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ABSTRACT 

There is a great demand for visualizing natural atmospheric clouds in a real-

time environment. However, the challenge is maintaining the cloud visualization 

system performance due to the high computational cost, high sampling cost, intensive 

main memory consumption, and the deterioration of system performance. Therefore, 

this research aimed to optimize the rendering performance of a real-time atmospheric 

cloudscape visualization system via a set of efficient methods considering the 

volumetric cloud data as the input, the fly-through navigation as the user interaction, 

and the realistic real-time features as the output of the generated image. First, the 

volumetric-based path tracing method was enhanced by reducing the number of ray 

castings during the intersection test and determining the new pixels via the frame-to-

frame coherence mechanism. Second, the multiple light scattering method was 

improved by limiting the maximum number of sampling steps during the light 

bouncing procedure when calculating the lighting effects in the virtual environment. 

Third, the new hybrid visibility acceleration method was proposed. It took into account 

the view-dependency and multi-resolution cloud level of detail, focusing on distance-

based view volume segments and the optimized view frustum culling method to 

remove the invisible regions of clouds in a real-time environment. Based on the 

experiment conducted, the proposed approach in the prototype system was capable of 

achieving about 3.83 to 18.58 times faster computational time. This showed an 

increase of approximately 2.53 to 19.21 times in rendering speed and consumed about 

20.63% of the total computer’s main memory space compared to previous systems. 

Furthermore, all the domain experts have reviewed and verified that the prototype 

system has effectively produced high visual realism of the generated images. Based on 

the results of this study, an improved real-time volumetric cloudscape rendering 

optimization approach has been successfully developed to address the inability of real-

time rendering used in previous methods. 

  



vii 

ABSTRAK 

Terdapat permintaan yang besar untuk memaparkan awan atmosfera semula 

jadi dalam persekitaran masa-nyata. Walau bagaimanapun, cabarannya adalah untuk 

mengekalkan prestasi sistem pemaparan awan yang disebabkan oleh kos pengiraan 

yang tinggi, kos pensampelan yang tinggi, penggunaan ruang ingatan utama yang 

intensif dan kemerosotan prestasi sistem. Oleh itu, kajian ini bertujuan untuk 

mengoptimumkan prestasi perenderan sistem pemaparan landskap awan atmosfera 

masa-nyata melalui satu set kaedah yang efisien dengan mengambil kira data awan 

volumetrik sebagai input, navigasi melalui-penerbangan sebagai interaksi pengguna 

dan ciri-ciri masa-nyata realistik sebagai output imej yang dijana. Pertama, kaedah 

penjejakan laluan berasaskan volumetrik telah dipertingkatkan dengan mengurangkan 

bilangan penyebaran sinar semasa ujian persilangan dan menentukan piksel baharu 

melalui mekanisme pautan bingkai-ke-bingkai. Kedua, kaedah penyelerakan cahaya 

berganda telah ditambah baik dengan mengehadkan bilangan maksimum langkah 

pensampelan semasa prosedur pemantulan cahaya apabila mengira kesan pencahayaan 

dalam persekitaran maya. Ketiga, kaedah pemecutan keterlihatan hibrid baharu telah 

dicadangkan. Ia mengambil kira perincian kebergantungan-pandangan dan awan 

berbilang-resolusi, memfokuskan pada segmen isi padu pandangan berasaskan jarak 

dan kaedah penyingkiran ruang lingkup pandangan bagi membuang wilayah awan 

yang tidak kelihatan dalam persekitaran masa-nyata. Berdasarkan eksperimen yang 

dijalankan, pendekatan yang dicadangkan dalam sistem prototaip berupaya mencapai 

kira-kira 3.83 hingga 18.58 kali lebih pantas masa pengiraan. Ini menunjukkan 

peningkatan kira-kira 2.53 hingga 19.21 kali pertambahan dalam kelajuan perenderan 

dan menggunakan kira-kira 20.63% daripada keseluruhan ruang ingatan utama 

komputer berbanding sistem sebelumnya. Tambahan pula, semua pakar lapangan telah 

menyemak dan mengesahkan bahawa sistem prototaip telah menghasilkan realisme 

visual yang tinggi terhadap imej yang dijana. Berdasarkan hasil kajian ini, pendekatan 

pengoptimuman perenderan landskap awan volumetrik masa-nyata yang 

dipertingkatkan telah berjaya dibangunkan bagi menangani ketidakupayaan 

perenderan masa-nyata yang digunakan dalam kaedah sebelumnya.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

Computer graphics play an important role in visualizing compelling virtual 

environments (Sobota and Mattová, 2022). A virtual environment refers to any system 

that implements, organizes, and controls multiple virtual instances in a scene, as 

opposed to being in the real world (Souza et al., 2021; Slater et al., 2002). Technically, 

the virtual environment provides the illusion of presence in a place different from one’s 

current physical surroundings, potentially a non-existent or a real place situated at a 

different physical location or a point in time (Lee and Park, 2022; Stanković, 2015). It 

can be a computer-based model to bring the actual environment to life in digital form 

using computer graphics methods, especially in three-dimensional (3D) spaces (Marto 

et al., 2022; Toumi et al., 2021; Schroeder, 2008; Ellis, 1994). The virtual environment 

can display various 3D scenes in indoor, outdoor, or mixed of both scenes. Therefore, 

virtual environment visualizations have reached a wide range of applications, 

including video games, movie productions, visual simulations, scientific visualization, 

and many more (Palacios, 2022; Raateland et al., 2022; Yapp and Kim, 2022; Keil et 

al., 2021; Kraus et al., 2021; Rambach et al., 2021; Knight and Munro, 1999). 

Moreover, advanced virtual environment methods are currently available and have 

become the hot topics trending in the computer graphics research community. These 

include collaborative virtual environments, mobile platform-based virtual 

environments, immersive virtual reality, augmented reality, photorealistic special 

effects, virtual humans, and acceleration methods. 

