less 

number of features. 
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This thesis explores the above-stated research problem with the help of the 

following research questions; 

i. How does the size of features or attributes of the dataset affect on the 

classification performance? 

ii. What is the impact of feature selection methods on classification 

performance?  

iii. How to explore the patterns of the most important features for the 

dataset?  

iv. How to determine the most optimum feature subset using ensemble-

based extra tree feature selection for various distributions of datasets? 

v. How to evaluate the significant permissions in classifying android 

apps? 

vi. How does the representation of features affect the classification 

performance? 

vii. How to compute the weight of the attribute features in the dataset? 

viii. How to test and evaluate the weighted features subset in the 

classification task? 
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1.4 Aim of the Research 

The aim of this study is to investigate the effect of permission features in 

classifying android apps and to obtain the small number of discriminative weighted 

permission features that classify android malware apps from non-malware apps instead 

of using all available permission features set by using the integrated Information Gain 

(IG) with ensemble-based extra tree feature selection algorithm and analysing that 

significant permission features would help in reducing the complexity overhead as 

well as improving the classification performance. 

1.5 Objectives of the Research 

This research embarks on the following objectives: 

1. To investigate the effect of permission features with different classifier 

models in classifying Android applications. 

2.  To propose and design an ensemble-based extra tree feature selection 

scheme (FS-EX) to obtain highly discriminant permission feature 

subsets for classifying Android applications.  

3.  To propose and design an integrated Information Gain with ensemble-

based extra tree feature selection (FS-IGEX) for improved weighted 

permission features in classifying Android applications. 
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1.6 Research Scope  

The scope of the research is limited to the following: 

i. The research focuses on investigating android permission features 

extracted at installation and run time that helps in classifying android 

apps as malicious or non-malicious apps. 

 

ii. Five different datasets of various data distribution and features size 

with real samples of malware and benign namely MO, Machine 

Learning 1, Machine Learning 2, Kaggle, and Hybrid dataset collected 

from different resources as explained in chapter 3 are used to validate 

the performance of the proposed methods. The permission features for 

Machine Learning 1 and Machine Learning 2 datasets are kept while 

the other features are excluded. 

 

iii. The proposed methods are used only to address the classification of 

binary class problems. 

 

iv. The performance evaluation is carried out to evaluate the 

classification performance between the proposed method (FS-EX) and  

using the full permission features (FP) and between the binary 

representation and weighted representation of permission features (PB 

& PW) of the proposed method (FS-IGEX) and between the weighted 

representation of permission features (PW) approach and using the 

full permission features (FP) approach. 

1.7 Contributions of the Research 

This research work has accomplished the following novel contributions to the 

existing body of knowledge: 
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i. Created MO dataset with static permission features that are extracted 

before executing the apps (43 permissions with 260 samples) which 

consists balance of real-world samples of malware and non-malware 

collected during the period (2016-2017). 

ii. Investigating and analyzing the static permissions that are requested at 

installation time and also permissions that are requested at run time by 

exploring the Hybrid dataset with the proposed methods (FS-EX & FS-

IGEX). That dataset has (99 static permissions and 74 dynamic 

permissions).  

iii. Proposing Ensemble-Based Extra Tree Feature Selection Algorithm 

(FS-EX): Ensemble-Based Extra Tree Feature Selection Algorithm 

(FS-EX) method tends to identify the subset of the most important 

discriminative permission features in classifying malicious android 

apps and non-malicious apps and visualizing them by utilizing feature 

importance property class that is built in the model classifier (extra 

tree). Its performance has been validated with five different data sets 

with varying permission features distribution and different distribution 

of samples. The comparison studies demonstrated that the less number 

of permission feature subsets obtained with the proposed method (FS-

EX) achieve the same or close performance results compared to using 

the whole permission features (FP). The advantage of the proposed 

method demonstrates that using a small number of significant 

permission features instead of employing all available permission 

features (FP) will lead to decreasing complexity and getting better or 

close performance measures results compared to all permission features 

since the feature importance selects the reduced prominent features that 

are relevant to the class target. This is reflected in the results of 

Duncan's Multiple Range Statistical Test (DRMT) presented in Chapter 

5. 
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iv. Proposing (FS-IGEX) approach by integrating Information Gain with 

an Extra Tree algorithm to assign weights to important features of the 

datasets used in this study. FS-IGEX extracts the top 5, 10, and 20 

features firstly by using the Information Gain (IG) method and then the 

ensemble-based extra tree features selection algorithm is applied on the 

updated feature subsets of 5, 10, and 20 features obtained using (IG). 

The features’ weights were calculated using the feature importance 

property class that is built within the extra tree model classifier. The 

performance of the proposed (FS-IGEX) method has been validated 

with five different data sets same as done with the (FS-EX) method. 

