
i

REGRESSION TESTING FRAMEWORK FOR GENERATING AND

PRIORITIZING TEST CASES USING ARTIFICIAL INTELLIGENCE

EGLAL MOHAMMED KHALIFA OSMAN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Computer Science)

School of Computing

Faculty of Engineering

Universiti Teknologi Malaysia

JUNE 2022

REGRESSION TESTING FRAMEWORK FOR TEST CASES GENERATION AND

PRIORITIZATION

iv

DEDICATION

I dedicate this thesis to my beloved father, who taught me

that the education is the weapon for progress and development. I

also dedicate to my mother who taught me that even the largest

task can be accomplished if it is done one step at a time. Finally, I

dedicate to my sisters and brother for their support,

encouragement, and endless affection.

v

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers,

academicians, and practitioners. They have contributed towards my understanding

and thoughts. In particular, I wish to express my sincere appreciation to my main

thesis supervisor, Prof. Dayang Norhayati Abang Jawawi, for encouragement,

guidance, critics and friendship. I am also very thankful to my co-supervisor Prof

Safa'ai bin Deris for their guidance, advices and motivation. Without their continued

support and interest, this thesis would not have been the same as presented here. My

fellow postgraduate student should also be recognised for their support. My sincere

appreciation also extends to all my colleagues and others who have provided

assistance at various occasions. Their views and tips are useful indeed.

Unfortunately, it is not possible to list all of them in this limited space. I am grateful

to all my family member

vi

ABSTRACT

A regression test is a significant part of software testing. It is used to find the
maximum number of faults in software applications. Test Case Prioritization (TCP) is an
approach to prioritize and schedule test cases. It is used to detect faults in the earlier stage
of testing environment. Code coverage is one of the features of a Regression Test (RT) that
detects more number of faults from a software application. However, code coverage and
fault detection are reducing the performance of existing test case prioritization by
consuming a lot of time for scanning an entire code. The process of generating test cases
plays an important role in the prioritization of test cases. The existing automated generation
and prioritization techniques produces insufficient test cases that cause less fault detection
rate or consumes more computation time to detect more faults. Unified Modelling
Language (UML) based test case generation techniques can extract test cases from UML
diagrams by covering maximum part of a module of an application. Therefore, a UML
based test case generation can support a test case prioritization technique to find a greater
number of faults with shorter execution time. A multi-objective optimization technique
able to handle multiple objectives that supports RT to generate more number of test cases
as well as increase fault detection rate and produce a better result. The aim of this research
is to develop a framework to detect maximum number of faults with less execution time for
improving the RT. The performance of the RT can be improved by an efficient test case
generation and prioritization method based on a multi-objective optimization technique by
handling both test cases and rate of fault detection. This framework consists of two
important models: Test Case Generation (TCG) and TCP. The TCG model requires an
UML use case diagram to extract test cases. A meta heuristic approach is employed that
uses tokens for generating test cases. And, TCP receives the extracted test cases with
faults as input to produce the prioritized set of test cases. The proposed research has
modified the existing Hill Climbing based TCP by altering its test case swapping feature
and detect faults in a reasonable execution time. The proposed framework intends to
improve the performance of regression testing by generating and prioritizing test cases in
order to find a greater number of faults in an application. Two case studies are conducted
in the research in order to gather Test Case (TC) and faults for multiple modules. The
proposed framework yielded a 92.2% of Average Percentage Fault Detection with less
amount of testing time comparing to the other artificial intelligence-based TCP. The
findings were proved that the proposed framework produced a sufficient amount of TC and
found the maximum number of faults in less amount of time.

vii

ABSTRAK

Ujian regresi merupakan bahagian penting dalam ujian perisian. Ia digunapakai untuk
mencari bilangan kesalahan maksimum dalam aplikasi perisian. Keutamaan Kes Ujian (TCP)
adalah suatu pendekatan yang memberi keutamaan dan penjadualan dalam kes ujian. Ia
digunakan untuk mengesan kesalahan pada tahap awal persekitaran pengujian. Liputan kod
merupakan salah satu ciri bagi ujian regresi yang dapat mengesan lebih banyak kesalahan dari
aplikasi perisian. Walau bagaimanapun, liputan kod dan pengesanan kesalahan mengurangkan
prestasi sedia ada keutamaan kes ujian kerana ia mengambil banyak masa untuk mengimbas
keseluruhan kod. Proses penjanaan kes ujian memainkan peranan penting dalam keutamaan
kes ujian. Teknik penjanaan dan keutamaan automatik sedia ada menghasilkan kes ujian yang
tidak mencukupi menyebabkan kadar pengesanan kesalahan lebih sedikit atau mengambil masa
pengiraan lebih banyak untuk mengesan lebih banyak kesalahan. Bahasa Pemodelan Bersatu
(UML) berasaskan teknik penjanaan kes ujian boleh mengekstrak kes ujian dari gambarajah
UML yang merangkumi bahagian maksimum modul aplikasi. Oleh itu, UML berasaskan
penjanaan kes ujian dapat menyokong teknik keutamaan kes ujian untuk mencari bilangan
kesalahan yang lebih besar dengan masa pelaksanaan yang lebih pendek. Teknik
pengoptimuman pelbagai objektif dapat mengendalikan pelbagai objektif yang menyokong
ujian regresi untuk menghasilkan lebih banyak kes ujian serta peningkatan kadar pengesanan
kesalahan dan menghasilkan keputusan yang lebih baik. Tujuan penyelidikan ini adalah untuk
mengembangkan kerangka bagi mengesan bilangan kesalahan maksimum dengan masa
pelaksanaan yang lebih sedikit bagi menambahbaik ujian regresi. Prestasi ujian regresi dapat
dipertingkatkan dengan kaedah penjanaan kes ujian dan keutamaan yang efisien berdasarkan
teknik pengoptimuman pelbagai objektif dengan pengendalian kedua-dua kes ujian dan kadar
pengesanan kesalahan. Kerangka ini terdiri daripada dua model penting: Penjanaan Kes Ujian
(TCG) dan Keutamaan TCP. Model TCG memerlukan gambarajah kes kegunaan UML untuk
mengekstrak kes ujian. Pendekatan meta heuristik digunakan bagi menghasilkan token untuk
penjanaan kes ujian. Dan, TCP menerima kes ujian yang telah diekstrak sebagai input untuk
menghasilkan set pengutamaan kes ujian. Penyelidikan yang dicadangkan telah mengubah suai
Hill Climbing sedia ada yang berdasarkan TCP dengan mengubah ciri pertukaran kes ujiannya
dan mengesan kesalahan dalam masa pelaksanaan yang sewajarnya. Kaedah kerangka yang
telah dicadangkan ini bertujuan untuk meningkatkan prestasi pengujian regresi dengan
penjanaan dan keutamaan kepada kes ujian untuk mencari lebih banyak jumlah kesalahan
dalam aplikasi. Dua kajian kes telah dijalankan dalam penyelidikan ini untuk mengumpulkan
Kes Ujian (TC) dan kesalahan bagi pelbagai modul. Kerangka kerja yang telah dicadangkan
menghasilkan Purata Peratusan Pengesanan Kesalahan sebanyak 92.2% dengan jumlah masa
yang lebih sedikit berbanding dengan TCP berasaskan kecerdasan buatan yang lain. Hasil
kajian membuktikan bahawa kerangka kerja yang telah dicadangkan dapat menghasilkan
keputusan TC yang mencukupi dan menjumpai bilangan kesalahan maksimum dalam jangka
masa yang lebih sedikit.

viii

TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xv

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Research Background 2

1.3 Research Problem 6

1.4 Research Questions 9

1.5 Research Goal and Objectives 10

1.6 Research Justification 11

1.7 Scope 13

1.8 Thesis Outline 14

CHAPTER 2 LITERATURE REVIEW 17

2.1 Introduction 17

2.2 Regression Testing 19
 2.2.1 Need of RT 21
 2.2.2 Types of Regression 21

2.3 Prioritization of Test Cases 24
 2.3.1 TC Prioritization Techniques 25
 2.3.2 Selecting TC for RT 25

ix

 2.3.3 TC Prioritization Life Cycle 26

2.4 Related Works 28
 2.4.1 Test Case Generation Techniques 30
 2.4.2 Regression Testing techniques 41
 2.4.3 Prioritization Techniques 43
 2.4.3.1 Limitations of TCP Techniques 63

2.5 Summary OF TCG AND TCP techniques 65

2.6 Theoretical Framework 66

2.7 Summary 68

CHAPTER 3

RESEARCH METHODOLOGY

69

3.1 Introduction 69

3.2 Research Phases 69
 3.2.1 A: Preliminary Studies and Initial Framework 71
 3.2.2 B1. Design and Implementation of Automatic

Generation of TC

78
 3.2.3 B2: Design and Implementation of AI Based

Prioritization of TCs

81
 3.2.4 C. Comparison and Evaluation of Generation

and Prioritization of TC Techniques

84

3.3 Research Framework 85

3.4 Summary 87

CHAPTER 4 A TECHNIQUE TO GENERATE TEST CASES
 FROM UML – USE CASE DIAGRAM 89

4.1 Introduction 89

4.2 Proposed Generation Technique 90

 4.2.1 Concept of Library 96

4.2.2 Token Relation and Path 98

4.2.3 UCD Collection 101

4.2.4 Attributes of TC Set from Case Studies 105

4.3 Results 111

4.4 Discussions 118

4.5 Summary 120

x

CHAPTER 5 A MULTI OBJECTIVE OPTIMIZATION
METHOD FORTHE PRIORITIZATION
OF TEST CASES

120

5.1 Introduction 120

5.2 Proposed EHCTCP 121
 5.2.1 Performance Improvements in HC 123
 5.2.2 Procedure – EHCTCP 129

5.4 Results 134

5.5 Discussions 140

5.6 Proposed Framework for RT PFWK 141

5.7 Summary 141

CHAPTER 6 RESULTS AND DISCUSSIONS 143

6.1 Introduction 143

6.2 Results 144

6.3 Discussions 155
 6.3.1 Comparison to Related Works 156

6.4 Threats to Validity 158
 6.4.1 External Validity Threats 158
 6.4.2 Internal Validity Threats 158
 6.4.3 Construct Validity Threats 158