Natural phenomena visualization is one of the crucial branches of scientific 

visualization in the virtual environment to visualize the outdoor scenes. In general, this 

phenomena visualization is essential for realizing the Digital Earth and understanding 

its elements using computer technologies (Betts, 2022; Boyd et al., 2022; Greinert et 
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al., 2022; Bauer et al., 2021; Xian et al., 2021; Liu et al., 2020). This research 

categorizes the visualizations of natural phenomena into three types: (i) atmospheric, 

(ii) ground, and (iii) aquatic phenomena. These categories are based on the basic 

information provided by the previous works (Ahrens, 2022; Rudenko et al., 2022; Ma 

et al., 2021; Hendrix et al., 2020; Heidorn and Whitelaw, 2010; Wolff and Yaeger, 

1993). Figure 1.1 shows the hierarchy of natural phenomena visualization in the virtual 

environment and its related subcomponents.  

 

Figure 1.1 Hierarchy of natural phenomena visualization in the virtual 

environment (black-filled rectangles represent the focused components of this 

research). 

 

Atmospheric phenomena visualizations become essential features in creating a 

realistic imitation of the natural environment. Non-rigid bodies (non-solid objects) 

represent the atmosphere’s structure due to its fuzzy and complex representations 

(Chen et al., 2022; Blaettler, 2021; Exline et al., 2008). In computer graphics, 

“participating media” is used to represent the atmospheric components. The 

subcomponents of the participating media contain gaseous media (clouds, fogs, haze, 

and hurricane), optical media (sky, rainbow, and aurora), and precipitation media (rain 

and snow) (Wu et al., 2022; Hendrix et al., 2020; Heidorn and Whitelaw, 2010; Wolff 

and Yaeger, 1993). In recent years, an increase in numerical model resolutions, the 

number of simulated parameters, and diversity of data sources has resulted in increased 

complexity of the related problems and, hence, higher challenges for 3D visualization 

(Fraboni et al., 2022; Rautenhaus et al., 2018). 
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Visualizing the atmospheric clouds in the virtual outdoor environment is vital 

in order to produce a realistic visual appearance of the atmosphere (Mirbauer et al., 

2022; Rolnick et al., 2022; Satilmis et al., 2022; Goswami, 2020; Rimensberger et al., 

2019). Atmospheric clouds are omnipresent in the Earth atmosphere, where they are 

significant actors in weather, hydrology, climate, and air chemistry (Spänkuch et al., 

2022). Besides, the atmospheric clouds are natural science components that can 

represent the mood of an environment (Pennonen, 2020). In meteorological studies, a 

cloud is a hydrometeor comprising of tiny particles of liquid water droplets or ice 

crystals or both, suspended in the atmosphere and typically not touching the ground 

(Odugo, 2018). Furthermore, the clouds are classified based on their height (or 

altitude), shape, and appearance. Due to its attractive appearance and myriad of shapes, 

the atmospheric cloud visualization is scientifically challenging to be developed 

because the cloud formation requires both knowledge about the large-scale 

meteorological environment as well as knowledge about the microphysical processes 

involved in cloud droplet and ice crystal formation (Lohmann et al., 2016).  

In video games, the clouds are frequently used to create a more believable 3D 

world. Recent advances in computer hardware technologies and computation 

capability have triggered the use of more detailed, realistic, and interactive 

representations of the cloud models (Kivi et al., 2022; Patry, 2021; Silvennoinen, 2021; 

Goswami, 2020; Ge et al., 2019; Hendrikx et al., 2013; Chandrasekar, 2010). Figure 

1.2 illustrates the hierarchy of the atmospheric cloud visualization system and its 

related areas of research focus. The divisions of each area are formulated from several 

previous works (Zhang et al., 2021; Goswami, 2020; Dobkin and Teller, 2017; Slater 

et al., 2002). In recently published works, the term “cloudscape” has often appeared to 

solve issues regarding large cloud formations involved in modeling, rendering, and 

animation of the atmospheric clouds (Sharma et al., 2021; Goswami, 2020; Webanck 

et al., 2018; Schneider, 2018; Schneider and Vos, 2017; Toft et al., 2016; Webb et al., 

2016). 
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Figure 1.2 Areas of research focus on implementing the atmospheric cloud 

visualization system (black-filled rectangles represent the focused areas of this 

research). 

 

Atmospheric cloud rendering is the most critical process and contributes to the 

atmospheric cloud visualization system. This process is the final stage of determining 

the color of each pixel on the screen. It generates a two-dimensional (2D) image in the 

form of a photorealistic or non-photorealistic appearance after assigning all the 

materials and graphic effects required to the cloud model (Mirbauer et al., 2022; 

Satilmis et al., 2022; Hempe, 2016). Several cloud rendering methods have been 

proposed for solving issues related to visual quality (e.g., Sde-Chen et al., 2021; Yu, 

2020; Zhang et al., 2020), performance (e.g., Wu et al., 2021; Bittner, 2020; Jiménez 

de Parga and Gómez Palomo, 2019) or both of them (e.g., Hofmann et al., 2021; Nair, 

2020). Real-time atmospheric volumetric cloud rendering is a hot topic in the computer 

graphics community to solve advanced issues in interactive graphic applications (Wu 

et al., 2022; Huo and Yoon, 2021; Akenine-Möller et al., 2018). However, real-time 

rendering and volumetric rendering are two different aspects that are very challenging 

tasks to be executed. Combining these aspects increases the difficulty in the context of 

computer hardware and computation capabilities to yield high real-time rates and high 

image quality.  

Therefore, there is an excellent need to render optimizations to tackle the 

problems mentioned earlier. The purpose of implementing the rendering optimizations 

is to accelerate the system performance by simplifying the complexity of the existing 

cloud rendering methods to the level that the system can maintain high frame rates 
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while producing a visually plausible image quality simultaneously (Czerninski and 

Schechner, 2021; Ronen et al., 2021; Sde-Chen et al., 2021; Toft et al., 2016). Ray 

tracing, lighting, and visibility of atmospheric clouds are three potential computer 

graphics methods that have high opportunities to be optimized because they are the 

major components contributing towards achieving efficient and effective quality of the 

volumetric clouds.  

