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ABSTRACT 

In crime studies, crime rates time series prediction helps in strategic crime 

prevention formulation and decision making. Statistical models are commonly 

applied in predicting time series crime rates. However, the time series crime rates 

data are limited and mostly nonlinear. One limitation in the statistical models is that 

they are mainly linear and are only able to model linear relationships. Thus, this 

study proposed a time series crime prediction model that can handle nonlinear 

components as well as limited historical crime rates data. Recently, Artificial 

Intelligence (AI) models have been favoured as they are able to handle nonlinear and 

robust to small sample data components in crime rates. Hence, the proposed crime 

model implemented an artificial intelligence model namely Gradient Tree Boosting 

(GTB) in modelling the crime rates. The crime rates are modelled using the United 

States (US) annual crime rates of eight crime types with nine factors that influence 

the crime rates. Since GTB has no feature selection, this study proposed 

hybridisation of Neighbourhood Component Analysis (NCA) and GTB (NCA-GTB) 

in identifying significant factors that influence the crime rates. Also, it was found 

that both NCA and GTB are sensitive to input parameter. Thus, DA
2
-NCA-eGTB 

model was proposed to improve the NCA-GTB model. The DA
2
-NCA-eGTB model 

hybridised a metaheuristic optimisation algorithm namely Dragonfly Algorithm 

(DA) with NCA-GTB model to optimise NCA and GTB parameters. In addition, 

DA
2
-NCA-eGTB model also improved the accuracy of the NCA-GTB model by 

using Least Absolute Deviation (LAD) as the GTB loss function. The experimental 

result showed that DA
2
-NCA-eGTB model outperformed existing AI models in all 

eight modelled crime types. This was proven by the smaller values of Mean Absolute 

Percentage Error (MAPE), which was between 2.9195 and 18.7471. As a conclusion, 

the study showed that DA
2
-NCA-eGTB model is statistically significant in 

representing all crime types and it is able to handle the nonlinear component in 

limited crime rate data well. 
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ABSTRAK 

Dalam kajian jenayah, ramalan siri masa kadar jenayah membantu dalam 

membuat keputusan bagi pencegahan jenayah yang strategik. Model statistik 

biasanya digunakan dalam meramal siri masa kadar jenayah. Walau bagaimanapun, 

data siri masa kadar jenayah adalah terhad dan kebanyakannya tidak linear. Satu 

kelemahan dalam model statistik adalah model ini kebanyakannya hanya dapat 

memodelkan hubungan yang linear sahaja. Oleh itu, kajian ini mencadangkan model 

peramalan siri masa kadar jenayah yang dapat menangani masalah komponen tidak 

linear serta data kadar jenayah yang terhad. Baru-baru ini, model Kecerdasan Buatan 

(AI) semakin dikenali kerana ia dapat menangani komponen data sampel yang tidak 

linear dan fleksibel terhadap data kadar jenayah yang sedikit. Oleh itu, model 

jenayah yang dicadangkan menerapkan model kecerdasan buatan iaitu 

Penambahbaikan Pokok Kecerunan (GTB) dalam memodelkan kadar jenayah. Kadar 

jenayah dimodelkan menggunakan kadar jenayah tahunan Amerika Syarikat (AS) 

sebanyak lapan jenis jenayah dengan sembilan faktor yang mempengaruhi kadar 

jenayah. Oleh kerana GTB tiada pemilihan fitur, kajian ini mencadangkan hibridisasi 

Analisis Komponen Kejiranan (NCA) dan GTB (NCA-GTB) bagi mengenal pasti 

faktor-faktor penting yang mempengaruhi kadar jenayah. Juga didapati bahawa NCA 

dan GTB sensitif terhadap parameter input. Oleh itu, model DA
2
-NCA-eGTB 

dicadangkan untuk memperbaiki model NCA-GTB. Model DA
2
-NCA-eGTB 

menghibridisasi algoritma pengoptimuman metaheuristik iaitu Algoritma Pepatung 

(DA) dengan model NCA-GTB bagi mengoptimumkan parameter NCA dan GTB. 