6.5 Summary 159

CHAPTER 7 CONCLUSION AND FUTURE WORK 161

7.1 Summary 161

7.2 Research Contributions 162
 7.2.1 Objectives Achievements 162

7.3 Future Work 164

REFERENCES 167

LIST OF PUBLICATIONS 184

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 Comparison between TCG Techniques 36

Table 2.2 Greedy algorithm-based test case prioritization 46

Table 2.3 Genetic algorithm based test case prioritization 52

Table 2.4 Artificial Bee Colony based test case prioritization 55

Table 2.5 Hill climbing based test case prioritization 57

Table 2.6 Comparison between TCP Techniques 59

Table 2.7 Limitations of Existing Prioritization Approaches 67

Table 4.1 Procedure: Generating Test Case 96

Table 4.2 Information about UCD 102

Table 4.3 Generate Test Case 103

Table 4.4 D1 – Attributes – Training Phase 108

Table 4.5 D1 – Attributes – Testing Phase 109

Table 4.6 D2 – Attributes – Training Phase 110

Table 4.7 D2 Attributes – Testing Phase 110

Table 4.8 Performance of TCG with D1 115

Table 4.9 Performance of TCG with D2 115

Table 5.1 Comparison of GA, ABC, HC, and EHCTCP 127

Table 5.2 Structure of Prioritized TC 128

Table 5.3 Proposed EHCTCP 131

Table 5.4 Generate solution 132

Table 5.5 Evaluate Neighbour 132

Table 5.6 APFD Comparison of EHCTCP AND HC 136

Table 5.7 APFD Comparison of TCP with Category C1 138

Table 6.1 Performance of TCG with D1 and D2 145

Table 6.2 Extracted TCs by the Proposed Framework 146

xii

Table 6.3 Experiment Settings for TCP 147

Table 6.4 Performance of TCP with D1 (Category Wise) 148

Table 6.5 Performance of TCP with D2 (Category Wise) 149

Table 6.6 APFD Comparison of PFWK AND HC (D1) 150

Table 6.7 APFD Comparison of PFWK AND HC (D2) 152

Table 7.1 Ability of Proposed Methods 162

xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 Types of Testing (Jamil et al., 2017) 18

Figure 2.2 Techniques of RT Optimization 20

Figure 2.3 Types of Regression Testing Techniques 22

Figure 2.4 Test Case Life Cycle (Bajaj & Sangwan, 2019) 27

Figure 2.5 Types of Test Case Generation 30

Figure 2.6 Proposed Framework for Regression Testing 68

Figure 3.1 Research Phases 71

Figure 3.2 Research Steps 72

Figure 3.3 www.ijcsit.org 75

Figure 3.4 sifns.edu.sd 75

Figure 3.5 Research Framework 86

Figure 4.1 Login Page - IJCSIT 90

Figure 4.2 Step - by - step processes of TCG 94

Figure 4.3 Concept of Library 97

Figure 4.4 Library of TC and Faults 98

Figure 4.5 Representation of Login Page 99

Figure 4.6 Token relation of Login Module 100

Figure 4.7 Token path of Login 101

Figure 4.8 Process of generating TCs 102

Figure 4.9 Extraction of Tokens 114

Figure 4.10 Generation of TCs from Library 114

Figure 4.11 Final Fault Matrix 115

Figure 4.12 Accuracy of TCG with Computation Time for D1 116

Figure 4.13 Accuracy of TCG with Computation Time for D2 118

Figure 5.1 Prioritization Process 130

http://www.ijcsit.org/

xiv

Figure 5.2 Screenshot of Comparison of HC and EHCTCP 137

Figure 5.3 Performance of HC and EHCTCP 137

Figure 5.4 Screenshot of Comparison of GA, HC, ABC, and
 EHCTCP 139

Figure 5.5 Performance of GA, HC, ABC, and EHCTCP 139

Figure 6.1 Test Cases with Fault – D1 (Using PFWK) 146

Figure 6.2 Test Cases with Fault – D2 (Using PFWK) 147

Figure 6.3 BoxPlot Analysis for D1 151

Figure 6.4 Comparison of APFD with Respective Time (Seconds) for
D1

151

Figure 6.5 Screenshot of TCP Run Time – D1 152

Figure 6.6 BoxPlot Analysis for D2 153

Figure 6.7 Mean APFD and Time (D2) 154

Figure 6.8 Screenshot of TCP Run Time – D2 154

xv

LIST OF ABBREVIATIONS

AI - Artificial Intelligence
ABC - Artificial Bee Colony

APFD - Average Percentage Faults Detected

AP - Affinity Propagation

BCO - Bee Colony Optimization

C1 - Category 1

C2 - Category 2

C3 - Category 3

D1 - Dataset 1

D2 - Dataset 2

DSP - Dependency Structure Prioritization

DOM - Document Object Model

EHCTCP - Enhanced Hill Climbing Test Case Prioritization

FV - Fitness Value / Function Traverse Value

GA - Genetic Algorithm

GUI - Graphical User Interface

HC - Hill Climbing

HPSO - Hybrid Particle Swarm Optimization

HYRTS - Hybrid Regression Test Selection

HTML - Hyper Text Markup Language

ICD - Inter Case Dependency

MH - MetaHeuristics

ML - Machine Learning

MOM - Multi-objective Optimization Method

PMI - Proposed Method 1

PFWK - Proposed FrameWork

RSS - Requirement Severity Score

RT - Regression Test

RTS - Regression Test Selection

SDLC - Software Development Life Cycle

xvi

SVM - Support Vector Machine

TC - Test Case

TCP - Test Case Prioritization

TCG - Test Case Generation

TSP - Test Suite Minimization

UML - Unified Modelling Language

UCD - Use Case Diagram

XML - Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Software testing (ST) is playing an important role in the software

development industry. It is used to reduce the cost of maintenance and ensure the

quality of a software application (Alkawaz & Silvarajoo, 2019; Biswas, Mall,

Satpathy, & Sukumaran, 2009). Testing intends to find bugs and make sure that the

software is free from errors. ST is an expensive task that requires 50% of software

development resources (Biswas et al., 2009; Khanna, Chaudhary, Toofani, & Pawar,

2019). There are different types of testing techniques available in the field of

software testing. Testing tools are introduced in Software Development Life Cycle

(SDLC) to carry out the process of testing either manually or automatically. Testing

is comprising of activities such as planning, preparation, and evaluation, to ensure

the software application is built according to the user requirement (AdiSrikanth,

Kulkarni, Naveen, Singh, & Srivastava, 2011; Ali et al., 2019). Automatic testing

tools are used in the software industry to reduce the utilization of software resources.

Test Case (TC) is a group of data, expected results, and post conditions for

the verification of specific requirements. Test case ID, Test scenario, and Test

parameters are some of the typical TC parameters. TC can be generated either

manually or automatically. Automatic generation of TC is becoming familiar in

SDLC due its efficiency. TC can be extracted from Unified Modelling Language

(UML) diagram (Sharma, Sabharwal, & Sibal, 2014). An automated generation of

TCs from UML Use Case Diagram (UCD) can support development to make useful

decisions and reduce the testing cost (Augusto Diniz Teixeira, Orientadora, & Braga

Silva, 2017).

2

Regression test (RT) is used to verify the existing functionality of a software

application. It will ensure that new changes in code should not have negative impact

on functionalities of an application(Ismail, Ibrahim, & ibrahim, 2007). Any new

change in an existing code may adversely affect the ability of the software

application. RT is an inevitable test in order to make sure that system is working fine

and did not affect from recent code modifications (Augusto Diniz Teixeira et al.,

2017). It is an expensive maintenance test in continuous integration development of

software (Singh & Sumit Sharma, 2015). The recent studies have proved that RT,

which are based on information sources and Artificial Intelligence (AI) have more

efficiency than traditional RT (Ghai & Kaur, 2016). The process of identification of

change impact will support management to find necessary steps with respect to

change cost and avoid unnecessary resources (Bajaj & Sangwan, 2019).

Test Case Prioritization (TCP) is a technique in RT to sort TC in an order to

find maximum faults in a software application. It can cover maximum possible

changes that are made in existing application. TCP are based on the information

related to coverage of code elements (Li, Harman, & Hierons, 2007). It is a better

option for a software testing environment. A successful TCP can avoid unnecessary

TCs. Prioritizing a set of effective TCs can reduce the testing cost.

1.2 Research Background

Software testing is a process of comparing the actual outcome with the

expected outcome. Testing of the software will be done in order to check the correct

functionality of the system or the project (Sharma et al., 2014). The improper testing

may lead to catastrophic or improper results in the field. It is better to check or test

the system at the initial stage to improve its performance of software.

A TC should be more effective to find faults in a system. A test suite is a

collection of TC, a larger test suite needs more execution time. Automated tools for

the generation of TCs from UML Use Case Diagram (UCD) can support a testing

team to take decision at earlier stage. A good TC can help to find a critical fault in

3

software (Enoiu & Frasheri, 2019; Ismail et al., 2007; Kamath, 2018; Pang, Xue, &

Namin, 2017). An AI based RT is required for better efficiency and reduction of

testing cost.

Ideally, RT is a testing that refers to the section of the test cycle in which

programs are tested to make sure that changes do not affect features of software. It is

a process of verifying the customized software in the maintenance phase. Time and

budget constraints are the major disadvantages due to its complex process. It will re –

execute several subsets of test that were conducted in the previous phases. The

purpose of the RT is to find accidental errors in the newly built software (Azizi &

Do, 2018; Rothermel, Harrold, Ostrin, & Hong, 1998). The introduction of

automation tools in the field of RT is partially reduced the stress levels of testing

team. Research has shown that at least 50% of the total software cost is consumed for

testing activities. Companies are often experiencing lack of time and resources,

which limits their ability to effectively complete the testing process (R. R. Sahoo &

Ray, 2018). TCP is used to prioritize TCs to cover maximum faults in limited

amount of time.