Ray tracing (ray-based model) is a modern rendering approach (Marrs et al., 

2021; Haines and Akenine-Moller, 2019). Classic ray tracing, ray casting, ray 

marching, and path tracing are examples of the ray-based model. Previously, cloud 

visualization commonly exploited the traditional scanline approach (raster-based 

model) (e.g., Ang et al., 2018). The raster-based model transforms all geometry in the 

3D world into pixels to determine the final colors on the screen. In contrast, the ray-

based model starts shooting rays from each pixel of camera view to all geometry in the 

3D world, detecting intersections between rays and geometry, and accounting for the 

light source to obtain the final colors (Hofmann et al., 2021; Peddie, 2019; Begbie and 

Horga, 2019). Rasterized rendering is a quicker way of creating 3D imagery. However, 

it comes at the cost of image quality. Ray-traced rendering could provide high visual 

fidelity. Nevertheless, it is more computationally demanding (Kivi et al., 2022; Haines 

and Akenine-Möller, 2019). Interestingly, the transition from the traditional scanline 

approach to the modern ray tracing approach occurred due to NVIDIA’s revolutionary 

technology on the graphics processing unit (GPU). The related industry players are 

expected to shift rapidly towards parallel computing using a ray tracing approach to 

gain far higher performance (Marrs et al., 2021; Azultec, 2019). 

Illuminating the atmospheric clouds in the 3D virtual environment is very 

important in order to produce convincing visual results (Brinck et al., 2021; Wright, 

2021). The cloud lighting method is necessary to partner with the ray tracing method 

in realizing the realistic illumination model for atmospheric clouds. Atmospheric cloud 

lighting computations range from simple local illumination methods (e.g., Blinn, 1982; 

Bouthors et al., 2006) to more sophisticated global illumination methods such as ray 

tracing (e.g., Panin and Nikolenko, 2019) and path tracing (e.g., Hofmann et al., 2021; 

Max, 2021). However, implementing a multiple volume light scattering effect on the 
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clouds is a difficult task due to its highly repetitive computations in nature (Kivi et al., 

2022; Wu et al., 2022; Goswami, 2020). Several researchers proposed their methods 

(e.g., Mirbauer et al., 2022; Satilmis et al., 2022; Shihan et al., 2020; Kallweit et al., 

2017) to optimize the scattering processes. However, the real-time rate is hard to 

achieve due to computational overhead. Hence, there is space for improvement. 

In computer graphics, visibility determination is vital because only a small 

portion of the virtual scene (or world) is visible from a given viewpoint (Dang et al., 

2022; Koch and Wimmer, 2021; Hu et al., 2020; O'Rourke, 2017; Cohen-Or et al., 

2001; Hornung, 1984). Without visibility optimization, unnecessary computations 

inefficiently happened. There is a need for faster solutions to solve visibility-related 

problems. Visibility culling methods are ways to avoid processing the unnecessary 

objects that contribute nothing to the rendered image (Sicat et al., 2021; Mattausch et 

al., 2015; Cohen-Or et al., 2001). Recently, due to the rapidly increasing complexity 

of three-dimensional data sets, the investigation of suitable methods to control and 

adjust a given data set's level-of-detail (LOD) has been an active research area (e.g., 

Karis et al., 2021; Takikawa et al., 2021; Marcus, 2017; Jabłoński and Martyn, 2016). 

Incorporating visibility optimization into atmospheric cloudscape rendering would 

give a better real-time performance in time and space complexity. 

To sum up, this research attempts to solve the rendering optimization problems 

regarding the ray tracing, lighting, and visibility of the atmospheric cloudscapes. The 

research requires to account for the real-time and volume rendering aspects in the 3D 

virtual environment in order to achieve high-performance results. 

1.2 Problem Background 

This section explains several related research problems involved in rendering 

the atmospheric clouds. Rendering virtual atmospheric clouds is a long-standing 

problem in computer graphics. It is not always an easy task and has been researched 

for over 40 years. Based on the recent research works, the rendering of atmospheric 

clouds is highly demanded and exploited in video games (e.g., Patry, 2021; Hillaire, 
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2020; Nair, 2020; Pettersson, 2020; Ang et al., 2018; Babić, 2018; Hu et al., 2018; 

Häggström, 2018; Hasegawa et al., 2017), visual simulations (e.g., Röber et al., 2021; 

Sde-Chen et al., 2021; Wu et al., 2021; Jiménez de Parga and Gómez Palomo, 2019; 

Webanck, 2019; Duarte and Gomes, 2017), meteorological studies (e.g., Pałubicki et 

al., 2022; Rudenko et al., 2022; Hädrich et al., 2020; Xie et al., 2020), virtual reality 

(e.g., Zhang et al., 2021; Wright et al., 2019), and animated movies (e.g., Wu and Fu, 

2022; Hanrahan and Catmull, 2021; Junede and Asp, 2020; Goswami, 2019).  

For example, atmospheric clouds are one of the essential elements in producing 

visual effects in filmmaking. Based on the statistic of the visual effects breakdown 

from 2010 to 2013 (see Figure 1.3), there are six key elements that were frequently 

employed in realizing the desired visual effects (Museth et al., 2019). These include 

hero effects (character-related effects), destruction, dust (or smoke), fire, liquids, and 

clouds. Even though the percentage of exploiting the cloud elements is small, it still 

contributes to the successful making of the visual effects in terms of convincing visual 

appearances, particularly for outdoor scenes. Besides, the importance of atmospheric 

clouds can be observed in the development of the weather system. Based on the flight 

simulation community survey conducted by Navigraph (2021), Figure 1.4 shows that 

most of the respondents chose that the weather, including clouds, is very important in 

terms of the realistic weather experience (visual quality) and visually exciting 

experience (perception and presence). 

 

Figure 1.3 Main elements in visual effect productions (Museth et al., 2019). 
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Figure 1.4 Importance of weather simulation (Navigraph, 2021). 

 

The cause-effect diagram in Figure 1.5 illustrates the category breakdown of 

the issues (causes) regarding the unoptimized atmospheric cloud rendering problems 

(effect). The issues are divided into five main factors that contributed to the rendering 

problems of the atmospheric clouds. These include system, hardware, data 

representation, user, and method. 