Selain itu, model DA
2
-NCA-eGTB juga meningkatkan ketepatan model NCA-GTB 

dengan menggunakan Sisihan Mutlak Paling Sedikit (LAD) sebagai fungsi 

kehilangan dalam GTB. Hasil eksperimen menunjukkan bahawa model DA
2
-NCA-

eGTB adalah lebih baik berbanding model AI yang sedia ada dalam semua jenis 

lapan jenayah yang dimodelkan. Ini dibuktikan oleh nilai Ralat Peratusan Mutlak 

Min (MAPE) yang lebih kecil iaitu antara 2.9195 dan 18.7471. Sebagai kesimpulan, 

kajian menunjukkan bahawa model DA
2
-NCA-eGTB secara statistik adalah 

signifikan untuk mewakili semua jenis jenayah dan ia mampu menangani komponen 

tidak linear dalam data kadar jenayah yang terhad dengan baik. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Crime is an act or action committed by an individual or a group of people 

intending to inflict damage to a targeted victim. Crime is mostly influenced by 

certain objectives or motives of the suspects towards their victims. In the real world, 

crime is a part of society which cannot be predicted by the police (Ghazvini et al., 

2015). The crime rate itself represents the degree of public safety of a country. The 

analysis of crime rate data helps in understanding the behaviour of the crime trend 

and future values may be forecast from past observations (Shrivastav and Ekata, 

2012). Hence, crime forecasting is an essential analysis which affects the relative 

profits of people‟s life and properties (Yao-Lin et al., 2015). 

In literature, several types of crime forecasting models have been introduced 

such as statistical models (Gorr et al., 2003; Omar et al., 2007; Shoesmith, 2012; 

Huddleston and Brown, 2013; Cesario et al., 2016) and artificial intelligence models 

(Olligschlaeger, 1997; Kianmehr and Alhajj, 2006; Yu et al., 2011; Vineeth et al., 

2016; Yang et al., 2018). The crime models introduced by various researchers 

analyse past or present crime data trends to estimate future crime occurrence. 

Examples of the statistical models are linear regression, exponential smoothing, 

moving average (MA), and autoregressive integrated moving average (ARIMA). 

Among the examples of artificial intelligence models are artificial neural network 

(ANN), support vector regression (SVR), gradient tree boosting (GTB), and random 

forest (RF). 

There are several factors that influence crime rate such as social instability, 

demographic, and economic disadvantages (Mittal et al., 2020). Previous studies 

provide evidence that crime occurrence is influenced by various factors (Nolan and 
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James, 2004; Rosenfeld and Fornango, 2007; Habibullah and Bhahrom, 2009; 

Goulas and Zervoyianni, 2013; Stansfield et al., 2017; Northrup and Klaer, 2014; 

Rosenfeld et al., 2019). By including influence factors in forecasting crime rates, 

new crime patterns that never occurred in the past could be discovered. Hence, the 

crime model accuracy can be improved. 

In crime forecasting, the time series data have been used by various 

researchers in building the crime models (Greenberg, 2001; Saridakis, 2006; Huang 

et al., 2015; Mahmud et al., 2016). The time series data of crime rate is mostly 

limited, has complex relationships and exist in a nonlinear representation with small 

portions of linear patterns. Such characteristics pose difficulties in modelling an 

accurate crime rate model. One limitation of statistical models is that they are only 

able to capture linear patterns. Hence, it is difficult to model time series data using 

linear statistical methods (Du et al., 2020). In contrast, artificial intelligence models 

are robust in presenting various representations of time series data (Bontempi et al., 

2013). This makes artificial intelligence models more suitable for modelling crime 

rates. 

Therefore, this study proposes a suitable model that is able to handle crime 

rate data, identify significant factors that influence crime rates, and accurately 

forecast crime rates using the available data sets. The aim of this study is to propose 

an accurate crime rate forecasting model that is able to forecast the annual crime 

rates. The proposed crime rate forecasting model was developed to model the crime 

rate based on the sample data sets from the United States (US) annual crime rates 

from year the 1960 to 2015 (56 data samples). There were eight types of crime rate 

data to forecasts namely murder and non-negligent manslaughter, forcible rape, 

aggravated assaults, robbery, burglary, larceny-theft, motor vehicle theft and total 

crime rates for all types of crimes. 