RT is used to retest the component of a system and ensures that the

modifications like patches and code enhancements does not affect the functionality

of the software. Automated tools are required for these types of testing (Alkawaz &

Silvarajoo, 2019). The process of verifying the modified software in the maintenance

phase is known as RT. Time and utilization of larger number of computer resources

are its major disadvantage due to the complex process nature of RT. RT will ensure

that changes are made to software, such as adding new features or modifying existing

features, which may not adversely affect the features of software. It is usually

performed by running some, or all, of the TCs to test the modifications in previous

versions of the software.

Many techniques have been reported on how to select regression tests so that

the number of TCs does not grow too large as the software evolves. The hybrid

technique will combine modification, minimization, and prioritization-based

selection using a list of modified source code and the execution traces from TCs run

4

on previous versions (Mahadik, Thakore, & Professor, 2016; Mittal & Sangwan,

2018).

The TCP is one of the techniques of RT in which, TCs are prioritized, in

order to find maximum faults from the newly modified part of an application. The

TC that has highest priority are executed first and so on. The priorities of the TCs are

defined according to the changes made in the project. An AI based prioritization

technique can detect maximum number of faults from an application, in which some

changes are done, for the new version release (Li et al., 2007). Each TC has a

functional importance or Function Traverse Value (FV) or Fitness Value (FV)

(Kerani & Sharmila, 2018; Marchetto, Islam, Asghar, Susi, & Scanniello, 2016). The

slicing is the process of extracting TC with relevant functional importance from a

TC. In the existing technique, the slicing technique will be applied to detect the

individual functionality of a TC. The TC that has maximum importance will be

executed first, and so on. The single -objective prioritization method are focussing to

increase the fault detection not on reducing TC and computation time. To increase

the fault detection rate with minimum number of TC with limited computation time,

an automated technique has to be applied by using multi-objective optimization

method to prioritize TC according to the FV in an automated (Singh & Sumit

Sharma, 2015). The multi-objective technique is based on the initial population

value. The mutation value will be calculated from the best fitness value.

The research studies proposed by(Augusto Diniz Teixeira et al., 2017;

Heumann, 2001; Ismail et al., 2007; Singh & Sumit Sharma, 2015; C. Wang, Pastore,

Goknil, & Briand, 2020) are used to generate TC from UML diagram. These

methods were extracted TCs from UML diagram. TCG is used to extract TC from

UML diagram and reduce the time for the generation or selection of TCs. It will

provide useful TCs for prioritization methods.

The purpose of using TC is to check successful and acceptable development

of the product requirement (Heumann, 2001). The primary source for TCG is UML

diagram. Generally, the system requirements are represented as a UML UCD. A

scenario will be created for each UCD. The flow of events is the important part of

5

UCD. Basic and alternate are the two types of flow of events(Biswas, Mall, Satpathy,

& Sukumaran, 2011; Hemmati, Arcuri, & Briand, 2010). TCs can be extracted from

both flow of events. The UML UCD will be processed and converted into token

relation to fetch TCs according to the relevant activities. A search algorithm can be

used to derive TC from graphs (Augusto Diniz Teixeira et al., 2017). After parsing

initial TCs from UCD, strings from a library can be used to search for specific cluster

of TCs in the set of primary TCs. It will be helpful to form a TC to find a fault in a

modified software(Ismail et al., 2007). The token relation and graph can be parsed by

a traversing technique and generate functional TCs (Singh & Sumit Sharma, 2015).

The automation of generation of TC is used to increase testing productivity and

minimize labour hours. The meaningful representation of flows and branch

conditions can be made from generated TCs. The automated tool can minimize the

testing time with limited amount of data from UCD. A meta – heuristic technique can

be used to reduce the computation time for extracting TC with relevant Value (FV)

or Fitness Value FV from UCD. Therefore, the efficiency of TCG will be better than

traditional methods(Augusto Diniz Teixeira et al., 2017).

A novel technique for the prioritization of TC from UML diagram was

proposed by (Kerani & Sharmila, 2018). The criteria can cover whole software code

in a minimal amount of time. Most of TCP techniques are based on the structural

coverage and some prioritization techniques were presented with different

criteria(Yan, Wu, Peng, & Nie, 2019; Shin Yoo, Harman, Tonella, & Susi, 2009).

The existing TCP (Alkawaz & Silvarajoo, 2019; Azizi & Do, 2018; Butool, Nadeem,

Sindhu, & Zaman, 2019; Gary & Jamie, 2010; Mahali & Acharya, 2013; S. Wang et

al., 2014) were based on a machine learning (ML) technique for the prioritization of

TCs. A weight is assigned for each TC and prioritized according to it. The execution

of TC is based on the prioritization. The existing researches (Heumann, 2001; Li et

al., 2007; Singh & Sumit Sharma, 2015) were found a TCG to generate TCs from

UCD. The UCD are processed and necessary TC with relevant FV is extracted and

prioritized for finding a critical fault from an application.

6

1.3 Research Problem

The TCP techniques are designed to execute RT effectively with less

resources. The automated TCP greedily select a TC in an assumption that it finds a

critical fault and covers a critical area of a modified part of an application. Some of

the TCP has considered a TC based on the history of executing fault prone functions

(Weixiang et al., 2019). The problem of this type of TC is the computation time. The

investigation of history might take more time to find and execute a TC. The existing

prioritization technique lacks in fault detection rate due to the inability of test cases.

The process of generating test cases plays a vital role in finding critical faults from a

software application. Many researches were developed to improve the process of

prioritizing TCs for applications. However, there is a lack of TCP to attain better

performance (Elbaum, Rothermel, & Penix, 2014; Miao, Qian, & Song, 2008).

RT is performed as a supportive testing task during the maintenance phase of

a web-based application to ensure that the software evolution process, which is the

primary characteristic of a web-based application, does not introduce new problems

into the system(Nooraei Abadeh, 2021). While re-generation and re-execution of a

new test suite may be unfeasible in terms of cost, time, and resource consumption,

RT should ensure new test cases are progressively produced and finished the test

suite to test system changes. In the web – based RT, making test cases and test data is

a time-consuming and expensive process due to the nature of web application, which

are constantly evolving(Zarrad, 2015). When a model contains a significant number

of scalable sub-models, this method could result in a massive number of test cases,

rendering these approaches ineffective. Existing technologies, such as random

generators, can generate a large number of test data/test cases because of the random

functions they use. The test suite may fail to identify test data to meet the

requirement when using these ways because not enough information about the

altered items in the test generating process(Mittal & Sangwan, 2015).

A web application's constant evolution makes it nearly hard to keep up with

all of the changed paths and nodes. Uncovering hidden pathways in large,

complicated Web applications takes time and effort. According to (Nooraei Abadeh,

7

2021), a challenge has been issued to find an unseen path based on session data.

Automated RT techniques are beneficial and timeless, but any error in the

development of test cases could result in the absence of some paths owing to

dynamism, which would be problematic. In HTML DOM tree generation, additional

paths are introduced when there are multiple pages in a Web application. In addition,

fixing HTML errors might be a challenge. Another drawback is the inability to

generate test cases. Many methods (Khanna, Chauhan, Sharma, & Toofani, 2017;

Zarrad, 2015) necessitate the use of human intervention in the test set selection

process. As a result, during the RT, not all problems could be identified.

The process of generating TCs from UML UCD will support the testing team

to complete the test in small amount of time. An automated tool is required to

generate TCs to improve the efficiency of TCs. The existing TCG are based on the

coverage criterion and focussed to cover the complete code. They are not

investigating the quality of TC that can cover maximum faults (Singh & Sumit

Sharma, 2015). UML – UCD based test case generation is a model-based approach,

which can cover maximum part of a newly modified software module. UCD have the

capability to produce a better insight of a software application and produce more

number of TC rather than other UML diagrams (Singh & Sumit Sharma, 2015), and

(Augusto Diniz Teixeira et al., 2017). The existing generation technique extracts TC

from UML diagrams without finding a feature of TC. The feature of TC can support

TCP to understand its importance. A domain specific library can be used in the

automated TCG to produce TC related to a specific problem in an application. UML

based test case generation is familiar due to its ability to produce a greater number of

test cases and cover maximum area of a module in large scale applications (Prasanna

& Chandran, 2009).

A proper mechanism is required to arrange the generated TCs in an

appropriate order, to increase the effectiveness of a system, to reach better

performance and the rate of fault detection. TCP will execute the high prioritized

TCs than the lower one to minimize time, cost, and effort. The performance of a

testing system will be improved by this faster fault detection process. Therefore,

efficiency of TCP will be increased by minimizing computation cost and time with

8

small amount of information. The faster feedback will allow the software tester to

correct the faults at the earliest time (Dalai, Abhinna, & Prasad, 2012; Gary & Jamie,

2010).

Prioritization of TC is one of the approaches to enhance the RT and retest the

software after modification. RT is a process, of retesting the modified software and it

ensures that there is no error in the previously tested source code due to the

modifications. It is a very expensive testing process. In order to decrease the cost of

RT, the software tester, may prioritize the test case, so that the test case which are

more important, are run earlier during the RT process (Shin Yoo et al., 2009). In this

context, prioritization techniques can take advantage of historical information of TC

to achieve a superior results (AdiSrikanth et al., 2011; Kim & Porter, 2002;

Padmnav, Pahwa, Singh, & Bansal, 2019; Panda, Acharya, Bhuyan, & Mohapatra,

2017; Spieker, Gotlieb, Marijan, & Mossige, 2017).

TCP is a method to prioritize and schedule TCs in appropriate order. The

important test case may be prioritized and run earlier to decrease the cost of testing.

RT will use clustering technique for TCP. The technique will cluster the TCs, having

common properties and the similar fault detection ability will be grouped together as

a single cluster. TCP is used to improve the cost effectiveness of RT. On the one

hand, the existing TCP is focussing on high fault detection rate. On the other hand,

consumes more time to achieve a better fault detection rate. Existing TCP is based on

single – objective function, which focus on fault detection and consumes a greater

processing time and vice versa.

