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ABSTRACT 

Many methods and sensors have been developed for crack detection in 

concrete structures and for earthquake ground motion detection, respectively. In a 

previous study, a seismo-accelerometer based on spring-mass strong motion seismo-

accelerograph has been developed for the purpose of detecting earthquake waves 

travelling through the earth crust from the epicenter at faultline. This study aims to 

apply the method developed in previous study to detect wave from crack initiation 

point on the surface of plate and shell concrete as a new alternative for initial crack 

detection method. This study focused on the development of a downscaled seismo-

accelerometer of previous study for better ease of use. Concrete plate and shell 

specimens were selected in this study as the travel of wave from crack initiation 

point in the specimen mimic to that of earthquake waves travelling through the earth 

crust from the epicenter at the faultline. Magnetometer technology and spring-mass 

system formed the fundamental design aspect of the seismo-accelerometer. In 

Objective 1, the seismo-accelerometer was designed using Finite Element Modelling 

to attain natural period of 1 second, required for spring-mass based strong motion 

accelerograph. The modelling yield natural period of 0.99475 second and verified 

experimentally with Harmonic Shake Table test yielding 1.2 seconds, which is in the 

acceptable range. Ground motion test was carried out at Ranau Meteorological 

Station and the results were compared with international earthquake database. 

Earthquakes detected are in Sabah and nearby regions. Crack induction tests on 

factory-ready concrete plate and shell specimens were carried out in Objective 2, 

where the results shown that the concept of ground motion detection can be used for 

crack detection purposes. The crack detection equations for factory-ready concrete 

plate and shell are Mcrack,plate = log10A + 0.6919  and Mcrack,shell = log10A + 

0.7115, respectively. Objective 3 provides the proof that the ground motion detection 

can be applied for crack detection based on crack wave attenuation on structures such 

as concrete plate and shell which have the same configuration as earth crust, where 

the earthquakes occur. Thus, the seismo-accelerometer developed in the study can be 

used for earthquake ground motion detection if placed on the bedrock or ground, and 

can be used for crack detection if placed on structures with similar configuration to 

earth crust such as concrete plate and shell structures. This contributes towards both 

Structural Health Monitoring and Seismic Monitoring apart from providing an 

alternative method to existing methods in both fields.  
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ABSTRAK 

Pelbagai kaedah telah dibangunkan untuk pengesanan rekahan pada struktur 

konkrit dan terdapat sensor yang telah sedia ada bagi tujuan pengesanan gegaran 

gempa bumi. Dalam kajian terdahulu, sebuah seismo-accelerometer telah 

dibangunkan berdasarkan konsep seismo-accelerograf untuk daya gegaran kuat bagi 

tujuan pengesanan gelombang gempa yang bergerak melalui kerak bumi dari pusat 

gempa di garis rekahan bumi. Matlamat kajian ini adalah untuk mengaplikasikan 

kaedah yang dibangunkan dalam kajian terdahulu untuk mengesan rekahan awal 

pada permukaan konkrit plat dan tempurung. Kajian ini menumpukan kepada 

pembangunan seismo-accelerometer yang diskalakecilkan berdasarkan kajian 

terdahulu untuk lebih mudah digunakan. Spesimen konkrit plat dan spesimen 

tempurung dipilih dalam kajian ini kerana keadaan pergerakan gelombang dari titik 

permulaan rekahan pada specimen mimik kepada keadaan gelombang gempa yang 

bergerak melalui kerak bumi dari pusat gempa pada garis rekahan. Seismo-

accelerometer dibangunkan berasaskan teknologi magnetometer dan sistem spring-

beban. Dalam Objektif 1, seismo-accelerometer direkabentuk menggunakan 

Pengmodelan Unsur Terhingga untuk mencapai tempoh semula jadi 1 saat, yang 

diperlukan untuk seismo-accelerograf gegaran kuat yang berasaskan sistem spring-

beban. Tempoh semula jadi 0.99475 saat dicapai melalui pengmodelan dan disahkan 

dengan Ujian Gegaran Harmonik yang menghasilkan tempoh semula jadi 1.2 saat, 

yang berada dalam julat yang boleh diterima. Ujian gegaran gempa bumi dijalankan 

di Stesen Meteorologi Ranau dan keputusan dibandingkan dengan data gempa bumi 

antarabangsa. Gempa bumi yang dikesan adalah di Sabah dan kawasan sekitar. Ujian 

aruhan rekahan terhadap spesimen konkrit plat dan tempurung dari kilang telah 

dijalankan dalam Objektif 2, di mana keputusan menunjukkan konsep pengesanan 

gegaran gempa bumi boleh digunakan untuk tujuan pengesanan rekahan. Persamaan 

pengesanan rekahan untuk spesimen konkrit plat dan tempurung dari kilang masing-

masing adalah Mrekah,plat = log10A + 0.6919 dan Mrekah,tempurung = log10A + 0.7115. 