The social and economic stability of a country was often influenced by the 

trends of the annual crime rate. Hence, this study used annual data for forecasting the 

crime rates. It helps in increasing crime awareness among the public community. In 

addition, the changes in annual crime rate trends usually serve as an indicator for the 
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government to incorporate macroeconomic models in formulating efficient economic 

strategies. Figure 1.1 illustrates the problem formulation in criminology related to 

this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Problem Formulation in Criminology 

1.2 Problem Background 

In criminology, the application of time series models in forecasting crime is 

limited and rarely applied in most countries (Suzilah and Nurulhuda, 2013; Alwee, 

2014). This is because in the real world, crime data are limited and difficult to obtain 

Purpose of Crime Forecasting Model 

 Serves as a tool in helping criminal justice 

professionals to formulate crime prevention strategies. 

 Helps in improving relations with community 

regarding crime awareness. 

 Assists the government in planning strategic decision 

making for a sustainable economy. 

Gap 

Limited time series 

crime rate models 

with high accuracy. 

Existing Techniques 

 Statistical 

 Only handles linear 

relationship. 

 Assumes data 

distribution is linear. 

 Data needed to be 

transformed into 

stationary. 

 ARIMA, Linear 

Regression, Moving 

Average, Exponential 

Smoothing. 

 Artificial Intelligence 

 Capable of handling 

nonlinear relationships. 

 Can handle complex 

problem. 

 Sensitive to input 

parameter. 

 Data diversity issue 

which leads to 

overfitting and 

underfitting problem 

 ANN, SVR, RF, GTB 

Real World Crime Data 

 Nonlinear. 

 Limited. 

 Complex distribution. 

 Affected by numerous 

factors. 

Issues in Existing Crime Forecasting Model 

 Diversity problem in crime data distribution. 

 Not robust against limited crime data. 

 Limited generic model that can handle crime data. 

 Limited analysis in identifying significant factors that 

affect crime in improving the model accuracy. 

Desired Solutions 

 Diverse data distribution. 

 Robust against limited crime data. 

 Can handle nonlinearity distribution of crime data well. 

 Proper analysis in identifying significant factors that 

affect crime which later improves model accuracy. 
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(Zhao and Tang, 2018; Wang et al., 2019b). In addition, there is no universal crime 

model that is able to handle all types of crime data representations. In literature, 

various crime forecasting models have been introduced in handling time series data 

such as statistical models (Chen et al., 2008; Huddleston et al., 2015; Cesario et al., 

2016) and artificial intelligence models (Huang et al., 2015; Vineeth et al., 2016; 

Wang et al., 2019b). 

The application of a statistical model is conducted with an assumption that 

the obtained time series data are stationary and linear (Alwee, 2014). Such a 

limitation causes the linear model to be unable to capture the nonlinearity of the data 

(Rather et al., 2017). In crime rate data, the structure is complex and exists in a 

nonlinear pattern. Hence, it is difficult to model the crime rate data using a statistical 

model. In recent years, artificial intelligence has been favoured by most researchers 

in forecasting crimes due to its high generalisation capabilities (Vaquero, 2016). The 

reason is that an artificial intelligence model contains several nonlinear functions that 

are able to identify nonlinear patterns in the data and also possesses high 

generalisation capabilities that a statistical model lacks. Therefore, an artificial 

intelligence model that is able to model limited crime rate data with nonlinear 

structures is needed. 

Artificial neural network (ANN) and support vector regression (SVR) are 

among the popularly applied artificial intelligence models in crime forecasting.  

Although ANN and SVR models are favoured by researchers, there are several 

drawbacks. ANN suffers from parameter control, possibility of overfitting, and 

network weight uncertainty (Alwee, 2014). As for SVR, it is sensitive to parameter, 

lacks transparency in result accuracy, and is computationally demanding (Awad and 

Khanna, 2015). In this study, an artificial intelligence technique called gradient tree 

boosting (GTB) is used to model the crime rate. GTB has been applied in various 

research domains by different researchers (Kim et al., 2015; Mayrink and Hippert, 

2016; Persson et al., 2017; Cai et al., 2019; Tan et al., 2020). However, the 

application of GTB in time series crime forecasting is limited with minimal 

improvements made (Kumar and Bhalaji, 2016; Nguyen et al., 2017). GTB adopts 

numerical optimisation methods to minimise the loss function of the predictive 
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model which later improves GTB‟s overall capabilities. GTB is diverse to data 

structure, produces output with low variance (error), and able to generate 

interpretable solutions for regression problems (Nguyen et al., 2017; Ke et al., 2015; 

Chandrasekar et al., 2015). 