The TCP technique is widely used to reduce the execution cost of the TCs for

fault detection in software. In the previous research work, the TCP is done based on

the functional importance. The integration of TCG and TCP improves the detection

of more faults from the software in the least amount of time. If TCP could not choose

a TC, then fault detection and code coverage is not possible. An ineffective TCP

leads to failure in the detection of a critical fault in an application (Azizi & Do, 2018;

Biswas, Mall, & Satpathy, 2013; Gupta, Sharma, & Pachariya, 2019).

9

The existing approaches in RT requires more time to generate and prioritize

TC in order to find faults. RT is used to test the recently modified module of a

software or web applications. Web applications are interconnected with multiple

applications. A small bug can cause more damage to a web application. The

performance of existing methods is not sufficient to save time and cover maximum

amount of code. Model – based TCG produces more number of TCs rather than other

TCG (Augusto Diniz Teixeira, Orientadora, & Braga Silva, 2017). The emergence of

Artificial Intelligence (AI) leads to automate the process of generating and

prioritizing TC with respect to find critical faults in a limited amount of time (Bajaj

& Sangwan, 2019; Ashima, Shaheamlung, & Rote, 2020). AI based TCG and TCP

consumes less testing time comparing to the traditional TCG and TCP. However, the

capability of fault detection is not effective for a web-based application. On the other

hand, RT demands model based TCG to generate a greater number of TCs. An

automated TCG based on the model – based approach and TCP to find bugs from the

software application. The automated generation of TC supports TCP to cover the

maximum part of code in a newly modified application. AI based TCP can detect a

greater number of faults rather than the traditional prioritization techniques. In

addition, AI techniques are employed to overcome the issues such as more testing

time and less fault detection.

1.4 Research Questions

The aim of this research is to solve the above discussed problems by using an

AI based framework. The main research question is formulated as follows:

How to improve the regression testing by Artificial Intelligence based

framework for generating and prioritizing test cases?

Research Question 1(RQ1): How to automate a process of generating TC

from a UML use-case diagram?

10

Research Question 2(RQ2): How to find solutions for existing problems in

existing TCG?

Research Question 3(RQ3): How generation technique supports prioritization

process to find a fault in an application?

Research Question 4(RQ4): How can we improve regression test using an

effective TCP technique?

Research Question 5(RQ5): How can we implement and evaluate the

proposed technique to ensure its fault detection rate and relevant execution time?

1.5 Research Goal and Objectives

The available techniques for the prioritization of TCs are limited and not able

to cover the complete code and failed to find maximum fault detection. The reason

for the limitation is that TCPs are following a method to randomly order TCs in the

test suite. The random ordering could not find fault severity in an application (Huang

et al., 2019). The existing process of generation of TC requires the complete code for

producing Tc. It consumes a lot of time and not able to produce effective TCs. This

study proposes a framework to generate TCs from UML UCD and prioritize TCs in

order to find critical faults from a newly changed module of an application. The

framework is based on Meta Heuristics (MH) demands metadata to generate an

optimal output by using less number of inputs. It is widely used in AI based

approaches. The efficiency of a method is improved by reducing the computation

time. The computation time can be reduced by providing correct information to a

method for the production of better results. The overall aim of this research is to

improve the performance of prioritization of TCs and increase the rate of fault

detection.

To achieve the research goal, the following objectives are considered:

11

1) To design a method based on Artificial Intelligence technique for generating

test cases from UML use case diagram using Meta Heuristic (MH) technique

to cover maximum amount of code.

2) To prioritize the test cases using a Multi objective Optimization Method

(MOM) in order to find the critical faults from a newly modified software

application.

3) To evaluate and compare the performance of test case generation and

prioritization techniques in terms of accuracy and average percentage of fault

detection with respective computation time, respectively.

1.6 Research Justification

The performance of TCG is limited for dynamic web application. A dynamic

web application is interconnected with multiple independent applications. The

existing TCG lacks the ability for identifying and allot the critical demands of

domain in the process of generating TC. It fails to develop a minimum group of TC

with maximal ability to find faults. The introduction of model based approach solves

the code coverage problem (Pinkal & Niggemann, 2017; Pretschner & Philipps,

2005). This approach has overcome previous methodologies in recent years. One

concern remains, however, that modelling of large and complex systems will take a

tremendous amount of time and effort. A modularization of the model is one

alternative to solve this issue (Pinkal & Niggemann, 2017; Pretschner & Philipps,

2005). The reuse of standard automation system component models and the

possibility of maintaining the libraries of these standard components is the significant

advantage of this approach. Nevertheless, the processing of models of an application

is difficult. TCP is introduced in order to detect failures in the primary stage of RT.

However, it is not evident that a particular TC finds a critical fault from an

application. The popularity of Machine Learning (ML) and Artificial Intelligence

(AI) leads to AI based TCP (Alkawaz & Silvarajoo, 2019; Ashima, Shaheamlung, &

Rote, 2020). In recent years, AI based TCP is becoming familiar in the field of

software testing. The vital parameters of TCP are fault detection rate, code coverage,

12

and time (Bajaj & Sangwan, 2019). The existing AI based TCP lacks either fault

detection rate or code coverage.

Implementing an AI based RT will reduce the testing time and achieve

maximum fault detection. TCP is a technique, which is used in RT to prioritize the

TCs according to the changes made in the developed project. The research work is

based on automated and manual TCP techniques. The AI based TCP will prioritize

TCs according to the faults that are extracted from the library. A TCP can prioritize

TCs to cover maximum part of a software module with a greater number of faults. To

support TCP, an automated TC generation is proposed with an evidence to prove its

efficiency. The generation of TCs from UML diagram will be combined with

prioritization technique to detect a critical fault in the earlier stage of testing process.

A TCG, which is based on a MH technique, require a metadata and fetches TC with

relevant fault (Pinkal & Niggemann, 2017) It will add features of TC as meta data so

that TCP can use those features for the prioritization process. It will reduce the time

to explore the huge number of TCs.

A MH method is an optimization technique and used to automate software

testing task. A reliable and efficient TC can be produced by this type of techniques

with effort and time (Roongruangsuwan & Daengdej, 2010b, 2010a). The efficiency

means that the ability of an application to produce better results within less amount

of data and time (Sarma, Kundu, & Mall, 2007). The web application is also called a

time critical application that is used to solve complex and vague problems (Allworth

& Zobel, 1987). It must be responsive in its environment. It will be modified

frequently according to the business requirement (Stankovic & Ramamritham, 1990).

Some of the online applications are mobile applications, web - based applications,

and trading websites. The UML UCD of case studies can be utilized for the purpose

of extraction and prioritization of TCs. TCP based on AI technique must be trained to

understand the environment of online applications to produce a reliable result.

In the existing technique, TCP considers number of times function

encountered and number of functions associated with the function for the

prioritization of TCs. The calculations of FV to prioritize each function are

13

performed based on parameters of test suite (Miao et al., 2008). The process involved

in the existing TCP is complex and consumes more time. An Automated TCP is

being implemented in the research to increase the rate of fault detection with less

amount of time. An automated TCG can be used to extract TC from UML UCD. A

clustering technique will be applied to cluster TCs with relevant faults. The cluster or

fault matrix will be processed by an automated TCP to find a fault in a module of an

application. The prioritization technique takes test case and faults as input and

prioritize these test cases based on the faults. The proposed research applies AI based

technique to carry out the prioritizing process of TC.

In this research work, a novel method is proposed to generate TC with its

functional importance from UML diagram and integrate with a multi – objective

optimization method-based prioritization technique to find maximum number of

faults in a limited computation time.

1.7 Scope

In this section, the scope of the proposed research will be discussed in detail.

This research is comprising of two important models: The first model is used to

generate TC and integrated with a second model, an AI based TCP to improve the

efficiency of RT and increase the rate of fault detection.

I. Generation of TC from UCD

The research is using a generating technique to produce TCs from UML

UCD. The criterion such as accuracy and execution time are considered for the

evaluation of proposed methods. A MH is a familiar AI technique that requires fewer

data to produce a valuable result. It can be used for generating TC from UCD.

II. RT for Case – study applications

The research is using different metrics to measure the performance of RT.

The better RT can find maximum errors in a newly modified application. The

14

familiar metric Average Percentage of Faults Detected (APFD) is used to inform

testers about the capability of RT. The research is based on AI. Therefore, execution

time is also an important criterion.

III. Test case Prioritization

The proposed TCP is used to prioritize TCs in an order according to the

functional importance. The functional importance will be used as a key by the

prioritization technique to prioritize TCs.

IV. Soft Computing Techniques

The soft computing techniques can be used to improve the efficiency of RT

by increasing the rate of APFD. The approaches of soft computing such as clustering,

and optimization are employed in this study.

1.8 Thesis Outline

The thesis is organized in seven chapters. The chapters are structured as

follows:

Chapter 1 – Introduction: This chapter provides an overview of the research.

The details of the proposed research are discussed and explained. The goal and

objective of the research are also presented in detail.

Chapter 2- Review of literature: This chapter will provide information about

test cases and prioritization. It will discuss the advantages and disadvantages of

literatures related to test case extraction, prioritizing test cases, regression testing and

clustering techniques.

15

Chapter 3- Research methodology: This chapter presents idea of the research

to find the solution for research questions. It will provide information on datasets of

UML diagrams. The framework of the research will be discussed in this chapter.

Chapter 4 - An effective method to generate test cases from UML Diagram

(UML) from UML Diagram (UML): The chapter will discuss the proposed method

for the generation of test cases. It will provide solution for the issues related to the

process of extraction of test cases.

Chapter 5 – Test case prioritization using optimization method: This chapter

will discuss the proposed method for the prioritization of test cases. It will present

graphical representations of proposed methods.

Chapter 6 – Results and discussions: This chapter discuss the performance of

the proposed framework in detail. It also discusses the threats to the validity of the

research.

Chapter 7 – Conclusion and future work: This chapter will provide summary

of whole thesis. It will present the achievements of proposed methods. The future of

the research and its direction will be discussed in this chapter.