In this thesis, the system refers to a general application environment that makes 

the users’ workable space. The real-time virtual environment (online-based system) is 

becoming the current trend and highly demanding feature in computer graphics 

applications. However, rendering this real-time feature is excessively expensive 

without extensive optimizations (Kivi et al., 2022; Toft et al., 2016). An example of a 

case study by Hasegawa et al. (2017) stated that it was challenging to understand and 

realize the virtual world in a real-time environment for the game “FINAL FANTASY 

XV” due to its highly-advanced requirements. Moreover, the real-time feature that 

accounts for 3D volumetric- or physics-based representation is difficult to be 

incorporated in several graphical applications due to its performance requirement (Kivi 

et al., 2022; Wu et al., 2022; Nair, 2020; Xie et al., 2020; Goswami, 2019; Vyatkin 

and Dolgovesov, 2019; Babić, 2018; Goswami and Neyret, 2017). 
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Figure 1.5 Summary of existing issues for an unoptimized atmospheric cloud 

rendering. 

 

In order to achieve high performance and maintain the system’s stability, high 

frame rates are the key metric for performance measurement and evaluation. However, 

it still appears to be a problem in the computer graphics community to improve and 

maintain system stability in real-time atmospheric cloud rendering systems (Chen et 

al., 2022; Kivi et al., 2022; Wright et al., 2019; Xie et al., 2019). In some cases, even 

though the system has successfully created incredible cloud formations, it, 

unfortunately, cannot stabilize the real-time frame rates during run-time (Türe et al., 

2021; Junede and Asp, 2020). 

The scalability of the scene also plays an essential role in the performance of 

the atmospheric cloud rendering system. The scene's size depends on the scope of the 

3D domain that is targeted (Herrera et al., 2021; Webanck et al., 2018). Creating large 

cloud environments with large spatial extents would be a burden to the system to 

manage the scene smoothly in a real-time environment (Hädrich et al., 2020; Wright 

et al., 2019). Furthermore, the scene’s complexity has added to the difficulty of 

developing efficient and effective 3D cloud scenes due to its complex structure, 

uncertain characteristics, and unique properties of lighting effects (Xie et al., 2019). 



 

10 

In terms of visual image quality, it is a vital factor to produce realistic outputs 

for final rendered images. However, there is a trade-off between quality and 

performance. For graphical applications that consider high fidelity features as a 

primary element, such as meteorology visualization, it is challenging to render high-

quality clouds, especially involving large-scale volumetric data (Zhang et al., 2022; 

Ronen et al., 2021; Sde-Chen et al., 2021; Zhang et al., 2019). High resolutions of 

outputs are needed for applications that emphasize the physics-based accuracy and 

naturalness of the visual clouds. However, previous work showed very coarse visual 

resolutions (Goswami and Neyret, 2017) or lacked cloud images' natural appearance 

(Junede and Asp, 2020). Simple texture-based cloud representation could be applied, 

but the visual image quality looks flat appearance and unrealistic (Babić, 2018; 

Vyatkin and Dolgovesov, 2019). Flat textures could display visual artifacts (Hillaire, 

2020). The artifacts could also happen at the adjacent bricks' boundaries when 

exploiting the hierarchical-based cloud representation (Zhang et al., 2019). 

Interactivity is defined by the significant interaction between the user and the 

system. Previously, Goswami (2019) argued that physics-based cloud representation 

is inappropriate to be developed for interactive applications. Moreover, adding an 

interactive dynamic rendering feature into the cloud visualization system would worst 

the performance in terms of efficiency. Certain cloud rendering systems are suitable 

for specific types of applications only. For example, Nowak et al. (2018) pointed out 

that the texture-based cloud representation is only suitable for ground-level games 

such as first-person or third-person game genres. In comparison, Vyatkin and 

Dolgovesov (2019) stated that texture-based clouds could only work well in 3D scenes 

where the camera is far from the clouds. However, as mentioned earlier, they claimed 

that this representation is problematic against the open-world game types where it is 

intolerable to render scenes near or inside the clouds interactively. 

The data representation defines the description of the cloud model and its 

properties used. The first issue is related to the size of the data. Häggström (2018) 

highlighted the cloud coverage issue when dealing with image-based cloud 

representation. An extensive collection of high-resolution images is needed to 

represent the different types of cloud coverage (Satilmis et al., 2022; Mirbauer et al., 
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2022; Sde-Chen et al., 2021). In addition, frequent data retrieval and updates involved 

affect the rendering performance.  

The accuracy of data description also plays a significant role in modeling and 

rendering atmospheric clouds. However, it is challenging to describe cloud data with 

an accurate model and method for weather research and forecasting (Dandini et al., 

2022; Xie et al., 2019). They also claimed it is difficult to propose and design a suitable 

model to link virtual clouds with actual physical data (Xie et al., 2020). 

Atmospheric clouds are natural objects in the sky with fuzzy shapes and 

appearances. There is a need for suitable data representation to be the base of the cloud 

model. Polygonal-based representation might be well-suited for solid objects, but it is 

less suitable for participating media such as clouds (Kobak and Alda, 2017). Vast 

collections of polygonal geometries are needed to visualize complicated atmospheric 

clouds, and therefore this high polygon count could burden the system (Nilsson, 2022; 

Nair, 2020). 

The other issue is related to the limitations of existing cloud representations. 

According to previous work (Mirbauer et al., 2022; Türe et al., 2022; Sde-Chen et al., 

2021; Häggström, 2018; Iwasaki et al., 2017), it is challenging to synthesize and render 

realistic atmospheric clouds by acquiring and analyzing from a single or multiple 

photographic images (image-based representations). Applying the physics-based 

representation (e.g., Goswami and Neyret, 2017) or volumetric-based representation 

(e.g., Pettersson, 2020; Webanck, 2019) has constraints on the detailed appearance of 

clouds due to repeated use of small volumes in order to save memory usage during 

run-time processing. 

The hardware represents the machine to run the system. In general, applying 

complicated cloud rendering methods for large-scale data requires more computer 

resources to run smoothly (Kivi et al., 2022; Goswami, 2020; Hu et al., 2018). Based 

on previous experience on implementing the real-time atmospheric cloud rendering 

system, there are some issues regarding the computer hardware, including the CPU 

overhead (Jiménez de Parga and Gómez Palomo, 2019), high memory consumption 
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(Bittner, 2020), under-utilized GPU (Bittner, 2020), and a large amount of storage 

space needed for keeping the high-resolution images representing different cloud types 

and variations (Häggström, 2018). 