It is known that the crime rate is influenced by various factors (Hanslmaier et 

al., 2015). Studies on the influence of several factors such as economic (Habibullah 

and Baharom, 2009; Alwee, 2014), social (Hanslmaier et al., 2015; Hipp et al., 2011) 

and demographic (Ranson, 2013; Brown and Males, 2011) towards crime have been 

conducted by previous researchers. The study will analyse the significant impact of 

various factors towards crime occurrence. This is to ensure that the irrelevant factors 

that negatively affect crime model accuracy can be eliminated. When considering 

various factors in modelling crime rate, a multivariate analysis is required. 

Multivariate analysis uses more than one time series data in model development. The 

analysis is done to find the cross-correlation between multiple time series data (Preez 

and Witt, 2003). It is very useful when discovering a new pattern of data that never 

occurred in the past (Alwee, 2014). 

In identifying relevant factors, feature selection is the popular approach by 

researchers recently. There are various feature selection approaches proposed by 

different research to identify and select significant factors that influence crime such 

as metaheuristic algorithm (Anuar et al., 2014; Liu et al., 2019) and statistical 

approach (Shalabi, 2017; Ingilevich and Ivanov, 2018). In this study, neighbourhood 

component analysis (NCA) is used as the feature selection method in identifying and 

selecting relevant factors that significantly affect crime rate. Previous researchers 

have introduced the application of NCA as the feature selection method in various 

research domains (Yang et al., 2012b; Wu et al., 2018; Jin and Deng, 2018; Tuncer 

and Ertam, 2020). This is because the capability of NCA in identifying the 

significant features is better than the other feature selection methods such as 

Principal Component Analysis (PCA), Sequential Feature Selection (SFS) and 

ReliefF in improving the model accuracy (Jin and Deng, 2018; Tuncer and Ertam, 

2020). 
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From the studies conducted, both GTB and NCA share one drawback. The 

drawback is both GTB and NCA‟s accuracy is sensitive to input parameters. 

Optimising the parameters in GTB is challenging because an inappropriate parameter 

configuration leads to overfitting or underfitting problems. Thus, rather than GTB 

attempting to predict the functional dependence between input and response 

variables, instead GTB will predict the training data itself (Natekin and Knoll, 2013). 

There are three parameters that impact GTB‟ accuracy; number of trees, size of 

individual trees, and learning rate (Saha et al., 2015; Jalabert et al., 2010; Guelman, 

2012; Elith, 2008; Zhang and Haghani, 2015). As for NCA, the performance is 

controlled by one parameter which is regularisation parameter  . This parameter 

alleviates the overfitting problem in feature selection when applying NCA and is able 

to improve the selection of relevant factors. An optimal regularisation parameter 

value is able to minimise the generalisation error in NCA (Yang et al., 2012b). 

Previous researchers have proposed various solutions to assess such 

drawbacks in optimising the parameters of GTB (Qi et al., 2018; Zhang et al., 2019; 

Yu et al., 2020) and NCA (Raghu and Sriraam, 2018; Malan and Sharma, 2019). In 

most work, researchers implemented a metaheuristic optimisation algorithm as a 

solution to optimise the input parameter values in various applications (Alwee, 2014; 

Ebrahimi et al., 2016; Hou et al., 2018). Examples of metaheuristic optimisation 

algorithms are genetic algorithm (Vlahogianni et al., 2005; Oliveira et al., 2010) and 

particle swarm optimisation (Ren et al., 2014; Chatterjee et al., 2016). The 

metaheuristic optimisation algorithm is a popular solution as it is able to produce 

robust output and converges to global optimum. In this study, an implementation of 

the dragonfly algorithm (DA) in optimising the input parameters in GTB and NCA is 

considered. DA is capable to improve the random population for a given problem, 

converges towards global optimum, and produces robust results (Mirjalili, 2016). 

Another issue found is that the applied loss function in GTB plays a critical 

role that consecutively fits the new model in order to provide a more accurate 

forecast (Freeman et al., 2015). In GTB, the least square function is used as a loss 

function to consecutively minimise its „pseudoresponses‟ value (error-fitting) over 

the response variable. It is known that the distribution of crime data varies and is not 
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constant. Thus, the appropriate application of the loss function is beneficial as it is 

able to provide a flexibility in model design that fits different application needs 

(Guelman, 2012). Such an approach provides a robustness to GTB that fits the crime 

rate data. In this study, a mathematical function called least absolute deviation 

(LAD) was considered in replacing the GTB least square loss function. LAD is 

advantageous as it provides a robust regressive fitting with multiple solutions that the 

least square function does not possess (Natekin and Knoll, 2013; Kržić and Seršić, 

2018). Based on the identified problems, Figure 1.2 defines the issues and 

improvement measures taken in developing the proposed crime forecasting model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Defined Issues and Improvement Measures Taken in Developing the 

Proposed Crime Forecasting Model 

Reference Technique 
 Gradient Tree Boosting (GTB). 