167

REFERENCES

AdiSrikanth, Kulkarni, N. J., Naveen, K. V., Singh, P., & Srivastava, P. R. (2011).

Test case optimization using artificial bee colony algorithm. Communications in

Computer and Information Science, 192 CCIS(PART 3), 570–579. Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22720-2_60

Ali, N. bin, Engström, E., Taromirad, M., Mousavi, M. R., Minhas, N. M.,

Helgesson, D., … Varshosaz, M. (2019). On the search for industry-relevant

regression testing research. Empirical Software Engineering, 24(4), 2020–2055.

https://doi.org/10.1007/s10664-018-9670-1

Alkawaz, M. H., & Silvarajoo, A. (2019). A survey on test case prioritization and

optimization techniques in software regression testing. Proceeding - 2019 IEEE

7th Conference on Systems, Process and Control, ICSPC 2019, 59–64. Institute

of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/ICSPC47137.2019.9068003

Allworth, S. T., & Zobel, R. N. (1987). Introduction to Real-time Software Design.

In Introduction to Real-time Software Design. Macmillan Education UK.

https://doi.org/10.1007/978-1-349-18821-5

Alrawashed, T. A., Almomani, A., Althunibat, A., & Tamimi, A. (2019). An

automated approach to generate test cases from use case description model.

CMES - Computer Modeling in Engineering and Sciences, 119(3), 409–425.

https://doi.org/10.32604/cmes.2019.04681

Ashima, Shaheamlung, G., & Rote, K. (2020). A comprehensive review for test case

prioritization in Software Engineering. 2020 International Conference on

Intelligent Engineering and Management (ICIEM), 331–336. IEEE.

https://doi.org/10.1109/ICIEM48762.2020.9160217

Asthana, S., Tripathi, S., & Singh, S. K. (2010). A novel approach to generate test

cases using class and sequence diagrams. Communications in Computer and

Information Science, 95 CCIS(PART 2), 155–167. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-14825-5_14

Augusto Diniz Teixeira, Orientadora, F., & Braga Silva, G. (2017). EasyTest: An

168

approach for automatic test cases generation from UML Activity Diagrams.

411–417. Information Technology - New Generations.

Azizi, M., & Do, H. (2018). Graphite: A Greedy Graph-Based Technique for

Regression Test Case Prioritization. Proceedings - 29th IEEE International

Symposium on Software Reliability Engineering Workshops, ISSREW 2018,

245–251. Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/ISSREW.2018.00014

Bajaj, A., & Sangwan, O. P. (2019). A Systematic Literature Review of Test Case

Prioritization Using Genetic Algorithms. IEEE Access, 7, 126355–126375.

https://doi.org/10.1109/ACCESS.2019.2938260

Batra, S., & Rishi, R. (2011). IMPROVING QUALITY USING TESTING

STRATEGIES. Journal of Global Research in Computer Science Journal of

Global Research in Computer Science, 2(6), 113–117. Retrieved from

www.jgrcs.info

Biswas, S., Mall, R., & Satpathy, M. (2013). A regression test selection technique for

embedded software. Transactions on Embedded Computing Systems, 13(3).

https://doi.org/10.1145/2539036.2539043

Biswas, S., Mall, R., Satpathy, M., & Sukumaran, S. (2009). A model-based

regression test selection approach for embedded applications. ACM SIGSOFT

Software Engineering Notes, 34(4), 1–9.

https://doi.org/10.1145/1543405.1543413

Biswas, S., Mall, R., Satpathy, M., & Sukumaran, S. (2011). Regression Test

Selection Techniques: A Survey. Informatica, 35, 289–321.

Bryce, R. C., & Colbourn, C. J. (2006). Prioritized interaction testing for pair-wise

coverage with seeding and constraints. Information and Software Technology,

48(10), 960–970. https://doi.org/10.1016/j.infsof.2006.03.004

Budha, G., Panda, N., & Acharya, A. A. (2011). Test case generation for use case

dependency fault detection. ICECT 2011 - 2011 3rd International Conference

on Electronics Computer Technology, 1, 178–182.

https://doi.org/10.1109/ICECTECH.2011.5941585

Butool, R., Nadeem, A., Sindhu, M., & Zaman, O. U. (2019). Improving

requirements coverage in test case prioritization for regression testing.

http://www.jgrcs.info/

169

Proceedings - 22nd International Multitopic Conference, INMIC 2019. Institute

of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/INMIC48123.2019.9022761

Cai, G., Su, Q., & Hu, Z. (2021). Automated test case generation for path coverage

by using grey prediction evolution algorithm with improved scatter search

strategy. Engineering Applications of Artificial Intelligence, 106, 104454.

https://doi.org/10.1016/J.ENGAPPAI.2021.104454

Catal, C., & Diri, B. (2009, May). A systematic review of software fault prediction

studies. Expert Systems with Applications, Vol. 36, pp. 7346–7354.

https://doi.org/10.1016/j.eswa.2008.10.027

Chen, Y.-F., Chen, Y.-F., Rosenblum, D. S., & Vo, K.-P. (1997). TESTTUBE: a

system for selective regression testing. Proceedings of 16th International

Conference on Software Engineering, 211–220. Retrieved from

https://www.academia.edu/10083578/TestTube_a_system_for_selective_regress

ion_testing

Chouhan, C., Shrivastava, V., & S Sodhi, P. (2012). Test Case Generation based on

Activity Diagram for Mobile Application. International Journal of Computer

Applications, 57(23), 4–9. https://doi.org/10.5120/9436-3563

Dalai, S., Abhinna, A., & Prasad, D. (2012). Test Case Generation For Concurrent

Object-Oriented Systems Using Combinational Uml Models. International

Journal of Advanced Computer Science and Applications, 3(5), 97–102.

https://doi.org/10.14569/ijacsa.2012.030515

De Nicola, G., di Tommaso, P., Rosaria, E., Francesco, F., Pietro, M., & Antonio, O.

(2005). A Grey-Box Approach to the Functional Testing of Complex Automatic

Train Protection Systems. https://doi.org/10.1007/11408901_23

Devi Rajendran, V. K., Pradeepa Assistant Professor, R., & VimalaDevi, K. (2013).

Effectiveness of Test Case Prioritization using APFD Metric: Survey Resource

Provisioning in Cloud View project Wireless Cognitive network View project

Effectiveness of Testcase Prioritization using APFD Metric: Survey.

International Conference on Research Trends in Computer Technologies, 975–

8887. International Journal of Computer Applications. Retrieved from

https://www.researchgate.net/publication/268034515

http://www.academia.edu/10083578/TestTube_a_system_for_selective_regress
http://www.academia.edu/10083578/TestTube_a_system_for_selective_regress
http://www.researchgate.net/publication/268034515
http://www.researchgate.net/publication/268034515

170

Dhiman, R., & Chopra, V. (2019). Novel Approach for Test Case Prioritization

Using ACO Algorithm. 2019 IEEE 2nd International Conference on

Information and Computer Technologies, ICICT 2019, 292–295. Institute of

Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/INFOCT.2019.8711039

Dirim, S., & Sozer, H. (2020). Prioritization of Test Cases with Varying Test Costs

and Fault Severities for Certification Testing. 2020 IEEE International

Conference on Software Testing, Verification and Validation Workshops

(ICSTW), 386–391. IEEE. https://doi.org/10.1109/ICSTW50294.2020.00069

Do, H., Mirarab, S., Tahvildari, L., & Rothermel, G. (2010). The effects of time

constraints on test case prioritization: A series of controlled experiments. IEEE

Transactions on Software Engineering, 36(5), 593–617.

https://doi.org/10.1109/TSE.2010.58

El Houda Dehimi, N., & Mokhati, F. (2019). A Novel Test Case Generation

Approach based on AUML sequence diagram. Proceedings - ICNAS 2019: 4th

International Conference on Networking and Advanced Systems. Institute of

Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/ICNAS.2019.8807874

Elbaum, S., Rothermel, G., Kanduri, S., & Malishevsky, A. G. (2004). Selecting a

cost-effective test case prioritization technique. Software Quality Journal, 12(3),

185–210. https://doi.org/10.1023/B:SQJO.0000034708.84524.22

Elbaum, S., Rothermel, G., & Penix, J. (2014). Techniques for improving regression

testing in continuous integration development environments. Proceedings of the

ACM SIGSOFT Symposium on the Foundations of Software Engineering, 16-

21-Nove, 235–245. Association for Computing Machinery.

https://doi.org/10.1145/2635868.2635910

Enoiu, E., & Frasheri, M. (2019). Test agents: The next generation of test cases.

Proceedings - 2019 IEEE 12th International Conference on Software Testing,

Verification and Validation Workshops, ICSTW 2019, 305–308. Institute of

Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/ICSTW.2019.00070

Garg, D., Datta, A., & French, T. (2012). New test case prioritization strategies for

171

regression testing of web applications. International Journal of System

Assurance Engineering and Management, 3(4), 300–309.

https://doi.org/10.1007/s13198-012-0134-5

Gary, C., & Jamie, R. (2010). Arranging software test cases through an optimization

method - IEEE Conference Publication. PICMET 2010 TECHNOLOGY

MANAGEMENT FOR GLOBAL ECONOMIC GROWTH, 1–5. Retrieved from

https://ieeexplore.ieee.org/abstract/document/5602131/authors#authors

Ghai, S., & Kaur, S. S. (2016). Functional Dependency based Test Case

Prioritization for Regression Testing Using Hill-Climbing Approach.

International Journal of Innovative Research in Multidisciplinary Field, 2(9).