The user refers to the human that interacts and perceives with the system. Most 

3D interactive graphical applications involve user navigation into the scene to explore 

and familiarize themselves with the virtual environment. However, by applying the 

texture-based representation, the user would lose the sense of scene navigation due to 

the tricky flat appearance of images to represent the clouds (Türe et al., 2021; Wu et 

al., 2021; Babić, 2018). Meanwhile, by implementing the volumetric-based cloud 

representation, the visual quality of the system could be improved. However, it 

prevents smooth interaction by the user with the scene due to lagging problems 

(Hädrich et al., 2020). In terms of visual perception, rendering unrealistic clouds would 

cause a static appearance and lose depth of perception due to the limited dimension of 

texture-based representation (Hillaire, 2020; Babić, 2018).  

In video production rendering and game engine development, 3D artists and 

designers are the primary users capable of producing photorealistic results of rendered 

images. The key feature of their capability is the freedom to control parameters related 

to the cloud properties. However, providing artistic parameter control to these users is 

not an easy task (Wu and Fu, 2022; Hu et al., 2018). Determining specific parameters 

requires an understanding of users towards the characteristics of the clouds. Trial-and-

error efforts are needed to familiarize with the parameters to yield better results. 

Previously, lacking parameter controls has caused unsatisfied results of cloud 

appearance (Webanck et al., 2018). 

The method refers to the issues that involve particular procedures to render the 

atmospheric clouds. Algorithm complicacy is one factor that hinders the development 

of real-time atmospheric cloud rendering and visualization systems. In general, 

rendering engines of modern interactive applications have become highly complex 

heaps of special-purpose methods (Nilsson, 2022; Wu, 2021; Brechpunkt, 2020, 

Goswami, 2020). Specifically, it is a complicated task to implement the atmospheric 

cloud rendering that considers physically-accurate models (Hädrich et al., 2020; 
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Webanck et al., 2018; Duarte and Gomes, 2017; Favorskaya and Jain, 2017). It is 

because it involves complex numerical calculations and physics formulations. The 

complicacy of method and algorithm would increase if the volumetric-based 

representation or hybridization method is implemented (Max, 2021; Hu et al., 2018; 

Goswami and Neyret, 2017). 

The computational complexity usually involves the high time complexity to 

run the cloud rendering method. Most of the respective researchers agreed that it is a 

high computational cost to render the atmospheric clouds either using volumetric-

based (Max, 2021; Hädrich et al., 2020; Vyatkin and Dolgovesov, 2019; Babić, 2018; 

Häggström, 2018), physics-based (Nilsson, 2022; Xie et al., 2020; Goswami, 2019; 

Duarte and Gomes, 2017), texture-based (Mirbauer et al., 2022; Hillaire, 2020), or 

hierarchical-based representation (Hofmann et al., 2021; Sharma et al., 2021; Zhang 

et al., 2019). Consequently, per-frame cloud rendering becomes slower due to huge 

computation (volumetric- and physics-based), expensive updates of look-up tables 

(LUT) when there is a change of cloud properties (texture-based), or increase in 

complexity when implementing the slicing and rendering batches on graph structure 

(hierarchical-based).  

The last issue is the domain dependency in which special care needs to be taken 

to render personalized cloud data concerning the target domain. Previously, it was 

reported that only a few methods were proposed for meteorological-related purposes 

accounting for weather forecast data (Rudenko et al., 2022; Röber et al., 2021; Xie et 

al., 2019). Therefore, there is a great demand and opportunities for developing this 

domain-dependent method. 

In the following subsections, this thesis divides the primary explanations of 

problem background into three main focus rendering optimization methods as 

mentioned in Section 1.1: (i) ray tracing, (ii) lighting, and (iii) visibility. Figure 1.6 

illustrates the summary of the related problems.  
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Figure 1.6 Summary of existing cloud ray tracing, lighting, and visibility problems 

towards the low-performance issue of atmospheric cloud rendering. 

 

1.2.1 Problems of Cloud Ray Tracing Methods 

The cloud ray tracing problems can be divided into three major components: 

computational, sampling, and memory costs. Regarding the high computational cost, 

most of the previous ray tracing-based methods (classical ray tracing, ray marching, 
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and path tracing) require intensive computations to complete the whole rendering 

process (Kivi et al., 2022; Hofmann et al., 2021; Ang et al., 2018). The reasons for this 

problem are because of high recursive computations of ray-related operations (Steger 

et al., 2022; Jiang and Kainz, 2021; Barré-Brisebois et al., 2019; Jiménez de Parga, 

2019), productions of high image quality with an acceptable error (Mirbauer et al., 

2022; Brechpunkt, 2020; Kallweit et al., 2017), and lack capability of graphics 

hardware (Hofmann et al., 2020). Consequently, it has affected the system's 

performance, is a drawback for real-time processes, and is mainly applied to offline 

applications (Hofmann et al., 2021). For example, the previous methods such as path 

tracing that were impractical to be used for real-time previously would be the potential 

candidate for the modern solution of atmospheric cloud rendering in computer 

graphics to produce high performance and image quality under one roof of the 

framework without facing the complex architecture of 3D rendering. Based on the 

recent related work done by Hofmann et al. (2021), they were capable of performing 

rendering of the Disney Cloud consisting of 188.4 million voxels, which consumed 

60.7 milliseconds of total computational time during runtime. Note that the minimum 

requirement for developing the real-time system is to achieve less than 16.67 

milliseconds per frame. Therefore, there is still a gap in improving the performance 

based on the computational time in a real-time environment. 