 Introduced by Friedman (2001). 

 Artificial intelligence technique. 

 Combination of decision tree and 

boosting methods. 

 Uses least square function as defined loss 

function. 

Feature Selection Technique 

Least Absolute Deviation (LAD) 

Loss Function 

Parameter Optimisation 

Proposed Crime Forecasting Model 
 Multivariate analysis. 

 Equipped with appropriate feature 

selection technique. 

 Adopts optimisation technique in 

configuring input parameters. 

 Application of LAD loss function. 

 Diverse to data distribution. 

 Robust to small data sample. 

 Improves forecast accuracy by reducing 

the forecast error. 

Advantages 
 Suitable for multivariate analysis. 

 Can handle nonlinear relationship. 

 Robust to sample size. 

 Diverse to data distribution. 

 Can handle complex problem. 

Limitations 
 No feature selection. 

 Limitation of standard loss function. 

 Sensitive to input parameters. 
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1.3 Problem Statement 

In most existing real world crime rate data, the distribution pattern is 

nonlinear. The crime rate pattern is mostly influenced by several factors such as 

economic and social conditions. Thus, a robust time series forecasting model is 

needed to handle such complex behaviour. Recently, the AI technique is favoured by 

researchers as it is robust to a data structure provided with proper configuration. 

Among the introduced AI techniques, GTB shows a promising result. Like other AI 

techniques, GTB is also sensitive to input parameters. A proper parameter 

configuration is required to ensure that GTB is able to produce a better and reliable 

forecast result. The DA algorithm is selected in assessing this problem. 

Another issue found in GTB is that it uses the least square function as the 

standard loss function. This is because the least square function is only able to 

approximate one solution and never reaches global minimum (Kržić and Seršić, 

2018). Hence, a study on the application of a suitable mathematical function to 

replace the GTB least square loss function is recommended. This is to ensure that the 

developed GTB crime model with a suitable loss function can fit this study‟s crime 

data. In determining an appropriate mathematical function as the loss function in 

GTB, the process is often influenced by the characteristics of data distribution 

(Natekin and Knoll, 2013). Thus, a mathematical function called least absolute 

deviation (LAD) was selected as a potential solution to replace the least square 

function in GTB for this study. 

As mentioned before, the crime rate is influenced by several factors such as 

economic disadvantages and social mistreatment. By considering these factors, it 

helps in discovering new patterns in the crime rate and later increases forecast 

accuracy. However, not all factors influence the crime rate as some of them might 

negatively affect forecast accuracy. Hence, a proper analysis to observe the 

relationship between factors and crime data is needed to select the significant factors 

that influence the crime rate. In this study, NCA feature selection is equipped into 

GTB to identify and select the significant factors. In NCA, the regularisation 

parameter determines the overall NCA complexity. This issue potentially causes 
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NCA to overfit if the regularisation parameter value is too high. Thus, the DA 

algorithm is applied to tackle this issue. Based on the previous discussion, the study 

research hypothesis is defined as follows:-  

The accuracy of crime rates model could be improved by implementing multivariate 

crime forecasting model using gradient tree boosting (GTB), neighbourhood 

component analysis (NCA) as feature selection to identify the significant factors that 

influence the crime rate, applying dragonfly algorithm (DA) for parameters 

optimisation and further improved the model accuracy by implementing least 

absolute deviation (LAD) loss function in GTB. 

The following research question for this study is defined as follows:- 

(a) How to design a new multivariate crime forecasting model that is able to 

accurately forecast the crime rate with limited time series data? 

(b) How to select factors that significantly influence the crime rate in order to 

improve the model accuracy? 

(c) What is the suitable standard mathematical function to replace the gradient 

tree boosting‟s least square loss function for better accuracy? 

(d) How to apply the metaheuristic optimisation algorithm in parameter 

estimation for better accuracy? 