Grano, G., Laaber, C., Panichella, A., & Panichella, S. (2019). Testing with Fewer

Resources: An Adaptive Approach to Performance-Aware Test Case

Generation. IEEE Transactions on Software Engineering.

https://doi.org/10.1109/TSE.2019.2946773

Gupta, N., Sharma, A., & Pachariya, M. K. (2019). An Insight into Test Case

Optimization: Ideas and Trends with Future Perspectives. IEEE Access, 7,

22310–22327. https://doi.org/10.1109/ACCESS.2019.2899471

Habtemariam, G. M., & Mohapatra, S. K. (2019). A Genetic Algorithm-Based

Approach for Test Case Prioritization. Communications in Computer and

Information Science, 1026, 24–37. Springer Verlag.

https://doi.org/10.1007/978-3-030-26630-1_3

Haidry, S. E. Z., & Miller, T. (2013). Using dependency structures for prioritization

of functional test suites. IEEE Transactions on Software Engineering, 39(2),

258–275. https://doi.org/10.1109/TSE.2012.26

Hemmati, H., Arcuri, A., & Briand, L. (2010). Reducing the cost of model-based

testing through test case diversity. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 6435 LNCS, 63–78. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-16573-3_6

Heumann, J. (2001). Generating Test Cases From Use Cases. Retrieved from

http://www.therationaledge.com/content/jun_01/m_cases_jh.html

Huang, R., Zong, W., Chen, T. Y., Towey, D., Zhou, Y., & Chen, J. (2019).

http://www.therationaledge.com/content/jun_01/m_cases_jh.html

172

Prioritising abstract test cases: An empirical study. IET Software, 13(4), 313–

326. https://doi.org/10.1049/iet-sen.2018.5199

Ismail, N., Ibrahim, R., & ibrahim, N. (2007). Automatic Generation of test Cases

from Use-Case Diagram. 699–704.

Jain, P., & Soni, D. (2020). A Survey on Generation of Test Cases using UML

Diagrams. International Conference on Emerging Trends in Information

Technology and Engineering, Ic-ETITE 2020. Institute of Electrical and

Electronics Engineers Inc. https://doi.org/10.1109/ic-ETITE47903.2020.395

Jamil, M. A., Arif, M., Abubakar, N. S. A., & Ahmad, A. (2017, January 17).

Software Testing Techniques: A Literature Review. 177–182. Institute of

Electrical and Electronics Engineers (IEEE).

https://doi.org/10.1109/ict4m.2016.045

Jha, A. K., Kim, D. Y., & Lee, W. J. (2019). A framework for testing android apps

by reusing test cases. Proceedings - 2019 IEEE/ACM 6th International

Conference on Mobile Software Engineering and Systems, MOBILESoft 2019,

20–24. Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/MOBILESoft.2019.00012

Jung, B., & Kruse, P. M. (2020). Runtime Prioritization with the Classification Tree

Method for Test Automation. Bar2020 IEEE International Conference on

Software Testing, Verification and Validation Workshops (ICSTW), 376–379.

IEEE. https://doi.org/10.1109/ICSTW50294.2020.00067

Kamath, P. B. (2018). Generation of Test Cases from Behavior Model in UML. In

International Journal of Applied Engineering Research (Vol. 13). Retrieved

from http://www.ripublication.com

Karaboga, D., & Basturk, B. (2007). Artificial Bee Colony (ABC) optimization

algorithm for solving constrained optimization problems. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 4529 LNAI, 789–798. Springer Verlag.

https://doi.org/10.1007/978-3-540-72950-1_77

Karasneh, B., & Chaudron, M. R. V. (2013a). Extracting UML models from images.

2013 5th International Conference on Computer Science and Information

Technology, CSIT 2013 - Proceedings, 169–178.

http://www.ripublication.com/

173

https://doi.org/10.1109/CSIT.2013.6588776

Karasneh, B., & Chaudron, M. R. V. (2013b). Img2UML: A system for extracting

UML models from images. Proceedings - 39th Euromicro Conference Series on

Software Engineering and Advanced Applications, SEAA 2013, 134–137.

https://doi.org/10.1109/SEAA.2013.45

Kaur, A., & Goyal, S. (2011). A Bee Colony Optimization Algorithm for Fault

Coverage Based Regression Test Suite Prioritization. International Journal of

Advanced Science and Technology, 29, 17–29.

Kayes, M. I. (2011). Test case prioritization for regression testing based on fault

dependency. ICECT 2011 - 2011 3rd International Conference on Electronics

Computer Technology, 5, 48–52.

https://doi.org/10.1109/ICECTECH.2011.5941954

Kerani, M., & Sharmila. (2018). Novel technique for the test case prioritization in

regression testing. Communications in Computer and Information Science, 905,

362–371. Springer Verlag. https://doi.org/10.1007/978-981-13-1810-8_36

Khalifa, E. M., & Jamil, H. A. (2019). An Efficient Method to Generate Test Cases

From UML-USE CASE DIAGRAM. International Journal of Engineering

Research and Technology, 12(7), 1138–1145. Retrieved from

http://www.irphouse.com

Khanna, M., Chaudhary, A., Toofani, A., & Pawar, A. (2019). Performance

Comparison of Multi-objective Algorithms for Test Case Prioritization During

Web Application Testing. Arabian Journal for Science and Engineering,

44(11), 9599–9625. https://doi.org/10.1007/s13369-019-03817-7

Khanna, M., Chauhan, N., Sharma, D. K., & Toofani, A. (2017). Test case

prioritisation during web application testing. International Journal of Computer

Applications in Technology, 56(3), 230–243.

https://doi.org/10.1504/IJCAT.2017.088200

Khatibsyarbini, M., Isa, M. A., Jawawi, D. N. A., Hamed, H. N. A., & Mohamed

Suffian, M. D. (2019). Test Case Prioritization Using Firefly Algorithm for

Software Testing. IEEE Access, 7, 132360–132373.

https://doi.org/10.1109/ACCESS.2019.2940620

Khurana, N., & Chillar, R. S. (2015). Test Case Generation and Optimization using

http://www.irphouse.com/

174

UML Models and Genetic Algorithm. Procedia Computer Science, 57, 996–

1004. Elsevier. https://doi.org/10.1016/j.procs.2015.07.502

Kim, J. M., & Porter, A. (2002). A history-based test prioritization technique for

regression testing in resource constrained environments. Proceedings -

International Conference on Software Engineering, 119–129. New York, New

York, USA: IEEE Computer Society. https://doi.org/10.1145/581339.581357

Kumar Rapolu, R. (2018). Selection of UML Models for Test Case Generation: A

Discussion on Techniques to Generate Test Cases (Vol. 26). Retrieved from

https://repository.stcloudstate.edu/csit_etds/26

Kumar, S., Rajkumar, & Rani, M. (2019). Collaborative Filtering-based Test Case

Prioritization and Reduction for Software Product-Line Testing. IEEE Region

10 Annual International Conference, Proceedings/TENCON, 2019-Octob, 498–

503. Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/TENCON.2019.8929705

Kumar Swain, S., & Prasad Mohapatra, D. (2010). Test Case Generation from

Behavioral UML Models. In International Journal of Computer Applications

(Vol. 6).

Kumar, V., & Kumar, M. (2010). Test Case Prioritization Using Fault Severity.

International Journal of Computer Science and Technology, 1(1), 67–71.

Kundu, D., & Samanta, D. (2009). A novel approach to generate test cases from

UML activity diagrams. Journal of Object Technology, 8(3), 65–83.

https://doi.org/10.5381/jot.2009.8.3.a1

Leung, H. K. N., & White, L. (1990). A study of integration testing and software

regression at the integration level. Conference on Software Maintenance, 290–

301. Publ by IEEE. https://doi.org/10.1109/icsm.1990.131377

Li, Z., Harman, M., & Hierons, R. M. (2007). Search algorithms for regression test

case prioritization. IEEE Transactions on Software Engineering, 33(4), 225–

237. https://doi.org/10.1109/TSE.2007.38

Lu, C., Zhong, J., Xue, Y., Feng, L., & Zhang, J. (2019). Ant Colony System With

Sorting-Based Local Search for Coverage-Based Test Case Prioritization. IEEE

Transactions on Reliability. https://doi.org/10.1109/TR.2019.2930358

Mahadik, P. P., Thakore, D. M., & Professor, I. (2016). Survey on Automatic Test

175

Data Generation Tools and Techniques for Object Oriented Code. International

Journal of Innovative Research in Computer and Communication Engineering,

4(1). https://doi.org/10.15680/IJIRCCE.2016

Mahali, P., & Acharya, A. A. (2013). MODEL BASED TEST CASE

PRIORITIZATION USING UML ACTIVITY DIAGRAM AND EVOLUTIONARY

ALGORITHM.

Mahmood, K., Khan, T., Ahmad, S., Ashraf, E., Khan, T. A., & Ahmed, S. (2017).

Value based PSO Test Case Prioritization Algorithm. Article in International

Journal of Advanced Computer Science and Applications, 8(1).

https://doi.org/10.14569/IJACSA.2017.080149

Malhotra, R., Kaur, A., & Singh, Y. (2010). A Regression Test Selection and

Prioritization Technique. Journal of Information Processing Systems, 6(2), 235–

252. https://doi.org/10.3745/jips.2010.6.2.235

Marchetto, A., Islam, M. M., Asghar, W., Susi, A., & Scanniello, G. (2016). A

Multi-Objective Technique to Prioritize Test Cases. IEEE Transactions on

Software Engineering, 42(10), 918–940.

https://doi.org/10.1109/TSE.2015.2510633

McLaughin, B., Police, G., & West, D. (2006). Head First Object-Oriented Analysis

and Design: A Brain Friendly Guide to OOA&D - Brett McLaughlin, Gary

Pollice, David West - Google Books (First). O‟Reily Media Inc. Retrieved from

https://books.google.com.sa/books?hl=en&lr=&id=-

QpmamSKl_EC&oi=fnd&pg=PR9&dq=%5B72.%5D%09McLaughlin,+B.,+Po

llice,+G.,+West,+D.+(2006).+Head+First+Object+Oriented+Analysis+and+Des

ign,+O%27Reilly+Media,+Inc.&ots=nfaSZS_6nS&sig=PSboybGcB97a4i2sfxK

l03Yg4vU&re

Meiliana, Septian, I., Alianto, R. S., Daniel, & Gaol, F. L. (2017). Automated Test

Case Generation from UML Activity Diagram and Sequence Diagram using

Depth First Search Algorithm. Procedia Computer Science, 116, 629–637.