The sampling process is the backbone of the ray tracing-based methods causing 

the high sampling cost issue. To realize the high quality of rendered images involves 

many samples to shoot and determine the affected surfaces of atmospheric clouds due 

to reflections of rays in the 3D scene (Hofmann et al., 2021; Huo and Yoon, 2021; 

Hofmann et al., 2020; Barré-Brisebois et al., 2019; Toft et al., 2016). However, 

although recent advancements in consumer graphics hardware, the achievable sample 

counts for real-time path tracing remain low (Wu et al., 2022; Huo and Yoon, 2021; 

Keller et al., 2019). In ray marching methods, the user needs to set up the step length 

parameter for sampling purposes. Thus, biased user configurations occurred (Villemin 

et al., 2018). If the step length is too big (low number of samples), it affects the quality 

of the final rendered results. Otherwise, it produces excellent results, but the trade-off 

with performance is due to the high number of samples. The unbiased integration 

methods can be an alternative approach, but due to the high-frequency functions, it 

would not be easy to implement in the real-time environment (Villemin et al., 2018). 
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While classical ray tracing and path tracing methods could provide elegantly realistic 

results, the randomized nature of these methods could produce noise artifact results for 

each rendered frame (Brechpunkt, 2020). Therefore, additional post-filter work is 

required to denoise or smoothen the related images (Zhang et al., 2022; Hofmann et 

al., 2021; Barré-Brisebois et al., 2019). 

The high memory cost requires memory-intensive processes to load and render 

a large number of atmospheric clouds in a real-time environment. Due to high storage 

involvement, it must be loaded into the main memory to keep the non-rigid cloud 

bodies during the run-time processing phase (Wu et al., 2022; Hofmann et al., 2021; 

Max, 2021; Goswami, 2020; Barré-Brisebois et al., 2019; Kobak and Alda, 2017). 

1.2.2 Problems of Cloud Lighting Methods 

The cloud lighting problems are also divided into computational, sampling, and 

memory costs. In terms of high computational cost, the key factor contributing to this 

problem is the complex interactions of light and clouds that involve a lot of processing 

time, especially considering the scattering of lights (Satilmis et al., 2022; Wu et al., 

2022; Levis et al., 2021; Ronen et al., 2021; Türe et al., 2021; Dobashi et al., 2017). 

Implementing physically-correct cloud lighting involves intensively solving radiative 

transfer equation (RTE) to estimate the light transport behavior involving multiple 

scattering of lights (Dandini et al., 2022; Ronen et al., 2021; Wu et al., 2021; Zhu, 

2020; Kubota, 2018; Kallweit et al., 2017; Kutz et al., 2017). As a result, it is not easy 

to compute while maintaining interactive or real-time rates. Zhu (2020) pointed out 

that this computational challenge would slow down the production speed of developers 

and artists as users of the system. Moreover, producing realistic cloud lighting 

involves high recursive computations due to the repetitive rendering equation (Nimier-

David et al., 2022; Czerninski and Schechner, 2021; Talčík and Kovács, 2019). 

Goswami (2020) stated that the computational cost could be reduced by simplifying 

and limiting the light scattering into a single form (single scattering method), but 

accordingly, unrealistic results would be obtained. The hierarchical light clustering 

method makes it difficult to control the computational cost due to intensive traversing 
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lighting hierarchy structure to determine the correct lighting effects towards the 

corresponding clouds (Brechpunkt, 2020). 

In general, the high sampling cost involves many processes to determine the 

lighting effects on the atmospheric clouds. Most of the time, it requires a high sampling 

of lighting steps (Kivi et al., 2022; Hofmann et al., 2021; Huo and Yoon, 2021; Zheng 

et al., 2021; Toft et al., 2016). Kutz et al. (2017) reported many expensive sampling of 

spatially varying volume parameters involved when applying the delta tracking 

techniques. Besides, many samples are also required to reduce estimation variance for 

Monte Carlo-based volumetric cloud rendering (Satilmis et al., 2022; Wu et al., 2022; 

Sde-Chen et al., 2021; Zhu, 2020; Kallweit et al., 2017).  

The sampling cost can be further refined into cloud and illumination 

components. Regarding the high cloud complexity, there is a challenge to render 

complex cloud characteristics such as high albedo materials efficiently and accurately 

(Nilsson, 2022; Huo and Yoon, 2021; Wu et al., 2021; Goswami, 2020; Kallweit et al., 

2017). Regarding the high illumination complexity, it is a cumbersome task to process 

in real-time due to the nature of light scattering and absorption in the clouds, especially 

the in-scattering, multiple scattering, and inter-reflection components (Fernandes, 

2021; Ronen et al., 2021; Brechpunkt, 2020; Shihan et al., 2020; Barré-Brisebois et 

al., 2019; Guo et al., 2019; Panin and Nikolenko, 2019; Xie et al., 2019; Nowak et al., 

2018). However, there is a demand for efficient rendering methods and approximations 

to capture multiple scattering (Hofmann et al., 2021; Goswami, 2020). The use of RTE 

in producing high realistic cloud lighting effects involves complex radiometric 

functions that prevent real-time rendering in modern graphics hardware (Jiménez de 

Parga and Gómez Palomo, 2018). For example, according to Hofmann et al. (2021), 

they exploited 5.3 million path sampling for rendering the Disney Cloud, resulting in 

16 frames per second of the rendering speed in real-time. This obtaining result was 

slower than the minimum standard of real-time rate, which is 60 frames per second. 

Hence, there is an opportunity to enhance the sampling cost and to fill in the gap to 

increase the performance in terms of the rendering speed for a real-time environment 

considering the acceptable visual realism concurrently. 
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The high memory cost also becomes a cause of cloud lighting problems. Based 

on the previous work, most of this problem is due to the pre-processing step in 

capturing the cloud lighting information (also called pre-computed lighting). Although 

this pre-computed lighting method is faster than the conventional scattering 

computation method, it incurs a higher storage cost (Guo et al., 2022; Kivi et al., 2022; 

Wu et al., 2022; Ge et al., 2019). In addition, this high storage cost of lighting 

information would exceed any memory bounds (Brechpunkt, 2020). 

1.2.3 Problems of Cloud Visibility Methods 

In general, the visibility in computer graphics can be divided into two types. 