1.4 Research Goal and Objective 

The research goal is to propose a new multivariate crime forecasting model 

with feature selection method by integrating neighbourhood component analysis 

(NCA) into gradient tree boosting (GTB) and further improving the performance of 

NCA and GTB with parameter optimisation through the hybridisation of dragonfly 

algorithm (DA) and implementation of least absolute deviation (LAD) as the GTB 

loss function for better accuracy. The research objectives are defined as follows:- 
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(a) To develop a multivariate time series model for modelling the crime rate 

using gradient tree boosting (GTB). 

(b) To integrate neighbourhood component analysis into gradient tree boosting 

(NCA-GTB) as a feature selection model to identify the significant factors in 

modelling the crime rate. 

(c) To propose DA
2
-NCA-eGTB model through hybridisation of dragonfly 

algorithm with NCA-GTB for parameters optimisation and application of 

least absolute deviation loss function in improving the accuracy of the 

proposed model. 

1.5 Research Scope 

In this study‟s research scope, multivariate crime analysis is the focused 

domain. A hybridisation approach becomes the main focus in this study since the 

proposed model is a combination of various techniques in producing one complete 

hybrid crime model. First, an AI technique namely GTB is chosen as the base model 

in modelling the crime rate. Next, NCA is integrated into GTB to identify and select 

the significant factors that affect crime. After that, DA is hybridised with NCA and 

GTB. The hybridisation purpose is to optimise the parameter values of both NCA 

and GTB. Lastly, based on the studied loss function, three mathematical functions 

i.e. least absolute deviation (LAD), Huber, and quantile are selected. 

For data definition, the data set used in this study is divided into two types; 

crime data and factors data. Both types of data are annual data collected from 1960 to 

2015 which is equivalent to 56 data samples for each year. A detailed explanation 

about data definitions is discussed in Chapter 3. In this study, sample data sets from 

the United States‟ (US) annual crime rates from 1960 to 2015 are collected. The 

collected data sets were obtained from the Uniform Crime Reporting Statistics 

website (https://www.ucrdatatool.gov) provided by the Federal Bureau of 

Investigation (FBI) of the United States. There are eight types of crime rates: murder 

and non-negligent manslaughter, forcible rape, aggravated assault, robbery, burglary, 

larceny theft, motor vehicle theft, and total crime rate for all types of crime. 
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There are nine factors data selected and obtained in this study. These are 

unemployment rate (UR), immigration (IR), population rate (PR), consumer price 

index (CPI), gross domestic product (GDP), consumer sentiment index (CSI), 

poverty rate (PoR), inflation rate (InR), and tax revenue (TR). Data for the selected 

factors were obtained from the US Bureau of Labour Statistics (UR and CPI), US 

Bureau of Economic Analysis (GDP), US Census Bureau (PR), University of 

Michigan consumers‟ survey (CSI), US Department of Homeland Security (IR), US 

Inflation Calculator (InR) website, World Bank website (PN), and US Internal 

Revenue Service (TR). 

For evaluation and validation analysis, three types of quantitative error 

measurement analyses are applied to evaluate and compare the performance of the 

proposed crime model with others. The quantitative error measurement analyses used 

are root mean square error (RMSE), mean absolute deviation (MAD), and mean 

absolute percentage error (MAPE). In addition, a statistical test analysis (paired 

sample t-test) is also applied to validate the proposed crime forecasting model. 

In terms of software and tools, the experiment is primarily conducted on the 

Python and Matlab platforms. In Python, Scikit-learn tools are used in modelling 

GTB. Scikit-learn was developed by Pedregosa et al. (2011) and is a Python module 

package that implements varieties of state-of-the-art machine learning algorithms for 

various problem-solving solutions. It offers good flexibility in configuring the 

parameters and produces a consistent result. Matlab is used in implementing the 

NCA for feature selection and DA module for parameter optimisation purposes. In 

addition, Matlab is also used for calculating the quantitative error measurement result 

produced from the developed crime model. Other than that, the statistical analysis 

(paired sample t-test) is conducted on the SPSS platform to validate the developed 

crime model. Also, OriginPro software is used for the result‟s data visualisation and 

representation such as graph and scatter diagram. In addition, Microsoft Office 

software is used for documentation purpose. 
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1.6 Research Significance 

The crime rate discusses the nature of emerging and continuing crime 

problems in different areas of the jurisdiction. The crime rate is often linked with the 

social and economic stability of a country. Governments mostly incorporate 

macroeconomic models in formulating efficient economic policies or strategies. The 

change in crime rates is used as an indicator for the macroeconomic development. 