Elsevier B.V. https://doi.org/10.1016/j.procs.2017.10.029

Miao, H., Qian, Z., & Song, B. (2008). Towards automatically generating test paths

for Web application testing. Proceedings - 2nd IFIP/IEEE International

Symposium on Theoretical Aspects of Software Engineering, TASE 2008, 211–

176

218. https://doi.org/10.1109/TASE.2008.26

Mishra, D., Mishra, R., Acharya, A. A., & Das, D. P. (2019). Test case optimization

and prioritization based on multi-objective genetic algorithm. Advances in

Intelligent Systems and Computing, 741, 371–381. Springer Verlag.

https://doi.org/10.1007/978-981-13-0761-4_36

Mittal, S., & Sangwan, O. P. (2015). Metaheuristic Based Approach to Regression

Testing. International Journal of Computer Science and Information

Technologies, 6(3). Retrieved from www.ijcsit.com

Mittal, S., & Sangwan, O. P. (2018). Prioritizing test cases for regression techniques

using metaheuristic techniques. Journal of Information and Optimization

Sciences, 39(1), 39–51. https://doi.org/10.1080/02522667.2017.1372150

Mohapatra, S. K., Mishra, A. K., & Prasad, S. (2020). Intelligent Local Search for

Test Case Minimization. Journal of The Institution of Engineers (India): Series

B, 101(5), 585–595. https://doi.org/10.1007/s40031-020-00480-7

Mor, A. (2014). Evaluate the Effectiveness of Test Suite Prioritization Techniques

Using APFD Metric. IOSR Journal of Computer Engineering, 16(4), 47–51.

Retrieved from www.iosrjournals.orgwww.iosrjournals.org

Munialo, S. W., Muketha, G. M., & KOmieno, K. (2020). Automated Feature

Extraction from UML Images to Measure SOA Size. International Journal of

Recent Technology and Engineering, 9(2), 1132–1137.

https://doi.org/10.35940/ijrte.b4131.079220

Muthusamy, T., & K, S. (2014). Effectiveness of Test Case Prioritization Techniques

Based on Regression Testing. International Journal of Software Engineering &

Applications, 5(6), 113–123. https://doi.org/10.5121/ijsea.2014.5608

Nejad, Mo. R. (2018). Hybrid and dynamic criteria models for test case

prioritization of web application regression testing. University Technology

Malaysia.

Nooraei Abadeh, M. (2021). Genetic-based web regression testing: an ontology-

based multi-objective evolutionary framework to auto-regression testing of web

applications. Service Oriented Computing and Applications 2021 15:1, 15(1),

55–74. https://doi.org/10.1007/S11761-020-00312-Y

Nurmuradov, D., Bryce, R., Piparia, S., & Bryant, B. (2018). Clustering and

http://www.ijcsit.com/
http://www.iosrjournals.orgwww.iosrjournals.org/

177

Combinatorial Methods for Test Suite Prioritization of GUI and Web

Applications. Advances in Intelligent Systems and Computing, 738, 459–466.

Springer Verlag. https://doi.org/10.1007/978-3-319-77028-4_60

Padmnav, P., Pahwa, G., Singh, D., & Bansal, S. (2019). Test case prioritization

based on historical failure patterns using ABC and GA. Proceedings of the 9th

International Conference On Cloud Computing, Data Science and Engineering,

Confluence 2019, 293–298. Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/CONFLUENCE.2019.8776936

Panda, N., Acharya, A. A., Bhuyan, P., & Mohapatra, D. P. (2017). Test case

prioritization using UML state chart diagram and end-user priority. Advances in

Intelligent Systems and Computing, 556, 573–580. Springer Verlag.

https://doi.org/10.1007/978-981-10-3874-7_54

Pang, Y., Xue, X., & Namin, A. S. (2017). A Clustering-Based Test Case

Classification Technique for Enhancing Regression Testing. Journal of

Software, 12(3), 153–164. https://doi.org/10.17706/jsw.12.3.153-164

Parashar, P., Arvind, K., & Rajesh, B. (2012). How Time-Fault Ratio helps in Test

Case Prioritization for Regression Testing. International Journal of Software

Engineering, 5(25–36).

Paterson, D., Campos, J., Abreu, R., Kapfhammer, G. M., Fraser, G., & McMinn, P.

(2019). An empirical study on the use of defect prediction for test case

prioritization. Proceedings - 2019 IEEE 12th International Conference on

Software Testing, Verification and Validation, ICST 2019, 346–357. Institute of

Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/ICST.2019.00041

Pérez, C., & Marín, B. (2018). Automatic Generation of Test Cases from UML

Models (Vol. 21).

Pinkal, K., & Niggemann, O. (2017). A new approach to model-based test case

generation for industrial automation systems. Proceedings - 2017 IEEE 15th

International Conference on Industrial Informatics, INDIN 2017, 53–58.

Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/INDIN.2017.8104746

Pomeranz, I. (2018). Test compaction with dynamic updating of faults for coverage

178

of undetected transition fault sites. Proceedings of the Asian Test Symposium,

30–35. IEEE Computer Society. https://doi.org/10.1109/ATS.2017.19

Pradhan, D., Wang, S., Ali, S., Yue, T., & Liaaen, M. (2019). Employing rule mining

and multi-objective search for dynamic test case prioritization. Journal of

Systems and Software, 153, 86–104. https://doi.org/10.1016/j.jss.2019.03.064

Prasanna, M., & Chandran, K. R. (2009). Automatic Test Case Generation for UML

Object diagrams using Genetic Algorithm. In Int. J. Advance. Soft Comput. Appl

(Vol. 1). Retrieved from www.i-csrs.org

Praveen Ranjan, S. (2008). Test case prioritization. 4(3), 178–181. Retrieved from

https://scholar.google.com/citations?user=TjVMlqYAAAAJ&hl=en#d=gs_md_

cita-

d&u=%2Fcitations%3Fview_op%3Dview_citation%26hl%3Den%26user%3DT

jVMlqYAAAAJ%26citation_for_view%3DTjVMlqYAAAAJ%3Ad1gkVwhDp

l0C%26tzom%3D-180

Pretschner, A., & Philipps, J. (2005). Methodological issues in model-based testing.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 3472 LNCS, 281–

291. Springer Verlag. https://doi.org/10.1007/11498490_13

Qu, X., Acharya, M., & Robinson, B. (2012). Configuration selection using code

change impact analysis for regression testing. IEEE International Conference

on Software Maintenance, ICSM, 129–138.

https://doi.org/10.1109/ICSM.2012.6405263

Roongruangsuwan, S., & Daengdej, J. (2010a). A test case prioritization method with

practical weight factors. Journal of Software Engineering, 4(3), 193–214.

https://doi.org/10.3923/jse.2010.193.214

Roongruangsuwan, S., & Daengdej, J. (2010b). TEST CASE PRIORITIZATION

TECHNIQUES. Journal of Theoretical and Applied Information Technology ,

18(2), 45–60. Retrieved from www.jatit.org

Rothermel, G., Harrold, M. J., Ostrin, J., & Hong, C. (1998). An Empirical Study of

the Effects of Minimization on the Fault Detection Capabilities of Test Suites.

S.GeethaDevasena, M., & L. Valarmathi, M. (2012). Meta Heuristic Search

Technique for Dynamic Test Case Generation. International Journal of

http://www.i-csrs.org/
http://www.jatit.org/

179

Computer Applications, 39(12), 1–5. https://doi.org/10.5120/4869-7294

Sahoo, R. K., Ojha, D., Mohapatra, D. P., & Patra, M. R. (2017). AUTOMATIC

GENERATION AND OPTIMIZATION OF COURSE TIMETABLE USING A

HYBRID APPRAOCH. Journal of Theoretical and Applied Information

Technology, 15(1), 68–77. Retrieved from www.jatit.org

Sahoo, R., Mohapatra, D. P., Kumar Sahoo, R., & Patra, M. R. (2016). A Firefly

Algorithm Based Approach for Automated Generation and Optimization of Test

Cases. International Journal of Computer Sciences and Engineering

International Journal of Computer Sciences and Engineering. Retrieved from

www.ijcseonline.org

Sahoo, R. R., & Ray, M. (2018). Metaheuristic Techniques for Test Case Generation:

A ReviewMetaheuristic Techniques for Test Case Generation: A Review.

Journal of Information Technology Research, 11(1), 158–171.

Sampath, S., Bryce, R. C., Viswanath, G., Kandimalla, V., Günes, A., & Günes¸koru,

G. (2011). Prioritizing User-session-based Test Cases for Web Applications

Testing. International Journal of System Assurance Engineering and

Management, 2(2), 126–134.

Sarma, M., Kundu, D., & Mall, R. Automatic Test Case Generation from UML

Sequence Diagram. , 15th International Conference on Advanced Computing

and Communications (ADCOM 2007) § (2007). IEEE.

Shah, S. A. A., Bukhari, S. S. A., Humayun, M., Jhanjhi, N. Z., & Abbas, S. F.

(2019). Test case generation using unified modeling language. 2019

International Conference on Computer and Information Sciences, ICCIS 2019.

Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/ICCISci.2019.8716480

Shakya, S., & Smys, S. (2020). Reliable Automated Software Testing Through

Hybrid Optimization Algorithm. Journal of Ubiquitous Computing and

Communication Technologies (UCCT.

https://doi.org/10.36548/jucct.2020.3.002

Sharma, C., Sabharwal, S., & Sibal, R. (2014). A Survey on Software Testing

Techniques using Genetic Algorithm. International Journal of Computer

Science, 10(1), 381–393. Retrieved from http://arxiv.org/abs/1411.1154

http://www.jatit.org/
http://www.ijcseonline.org/
http://arxiv.org/abs/1411.1154

180

Singh, A., & Sumit Sharma, E. (2015). Functional Test Cases Generation Based on

Automated Generated Use Case Diagram. International Journal of Innovative

Research in Advanced Engineering (IJIRAE), 8, 2349–2163. Retrieved from

www.ijirae.com

Sivaji, U., Shraban, A., Varalaxmi, V., Ashok, M., & Laxmi, L. (2019). Optimizing

regression test suite reduction. Advances in Intelligent Systems and Computing,

815, 187–192. Springer Verlag. https://doi.org/10.1007/978-981-13-1580-0_18

Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2017). Reinforcement learning

for automatic test case prioritization and selection in continuous integration.