The advantage of the proposed (FS-IGEX) method demonstrates that 

assigning weights to features helps in determining the importance of 

features in the dataset that have a higher influence on the class label; 

for example, the features with the higher weights have the highest 

impact on the class target while the features with the lowest weight have 

the lowest impact on the class target. Additionally, learning with a 

small subset of weighted features results in better classification 

performance. This is demonstrated by the results of Duncan's Multiple 

Range Statistical Test (DRMT) presented in Chapter 6. 

v. A comparison study on the effect of representing features in Boolean 

values and weightage values on the classification performance. Such 

comparison study has been carried out to learn how the representation 

of features in learning task plays role in enhancing the model 

performance, for instance, features with weightage values have led to 

improving the classification performance with some classifiers and 

obtained explanation about features that have a high and low impact on 

the target object. This is reflected in the results of Duncan's Multiple 

Range Statistical Test (DRMT) presented in Chapter 6. 

vi. Identifying and analyzing the significant and risky permission features  
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that contribute in classifying android apps based on the top-ranked 

features selected by the proposing methods (FS-EX) and (FS-IGEX). 

That features have been visualized and illustrated in detail in section 

5.3 in chapter 5 and in section 6.2.4 in chapter 6. 

vii. Evaluating the performance of the proposed methods (FS-EX) and (FS-

IGEX) by classifying different datasets with the different number of 

sample sizes and attribute features. 

viii. Reducing the feature space size by using small datasets, which resulted 

in a small feature space such as using MO and Kaggle datasets. 

Reducing the feature space size by considering a limited number of 

feature categories, e.g., Android permissions only. Using ranking and 

feature selection methods to obtain the most important features. 

 1.8 Significance of the Research 

The significance of this research could be described in two main categories, 

computational and domain applications developers. From a computational view, the 

proposed methods (FS-EX) and (FS-IGEX) intend to speed up the learning process 

and improve the classification performance task by identifying the small number of 

relevant, discriminative, and informative feature subsets that contribute toward 

classifying apps as malware and non-malware rather than using all permission features. 

Also, choosing and selecting fewer features will help in decreasing time-consuming 

and expensive computing costs instead of using the whole features. Moreover, using 

the most essential and discriminating subset of features instead of using all features 

will give insight about the dataset since it is easy to visualize the dataset with small 

subsets of features and leads to better model interpretability as well. Additionally, it is 

desirable because the classification performance increased with some classifiers and  
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computational overhead is reduced with less number of features. And it is significantly 

important if the proposed methods used in other domains, for example, in investigating 

disease; by employing the most highly discriminative, informative, and correlated 

features towards the class target will help in inspecting and finding the relevant feature 

patterns to a specific disease and which have the highest impact in diagnosing diseases 

and lead to better learning performance. 

From the view of domain applications android developer, the proposed method 

analyses the permission patterns by listing and visualizing the most important of 

permissions that are related to the class label and determining the degree of risk that 

features held will give more insight about dangerous permissions and will help the 

developer to avoid those permissions and also will increase the awareness of users 

about the danger of specific permissions and increase their awareness of the necessity 

of avoiding granting permissions without knowledge. 

1.9 Organization of the Thesis 

This thesis study is organized into seven chapters. Each chapter presents its 

contents as follows: 

i. Chapter 1 – Introduction: This chapter presents the motivations of the 

research and the justification of the proposed methods. The research 

problem statement, objectives, and significance are defined. In 

addition, the potential contribution of the research has also been 

outlined. 

ii. Chapter 2 – Literature Review: This chapter summarized the previous 

works in the studies of android applications classification based on 
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analyzing permissions, the current trend, and future directions. The 

selected techniques used in the proposed methods are also described. 

iii. Chapter 3 – Methodology: This chapter explains the architectural 

design of the proposed methods, along with its operational and 

implementation framework. The performance metrics and data sets 

used for classifier evaluation are also presented. 

iv. Chapter 4 – The effect of using permission features in classifying 

android apps: This chapter addresses the impact of permission features 

in classifying android apps and what suitable classifier model helps in 

improving the classification performance. 

v. Chapter 5 – Ensemble-Based Extra Tree Classifier Feature Selection to 

Explore Android Permissions (FS-EX): This chapter purposes an extra 

tree classifier as a feature selection-based method to explore the android 

permissions and select the optimal permission features subset that is 

related to the target variable.  

vi. Chapter 6 – Information Gain Integrated with Ensemble-Based Extra 

Tree Classifier Feature Selection Classifier: This chapter proposes the 

(FS-IGEX) method based on weighting permission features to obtain 

the highly influential permission features in classifying android apps 

and to improve the classification quality. 

vii. Chapter 7 – Conclusion: This chapter draws general conclusions from 

the results, summarizes the important findings of the study, and 

presents the research contributions with some suggested future works. 
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