The purpose of the crime rate is for strategic decision making in formulating crime 

prevention strategies. The crime rate data also help in improving relations in a 

community regarding crime awareness. Thus, a crime model to accurately forecast 

the crime rate is very beneficial and needed. 

In existing crime rate models, several problems arise such as non-robustness 

to small data samples and diversity issues in crime data distribution. The application 

of AI techniques serves as a viable solution in handling such problems. This is 

because AI techniques are able to perform well even when the data sample is small 

and also diverse to complex distribution. As crime rates are mostly influenced by 

several factors, the feature selection method proposed in this study is able to identify 

and select the significant factors. Hence, the proposed model includes the impact of 

various factors in the crime rates. In addition, by incorporating the metaheuristic 

optimisation algorithm into both AI technique and feature selection method, the 

crime model accuracy can be further increased. The assessment of problems that 

arise in modelling the time series crime model makes this study significant to the 

field of criminology and multivariate time series forecasting. 

1.7 Research Methodology 

This study is divided into seven main phases. They are literature review and 

problem definition, data definition and preparation, GTB crime model development, 

NCA-GTB factor selection, development of hybrid DA-NCA-GTB model, parameter 

optimisation with LAD loss function and lastly, evaluation and validation analysis. In 

the first phase, a thorough investigation and study in crime forecasting is conducted 
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to observe recent work, identify issues or problems that arise and formulate potential 

solutions to the problems. In phase two, the required data set is defined, collected, 

and prepared. For the third phase, a base crime model using GTB is modelled using 

the prepared data set. 

Next, in phase four, the GTB crime model is equipped with NCA feature 

selection in analysing and identifying significant factors that influence crime rates. In 

phase five, the development of a hybrid DA-NCA-GTB model was conducted. After 

that, in phase six, the proposed DA
2
-NCA-eGTB crime model is modelled by 

optimising the input parameters for NCA and GTB using DA, and implementing the 

LAD loss function in GTB. Lastly, in the final phase, the proposed model output is 

evaluated based on quantitative measurement error analysis. Also, the statistical test 

analysis is performed to validate the model. Figure 1.3 shows an overview of the 

research methodology in this study. 

 

Figure 1.3 Overview of Research Methodology 

 

Literature Review and Problem Definition 

GTB Crime Model Development 

NCA-GTB Factor Selection 

Evaluation and Validation Analysis 

Data Definition and Preparation 

Parameter Optimisation and 

Application of LAD loss function 

 

Development of Hybrid DA-NCA-GTB 
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1.8 Research Contribution 

This study‟s main contribution is the new nonlinear crime forecasting model 

to accurately forecast crime rate data. The proposed model is based on a multivariate 

time series analysis that is designed to handle limited crime rate data. The model is 

equipped with the feature selection method to identify and select the significant 

factors that influence the crime rate. The selection of factors is based on types of 

crime rates. The purpose of feature selection is to analyse and identify the 

relationship between factors and the crime rate. By identifying the significant factors, 

the crime model‟s forecast accuracy can be improved for each type of crime rate. 

The proposed hybrid crime model is modelled based on GTB. NCA is 

equipped into GTB for feature selection. The proposed model is able to accurately 

model the limited crime rate data with nonlinear structure. Further, the proposed 

model is improved by optimising both the NCA and GTB input parameters. In 

addition, GTB is further improved by implementing LAD as a loss function that is 

more suitable for the crime rate data. The improvement made is to overcome the 

limited crime rate data constraint. 

1.9 Thesis Organisation 

Chapter 1 is the introduction that briefly summarises and provides an 

overview of the study. Chapter 2 provides discussions of literature reviews 

concerning recent research findings, issues, and solutions. Chapter 3 presents the 

research methodology that explains the framework and procedures in conducting the 

research. Chapter 4 discusses the development of GTB as the base model in 

modelling crime rate. Chapter 5 proposes an NCA-GTB feature selection model in 

identifying significant factors that influence crime which later improves the overall 

model prediction accuracy. Chapter 6 proposes an improvement to the proposed 

NCA-GTB crime model by hybridising DA to optimise the NCA and GTB 

parameters, and replacing the GTB least square loss function with LAD function. 

Lastly, Chapter 7 provides the conclusion of the study. 
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