ISSTA 2017 - Proceedings of the 26th ACM SIGSOFT International Symposium

on Software Testing and Analysis, 12–22. Association for Computing

Machinery, Inc. https://doi.org/10.1145/3092703.3092709

Stankovic, J. A., & Ramamritham, K. (1990). What is Predictability for Real-Time

Systems?*. Real - Time Systems, 2, 247–254.

Strandberg, P. E., Sundmark, D., Afzal, W., Ostrand, T. J., & Weyuker, E. J. (2016).

Experience Report: Automated System Level Regression Test Prioritization

Using Multiple Factors. Proceedings - International Symposium on Software

Reliability Engineering, ISSRE, 12–23. IEEE Computer Society.

https://doi.org/10.1109/ISSRE.2016.23

Su, W., Li, Z., Wang, Z., & Yang, D. (2020). A Meta-heuristic Test Case

Prioritization Method Based on Hybrid Model. Proceedings - 2020

International Conference on Computer Engineering and Application, ICCEA

2020, 430–435. Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/ICCEA50009.2020.00099

Suman, & Seema. (2012). A Genetic Algorithm for Regression Test Sequence ... -

Ijarcce.com. International Journal of Advanced Research in Computer and

Communication Engineering, 1(7), 478–481. Retrieved from

https://www.yumpu.com/en/document/read/32212562/a-genetic-algorithm-for-

regression-test-sequence-ijarccecom

Suresh, Y., & Rath, S. K. (2014). Evolutionary algorithms for object-oriented test

data generation. ACM SIGSOFT Software Engineering Notes, 39(4), 1–6.

https://doi.org/10.1145/2632434.2632446

http://www.ijirae.com/
http://www.yumpu.com/en/document/read/32212562/a-genetic-algorithm-for-
http://www.yumpu.com/en/document/read/32212562/a-genetic-algorithm-for-

181

Suri, B., Mangal, I., & Srivistava, V. (2011). Regression Test Suite Reduction using

an Hybrid Technique Based on BCO And Genetic Algorithm. Special Issue of

International Journal of Computer Science & Informatics , II(1,2), 165–172.

Retrieved from

https://www.researchgate.net/publication/228460782_Regression_Test_Suite_R

eduction_using_an_Hybrid_Technique_Based_on_BCO_And_Genetic_Algorit

hm/citation/download

Swain, R., Panthi, V., & Behera, P. (2013). GENERATION OF TEST CASES

USING ACTIVITY DIAGRAM. International Journal of Computer Science

and Informatics, 3(2), 1–10. Retrieved from

https://www.researchgate.net/publication/255964244_GENERATION_OF_TES

T_CASES_USING_ACTIVITY_DIAGRAM/citation/download

Swain, S. K. (2010). Test case generation and priortization of object oriented

software using behavioral UML models. KIIT University, India.

Tan, C., Behjati, R., & Arisholm, E. (2019). A model-based approach to generate

dynamic synthetic test data: A conceptual model. Proceedings - 2019 IEEE 12th

International Conference on Software Testing, Verification and Validation

Workshops, ICSTW 2019, 11–14. Institute of Electrical and Electronics

Engineers Inc. https://doi.org/10.1109/ICSTW.2019.00026

Thillaikarasi, M., & Seetharaman, K. (2013). A Test Case Prioritization Method with

Weight Factors in Regression Testing Based on Measurement Metrics.

International Journal of Advanced Research in Computer Science and Software

Engineering, 3, 390–396.

Tonella, P., Avesani, P., & Susi, A. (2006). Using the case-based ranking

methodology for test case prioritization. IEEE International Conference on

Software Maintenance, ICSM, 123–132. https://doi.org/10.1109/ICSM.2006.74

Tripathy, A., & Mitra, A. (2013). Test case generation using activity diagram and

sequence diagram. Advances in Intelligent Systems and Computing, 174 AISC,

121–129. Springer Verlag. https://doi.org/10.1007/978-81-322-0740-5_16

Vanhecke, J., Devroey, X., & Perrouin, G. (2019). AbsCon: A test concretizer for

model-based testing. Proceedings - 2019 IEEE 12th International Conference

on Software Testing, Verification and Validation Workshops, ICSTW 2019, 15–

http://www.researchgate.net/publication/228460782_Regression_Test_Suite_R
http://www.researchgate.net/publication/228460782_Regression_Test_Suite_R
http://www.researchgate.net/publication/255964244_GENERATION_OF_TES
http://www.researchgate.net/publication/255964244_GENERATION_OF_TES

182

22. Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/ICSTW.2019.00027

Wang, C., Pastore, F., Goknil, A., & Briand, L. (2020). Automatic Generation of

Acceptance Test Cases from Use Case Specifications: an NLP-based Approach.

IEEE Transactions on Software Engineering, 1–1.

https://doi.org/10.1109/tse.2020.2998503

Wang, L., Yuan, J., Yu, X., Hu, J., Li, X., & Zheng, G. (2004). Generating test cases

from UML activity diagram based on gray-box method. Proceedings - Asia-

Pacific Software Engineering Conference, APSEC, 284–291.

https://doi.org/10.1109/APSEC.2004.55

Wang, R., Sato, Y., & Liu, S. (2019). Specification-based Test Case Generation with

Genetic Algorithm. 2019 IEEE Congress on Evolutionary Computation, CEC

2019 - Proceedings, 1382–1389. Institute of Electrical and Electronics

Engineers Inc. https://doi.org/10.1109/CEC.2019.8790233

Wang, S., Ali, S., Yue, T., Bakkeli, O., & Liaaen, M. (2016). Enhancing test case

prioritization in an industrial setting with resource awareness and multi-

objective search. Proceedings - International Conference on Software

Engineering, 182–191. IEEE Computer Society.

https://doi.org/10.1145/2889160.2889240

Wang, S., Buchmann, D., Ali, S., Gotlieb, A., Pradhan, D., & Liaaen, M. (2014).

Multi-objective test prioritization in software product line testing: An industrial

case study. ACM International Conference Proceeding Series, 1, 32–41.

Association for Computing Machinery.

https://doi.org/10.1145/2648511.2648515

Weixiang, Z., Yuhua, Q., Xuebo, Z., Bo, W., Min, Z., & Zhaohui, D. (2019). On Test

Case Prioritization Using Ant Colony Optimization Algorithm. 2767–2773.

Retrieved from https://ieeexplore.ieee.org/document/8855691/authors#authors

Wong, W. E., Wong, W. E., Horgan, J. R., London, S., & Agrawal, H. (1997). A

Study of Effective Regression Testing in Practice. IN PROCEEDINGS OF THE

EIGHTH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY

ENGINEERING, 230--238. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.2665

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.2665

183

Yadav, D. K., & Dutta, S. (2020). Regression test case selection and prioritization for

object oriented software. Microsystem Technologies, 26(5), 1463–1477.

https://doi.org/10.1007/s00542-019-04679-7

Yan, Y., Wu, L., Peng, Y., & Nie, C. (2019). A Test Case Design Method Based on

Path Depth Coverage. Proceedings - Companion of the 19th IEEE International

Conference on Software Quality, Reliability and Security, QRS-C 2019, 89–96.

Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/QRS-C.2019.00030

Yoo, S., & Harman, M. (2012). Regression testing minimization, selection and

prioritization: A survey. Software Testing Verification and Reliability, 22(2),

67–120. https://doi.org/10.1002/stv.430

Yoo, Shin, Harman, M., Tonella, P., & Susi, A. (2009). Clustering test cases to

achieve effective & scalable prioritisation incorporating expert knowledge.

Proceedings of the 18th International Symposium on Software Testing and

Analysis, ISSTA 2009, 201–211. New York, New York, USA: Association for

Computing Machinery, Inc. https://doi.org/10.1145/1572272.1572296

Yu-Hsin Chen, G., & Wang, P.-Q. (2014). Test Case Prioritization in a

Specification-based Testing Environment. 9(8), 2056–2064.

https://doi.org/10.4304/jsw.9.8.2056-2064

Zarrad, A. (2015). A Systematic Review on Regression Testing for Web-Based

Applications. Journal of Software, 10(8), 971–990.

https://doi.org/10.17706/jsw.10.8.971-990

Zhang, L. (2018, May 27). Hybrid regression test selection. 199–209. Association for

Computing Machinery (ACM). https://doi.org/10.1145/3180155.3180198

Zhang, T., Wang, X., Wei, D., & Fang, J. (2018). Test Case Prioritization Technique

Based on Error Probability and Severity of UML Models. International Journal

of Software Engineering and Knowledge Engineering, 28(6), 831–844.

https://doi.org/10.1142/S0218194018500249

Marinescu, P. D., & Candea, G. (2011). Efficient testing of recovery code using fault

injection. ACM Transactions on Computer Systems (TOCS), 29(4), 1-38

.Banabic, R. (2015). Techniques for identifying elusive corner-case bugs in systems

software (No. THESIS). EPFL.)

LIST OF PUBLICATIONS

Indexed Journal (SCOPUS)

1. Eglal Mohamed Khalifa, D. Jawawi, and H. A. Jamil, “An efficient method

to generate test cases from UML-use case diagram,” International Journal of

Engineering Research and Technology. ISSN 0974-3154, Volume 12,

Number 7 (2019), pp. 1138-1145.

	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENT
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	FROM UML – USE CASE DIAGRAM 89
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	A1: Investigating Existing Literature
	A2: Finding Subjects
	A3: Determine the Performance Metrics
	B1.1 Determine a Generating Method for TC
	B1.2 Designing a Generation technique for the proposed framework using Meta Heuristics
	B1.3: Development and Evaluation
	B2.1: Determine a Prioritizing Method for TC
	B2.2: Designing a TCP for the Proposed Framework: Apply Multi Objective Optimization Method
	B2.3: Development and Evaluation
	C1: Conducting a Comparative Study
	C2: Conclusion