Objektif 3 membuktikan bahawa pengesanan gegaran gempa bumi berdasarkan jarak 

dan intensiti gegaran gelombang gempa bumi boleh diaplikasikan untuk pengesanan 

rekahan berdasarkan pelemahan gelombang rekahan pada struktur seperti plat dan 

tempurung konkrit yang mempunyai konfigurasi yang sama dengan kerak bumi, di 

mana gempa bumi berlaku. Oleh yang demikian, seismo-accelerometer yang 

dibangunkan dalam kajian ini dapat digunakan untuk pengesanan gempa bumi jika 

diletakkan pada batuan atau muka bumi, dan boleh digunakan untuk pengesanan 

rekahan jika diletakkan pada struktur-struktur dengan konfigurasi yang sama dengan 

kerak bumi seperti struktur plat dan tempurung konkrit. Hasil kajian ini akan 

menyumbang kepada kedua-dua Pemantauan Kesihatan Struktur dan Pemantauan 

Seismik, selain menyumbang sebagai kaedah alternatif kepada kaedah sedia ada 

dalam kedua-dua bidang. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Structural integrity and reliability are concerns for civil and industrial 

structures, especially for important civil structures such as schools, hospitals, 

emergency facilities, dams, petrochemical industries, communication facilities and 

nuclear power plants (Curadelli, 2011). Many parts of the structures nowadays are 

formed by concrete plate. Concrete, which is a quasi-brittle materials, exhibit a large 

fracture process zone in which the material undergoes progressive softening damage 

(Bazant et. al., 1995).  

In general, the structural damage in concrete structures began with crack 

initiation, followed by crack propagation and acceleration (Adnan, et. al, 2015). 

There are many types of cracks in concrete such as diagonal cracks, horizontal 

cracks, splitting cracks, corrosion cracks, plastics shrinkage concrete cracks, 

expansion concrete cracks, heating concrete cracks andconcrete cracks caused by 

overloading. Many factors contributed to the cracks such as poor concrete quality, 

improper structural design, insufficient concrete cover, improper curing, poor 

material quality, poor workmanship, overloading, and severe environmental 

conditions, Among existing methods for crack detection and measurements include 

visual inspection, ultrasonic inspection, radiographic/ x-ray inspection, eddy current 

testing, liquid or dye penetrant inspection, acoustic inspection and vision based and 

image processing which are typically convoluted with artiificial neural network. 
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The propagation of crack in a structural part leads to an important 

displacement discontinuity (Bouchard et. al., 2003). Since the appearance of crack in 

structures signifies a start of failure, it is vital to detect a crack at the beginning of its 

appearance (Khoram et. al., 2012).  Without proper structural health monitoring 

measures and subsequent corrective actions, the flaws in the damaged structures 

could lead to catastrophic failures. 

1.2 Problem Statement 

Cracks most often occur in very highly stressed parts and therefore, 

undetected cracks could in turn lead to catastrophic damages (Zhang, 2006). Among 

the major flaws in the concrete structures are multi-site damages and hidden cracks 

in locations that are difficult to access. If small damages are detected, the structure 

may be returned to operational condition whereas if substantial damages are 

detected, the structure may require repair and rehabilitation (Rytter, 1993). This 

initial structural damage diagnostic help to determine the structure current 

serviceability and remaining service life, consequently contributing towards better 

economic and safety aspect of the structure maintenance. At present, using Non-

Destructive Test (NDT) method to detect damage of structures has become a hotspot 

and difficult issue (Yan et. al., 2007). NDT form parts of Structural Health 

Monitoring scientific procedures which include identification of operational and 

environmental loads acting on the structural components, recognition of damage 

caused by the loading and observation the damage growth (Radzienski et. al., 2011).  