The first type is focusing on visual appearance to produce high quality images in 3D 

environment. The related works include the use of image-based methods (e.g., 

Mirbauer et al., 2022; Satilmis et al., 2020; Iwasaki et al., 2017), ray-tracing based 

methods (e.g., Miller et al., 2019; Webanck et al., 2018), neural-based methods (e.g., 

Zhang et al., 2021; Zhang et al., 2020), physics-based methods (e.g., Hädrich et al., 

2020; Guo et al., 2019), and meteorological-applied methods (e.g., Yu, 2020; 

Rimensberger et al.,  2019). The second type is focusing on performance in order to 

reduce the system overhead and level up the system efficiency and stability 

simultaneously (e.g., Hofmann and Evans, 2021; Bittner, 2020; Dai et al., 2020). Both 

visibility types are essential in developing realistic real-time 3D visualization systems 

in order to obtain satisfactory results based on user perception and experience in virtual 

environment (Chen et al., 2022; Jiménez de Parga and Gómez Palomo, 2018). 

Visibility computation is still a long-standing problem in computer graphics 

(Koch and Wimmer, 2021). The cloud visibility problems are divided into 

computational, memory, and method integration costs. Regarding the high 

computational cost, the main problem is how much visible data is to be displayed at 

each frame concerning the viewpoint and field of view during the run-time. It 

is complex to determine the visible set areas in a real-time environment. Most real-

time visibility-related methods have only limited the view and display to a position 

near the ground (Koch and Wimmer, 2021; Pettersson, 2020). However, there is a need 
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to develop real-time applications that account for non-ground views as a base of the 

system, such as flight simulation. In addition, only a few methods enable rendering 

and visualization of the entire planet from the outer space view, including fully 

volumetric cloud layers (Pettersson, 2020). Besides, there is a challenge in visibility 

updates if a new viewpoint or orientation occurs due to high repetitions of visibility 

computations (Max, 2021). As a result, this caused slow convergence to obtain the 

final rendered images optimally. 

A large scale of atmospheric cloudscape data would be involved in the high 

memory cost. It would affect the performance of the main memory used to load and 

display the entire clouds on the screen. In general, the causes of the high memory usage 

are due to the large size of data (Nilsson, 2022; Czerninski and Schechner, 2021; Hu 

et al., 2018; Wang et al., 2012). It would be more problematic if the type of object 

representation used to model the atmospheric clouds is too complex such as using 

volumetric representation (Fernandes and Walter, 2020; Jiménez de Parga, 2019; 

Babić, 2018). On the one hand, there is a demand for efficient rendering of large-scale 

clouds covering hundreds of kilometers or areas (Dobashi et al., 2017). On the other 

hand, there is a demand for real-time rendering improvements for larger cloud volumes 

with high density and albedo (Hofmann et al., 2021). For example, based on the recent 

work done by Hofmann and Evans (2021), their system consumed about 585.2 MB of 

memory for applying and executing the baseline approach (Museth, 2021). Thus, there 

is a chance to improve memory usage while running the cloudscape visualization 

system in a real-time interactive environment. 

There are several recent works on 3D visibility optimizations in computer 

graphics to accelerate the system's performance (Ronen et al., 2021; Zhou et al., 2021; 

Hu et al., 2020; O'Rourke, 2017; Barringer et al., 2016). However, incorporating 

different methods to enhance efficiency further is not an easy task. In recent solutions 

towards rendering atmospheric clouds, implementing the ray tracing-based method 

would be preferable as a base approach for rendering instead of the rasterization 

method. Adding other optimization methods into ray tracing to accelerate the rendering 

process is becoming the trend. Nonetheless, high method complexity would challenge 

the computer graphics community. It is due to the inflexible integration of different 
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methods. Based on Keller et al. (2019), there is a lack of adaptation of ray tracing and 

level-of-details method. This unsolved problem would be an opportunity for the 

researchers to explore and solve it. 

1.3 Problem Statement  

The central problem to be researched in this proposed study is the lack of 

rendering optimization towards the volumetric cloudscape in the real-time 3D virtual 

environment. As a basis for the study, this research identified the problem threefold. 

First, the issue is the high computational cost of implementing the real-time 

interactive volumetric path tracing method on consumer-level computer hardware due 

to a lot of processing power needed to compute direct and indirect ray shooting paths 

towards atmospheric cloudscapes recursively for the intersection test. Consequently, 

it requires a longer time to complete the process, thus slowing down the production of 

the developers or designers to produce high-quality results due to frequent hiccup 

visual occurrences and navigation systems. There is a great demand for an efficient 

ray tracing-based rendering method for atmospheric cloudscapes to be realized in real-

time using a volumetric element as a base of object representation. Based on the recent 

work, they could only rendered the atmospheric clouds consuming 60.7 milliseconds 

of total computational time during runtime. Therefore, there is still a gap in improving 

the performance based on the computational time in a real-time environment. 

Second, the issue is the high sampling cost of capturing the natural lighting 

effects of atmospheric clouds in a real-time environment. Even though this high 

sample count would produce a realistic quality of rendered images, it is far too slow to 

be used in real-time interactive applications due to slow rendering speed (low frame 

rates). Consequently, a limited number of samples could be applied in a real-time 

environment in order to maintain performance and realism. The recent work exploited 

5.3 million path sampling for rendering the atmospheric clouds, resulting in 16 frames 

per second of the rendering speed in real-time. This obtaining result was slower than 

the minimum standard of real-time rate (60 frames per second). Hence, there is an 
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opportunity to enhance the sampling cost and to fill in the gap to increase the rendering 

speed performance for a real-time environment considering the acceptable visual 

realism concurrently. 

Third, the issue is the high memory cost of 3D volumetric representation of 

cloudscape rendering in real-time. It is due to many uniform volume elements (voxels) 

covered in the field of view, especially when dealing with the fly-through-based 

navigation system that involves exploring and penetrating the 3D volumetric clouds 

interactively. This large voxel count to be rendered and updated would intensify 

memory consumption. In the worst-case scenario, the system would be terminated due 

to the insufficient memory available during run-time. Hence, there is a high demand 

for a method to manage memory usage in a real-time environment by considering the 

visibility aspect of a 3D scene via the level-of-detail of volumetric clouds concerning 

the viewpoint and field of view. Note that the recent work consumed about 585.2 MB 

of memory storage for applying and executing the baseline approach. Thus, there is a 

chance to improve memory usage while running the cloudscape visualization system 

in a real-time interactive environment. 