Visual inspection by itself does not provide useful information until visible 

defects such as cracks start to appear in the structural members, often quite late into 

the fatigue life of the structure (Adnan et. al, 2003). Hence, a method capable of 

detecting the formation of crack is vital especially in the field of structural health 

monitoring. 
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Many methods have been developed for crack detection in concrete structures 

and existing sensors were also already developed for earthquake ground motion 

detection. This study aims to provide an alternative method of initial crack detection 

on concrete plate and shell by applying the ground motion detection concept 

developed in previous work by Rosaidi (2009). The wave from initial crack 

travelling through concrete plate and shell mimics the way the seismic wave 

travelling from the epicenter located on faultline of the earth crust. However, 

previous work by Rosaidi (2009) did not explore the application towards initial crack 

detection. This concept is however may not be suitable for column and beam 

concrete as the way the stress from the load distributed in the column and beam are 

different than plate and shell concrete structures. Eventhough concrete plate and shell 

structures may not form main structures, many important facilities such as water 

containment facilities and nuclear facilities adopt plate and shell in the design. In 

term of safety, allowable crack for water containment structures is 0.2 mm whereas 

the allowable crack limit for nuclear containment facilities is 0.1 mm, which is much 

more critical than the limit for typical structures at 0.3 mm. Thus, the method 

proposed to be explore in this study may complement existing techniques of crack 

detection, especially for concrete plate and shell structures. 

1.3 Research Objectives 

This study focuses on the proof of concept of applying concept of detecting 

earthquake ground motion developed in previous study by Rosaidi (2009) to detect 

crack in concrete plate and shell structures, to provide an alternative crack detection 

method which can complement existing better techniques such photo imaging and 

neural network.  
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The specific objectives of this study are: 

1. To develop a seismo-accelerometer to detect earthquake ground motion using 

concept of strong motion mass-spring mechanism in detecting surface 

vibration. 

2. To establish/ perform proof of concept for initial crack detection on concrete 

plate and shell specimens using the concept of earthquake ground motion 

detection. 

3. To validate the results of crack detection with the piezotronic accelerometers 

on laboratory-made concrete plate and shell specimens. To validate the proof 

of concept for attenuation of wave from crack initiation point. 

1.4 Methodology 

This study focused on development of a seismo-accelerometer based on 

previous work by Rosaidi (2009) which was based on spring-mass strong motion 

seismo-accelerograph with magnetometer technology, designed to detect earthquake 

ground motion detection, and application of that concept to detect initial crack on 

concrete plate and shell structures. The seismo-accelerometer developed in this study 

is however downscaled from 20 cm to 5 cm to provide better ease of use and the 

selection of materials is based on the Finite Element Modeling to achieve natural 

period of 1 second, which is required for the design of spring-mass strong motion 

seismo-accelerograph to ensure the suspended mass remain in initial position when 

the seismo-accelerometer subjected to excitation from the wave. 

In Objective 1, Finite Element Modelling SAP2000 Software was used in the 

design stage to select suitable materials for the construction of the seismo-

accelerometer to adhere to natural period of 1 sec, required for spring-mass based 

strong motion accelerograph. Ground motion test was carried out in Ranau 

Meteorological Station and the results were compared with international earthquake 

database. Earthquakes detected are in the Sabah and nearby regions. Research flow 

for Objective 1 is as summarized in Figure 1.1. 
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Figure 1.1 Flowchart for Objective 1 

Crack induction tests on factory-ready concrete plate and shell specimens 

were carried out in Objective 2, as proof of concept that the earthquake ground 

motion detection concept can be applied to detect initial crack in plate and shell 

concrete. In Objective 2, the initial crack is induced at the middle of plate and shell 

specimens while the seismo-accelerometer and piezotronics accelerometer was both 

placed at a fixed distance of 30 cm from the location the initial crack is induced, but 

on the opposite sides. Research flow for Objective 2 is as summarized in Figure 1.2. 

 

Figure 1.2 Flowchart for Objective 2 
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Further crack induction tests on laboratory-made concrete plate and shell 

specimens were carried out in Objective 3 as proof of concept that the ground motion 

detection which are based on distance and intensity of earthquake ground motion 

wave can be applied for crack detection based on crack wave attenuation on 

structures such concrete plate and shell structures. Research flow for Objective 3 is 

as summarized in Figure 1.3. 

 

Figure 1.3 Flowchart for Objective 3 

1.5 Scopes and Limitations of Study 

The scopes and limitations of the study are as follow: 

i. The seismo-accelerometer developed in this study is based on the previous 

work by Rosaidi (2009). The previous generation seismo-accelerometer was 

developed for earthquake ground motion detection. In this study, the seismo-

accelerometer is intended to be applied for crack detection. 

ii. The physical size of the seismo-accelerometer developed in this study (5 cm 

x 5 cm x 5 cm) was down-scaled from the previous generation seismo-

accelerometer (20 cm x 20 cm x 20cm) for ease of use purposes. 

iii. In Objective 1, Finite Element Modeling Modal Analysis using SAP2000 

simulation software was used to design and select suitable material to 

construct the down-scaled seismo-accelerometer to achieve the natural period 

of 1 second, which is the required property of a strong-motion accelerograph.  
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iv. In Objective 1, the natural period of 1 second of the seismo-accelerometer 

was verified experimentally using the Harmonic Shaking Table at Geoscan 

Pte. Ltd. in Singapore. The exact natural period obtained from the data 

acquisition system of the Harmonic Shake Table was used to be compared 

with the natural period obtained from the Finite Element Modelling during 

the design stage of the Seismo-Accelerometer. 

a. To complete Objective 1, Ranau Meteorological Station in Sabah was 

selected to test the ground motion detection function of the seismo-

accelerometer as Ranau is one of the area with highest seismic 

activities in Malaysia and the result was verified with the data from 

international database which compiles the data from multiple 

meteorological stations around the world. 

b. Objective 2 focused on proving the concept of applying the global 

earthquake ground motion detection on earth crust to the local concept 

of crack detection on concrete structures, whereby the intensity of 

crack above the ambient noise wave enable the crack to be 

differentiated from the ambient noise, like the waves from earthquake 

can be differentiated from ambient noise in the event of earthquake if 

the seismo-accelerometer are placed of ground or bedrock. The waves 

are induced by the cracks on earth crust (active faults) in term of 

seismic waves (primary and secondary waves). 

c. In Objective 2, concrete plate and concrete shell structures were used 

to test the crack detection function of the seismo-accelerometer as the 

travel of wave in the plate and shell specimen does mimic that of the 

earthquake waves travelling through the earth crust from the epicenter 

at the faultline. This concept is however may not be suitable for 

column and beam concrete as the way the stress from the load 

distributed in the column and beam are different than plate and shell 

concrete structures. In the concrete plate and shell, the waves are 

transferred mostly from its local vibration wave propagated through 

the material. The concrete plate and concrete shell specimens used in 

Objective 2 are factory ready as the focus at this stage is on Proof of 
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Concept (POC) of the mechanism of crack detection using the concept 

of ground motion detection rather than on the material properties of 

the specimens. 

d. The readings from the Seismo-Accelerometer through-out the 

cracking process in Objective 2 was verified with piezotronics 

accelerometer placed equidistant from the point where crack is 

induced on the specimen by gradual load from the hydraulic jack. 

e. In Objective 3, crack induction was performed on laboratory-made 

concrete plate and shell specimens with additional accelerometer to 

enable correlation of crack detection with that of material properties 

of the specimens and the attenuation of crack waves with distance, 

whereby the closest accelerometer to the current crack source 

recorded higher values of acceleration compared to accelerometer at 

farther distances. 

f. The factory-ready concrete plate and shell specimens used in 

Objective 2 are for proof of concept that the concept of earthquake 

ground motion detection can be applied to detect initial crack on 

concrete plate and shell structures. However, in Objective 3, 

laboratory-made concrete plate and shell specimen was used to 

provide proof of concept for wave attenuation relating distance and 

intensity of the crack wave. Grade 20, Grade 25 and Grade 30 are 

used as these are among the most commonly used concrete grade in 

construction.” 

1.6 Research Significance 

The seismo-accelerometer developed in the study can be used for earthquake 

ground motion detection if placed on the bedrock or ground and can be used for 

crack detection if placed on structures with similar configuration to earth crust such 

as concrete plate and shell structures. This contributes towards both Structural Health 
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Monitoring and Seismic Monitoring apart from providing an alternative method to 

existing methods in both fields. 

1.7 Thesis Outlines 

This research is presented in seven chapters to achieve the research aim and 

three objectives. This thesis has been structured to present the research in such 

arrangement: 

Chapter 1 discusses the background, significance, research scope, objectives, 

and the significance of the research and limitation of study. 

Chapter 2 includes literature review related to crack phenomenon and 

mechanisms, structural health monitoring, concrete plate structure, concrete shell 

structure, various crack detection method as well as previous works on Tri-Axial 

Seismo-Accelerograph by Prof. Ir. Dr. Azlan Adnan and Dr. Mohd Rosaidi Che 

Abas. 

Chapter 3 describes the general research framework and the methodology 

involved for each objective of the research. 

Chapter 4 summarizes and discusses Objective 1 on the Finite Element 

Modeling (FEM) simulation design and construction of the Seismo-Accelero-

Crackometer sensor device as well as the ground motion detection test in Ranau, 

Sabah. 

Chapter 5 summarizes and discusses the experimental results of the induced 

crack tests on the factory-ready concrete plate and shell specimens for proof of 

concept of crack detection using earthquake ground motion detection technique, and 

validation with the piezotronics accelerometer results. 
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Chapter 6 summarizes and discusses the experimental results of the induced 

crack tests on the laboratory-made concrete plate and shell specimens. The effect of 

material properties and crack wave attenuation were also investigated. 

Chapter 7 concludes the findings of the overall research works that was 

undertaken. 
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