1.4 Research Goal  

The main goal of this research is to propose the real-time volumetric rendering 

optimization approach for cloudscapes in a 3D virtual environment that accounts for 

the ray tracing, lighting, and visibility aspects of atmospheric clouds with better 

performance in terms of the computational, sampling, and memory costs and 

acceptable visual realism of the final rendered images. 
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1.5 Research Objectives 

The objectives of this research are: 

(a) To enhance the path tracing method that could reduce the computation time of 

rendering the atmospheric cloudscape.  

(b) To improve the cloud lighting method accounting for the multiple scattering of 

lights that could reduce the number of samples to capture light information of 

the atmospheric cloudscape and accelerate the speed performance of the 

system. 

(c) To propose a new hybrid cloud visibility acceleration method considering the 

view-dependent, multi-resolution level-of-detail and invisible culling that 

could reduce memory usage to minimize the scene complexity of the real-time 

volumetric atmospheric cloudscape rendering. 

1.6 Research Scopes  

The research focuses on optimizing the rendering performance of atmospheric 

clouds in a real-time virtual environment. The scopes of this research are bound by 

several limitations, which are as follows:  

(a) This research focuses on the rendering components of atmospheric clouds. 

Cloud detection, modeling, and animation are out of the scope. Specifically, 

this research only looks into the performance optimization aspect of the 

rendering component. Time and space complexity are the critical criteria for 

implementing the performance optimization aspect. Note that the performance 

aspect is the primary aim of this research. Meanwhile, the visual realism aspect 

would be a secondary aim to balance high performance and high image quality. 

To evaluate the realisticness of the visual rendered images, the reviews of the 

domain experts are required to present the subjective assessment results. 
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(b) This research focuses on rendering static cloudscapes. Animated cloudscapes 

are not covered. Managing static clouds is considered a big enough research 

scope in the computer graphics community (Kivi et al., 2022; Wu et al., 2022; 

Goswami, 2020; Cerezo et al., 2005). 

(c) This research uses volumetric representation for atmospheric clouds. Volume-

based representation is the most natural way of representing the 3D object in 

the real-world (Goswami, 2020; Hufnagel and Held, 2012; Cerezo et al., 2005). 

Specifically, this research uses the sparse-based volumetric cloud data sets as 

the inputs for the system to operate. These data sets are well-developed, robust, 

high availability, trendy, and primarily used in computer-generated imagery 

(CGI) movies (Max, 2021; Hofmann et al., 2021; Pettersson, 2020; Jabłoński 

and Martyn, 2016; Hoetzlein, 2016; Palmer et al., 2014; Museth, 2013). 

(d) This research focuses on the ray tracing-based rendering method instead of the 

raster-based rendering method (rasterization), which is now becoming the 

conventional method and too complex to implement (Turquin, 2020; McGuire, 

2019; Christensen et al., 2018). In contrast, ray tracing is a current trend for 

graphical interaction applications due to its high flexibility and versatility of 

visualizing the natural aspects of the real-world scene (Durand, 1999). 

(e) This research is not involving cloud computing and point clouds. These two 

terms frequently appear while searching on cloud rendering. Cloud computing 

refers to the technology or infrastructure provided for establishing parallel 

computing on multiple machines. In this thesis, the research was conducted on 

a single machine only. The point clouds refer to the representations of 3D 

objects in point form in which most of the objects used in the research work 

are not related to the atmospheric clouds. Thus, both terms were not considered 

in this research. 
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1.7 Research Significance 

Research on atmospheric cloud rendering and visualization is crucial in a wide 

range of applications and domains. This thesis explains and highlights the significance 

of this research based on five impacts: the global world, industries, government 

sectors, communities, and body of knowledge.  

1.7.1 Impact on Global World 

The Sustainable Development Goals (SDGs) are designed for United Nations 

(UN) Agenda 2030, consisting of 17 interlinked global goals, as illustrated in Figure 

1.7. This research contribution is close to SDG 13 (Climate Action). There is a need 

to improve the climate projections, including lifting the existing monitoring and 

forecasting systems to understand better the natural phenomena of land-atmosphere-

ocean feedback, primarily via the incorporation of the computer-based model 

(Kulmala et al., 2021; ITUNews, 2017). Thus, the role of visualizing and rendering the 

atmospheric clouds plays as one of the crucial elements in climate activities. It could 

be used to develop and further support Earth system simulators that would be a crucial 

tool to meet the needs for the SDG. It could also help in decision-making contexts 

where weather and climate impacts could deliver various levels of complexity for 

decision-makers in related domains and applications (Griggs et al., 2021; World 

Meteorological Organization, 2021). 

According to the research report on the global market study (Next Move 

Strategy Consulting, 2021), global visualization and 3D rendering software have 

witnessed rapid growth in the market due to the high demand for virtual environment 

systems especially accounts for real-time display, cost-effectiveness, and time 

efficiency. At an estimated value of over USD 1.63 billion in 2019, the Global 

Visualization and 3D Rendering Software Market is predicted to thrive at a Compound 

Annual Growth Rate (CAGR) of 17.5% and valued at over USD 9.61 billion over the 

forecast year 2020-2030 (Figure 1.8). Therefore, by implementing the methods 

proposed in this thesis, it could contribute to the development of the global 
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visualization and 3D rendering software either via plugin or stand-alone system for 

several applications such as gaming, media and entertainment, research and training, 

architecture, life sciences, and geographic information systems, to name a few. 

 

 

Figure 1.7 The Sustainable Development Goals (SDGs) (black-filled rectangles 

represent the focused areas of this research). 

 

 

 

Figure 1.8 Global analysis and industrial forecast on visualization and 3D 

rendering software (Next Move Strategy Consulting, 2021). 
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1.7.2 Impact on Industries 

The proposed methods in this thesis are targeted to be applied in several 

essential industries, including gaming, movie making, and aviation. 

The gaming industry is highly dependent on advancements in rendering and 

graphic processing. There are some demands for implementing atmospheric cloud 

rendering in the game productions, especially for the outdoor environment. For 

example, it can be applied in first-person shooting games, third-person adventures, 

role-playing games, racing games, and open-world games. The demands include fast 

3D visualization, realistic visual appearance, and responsive interaction in a virtual 

game environment without lagging the system (Brechpunkt, 2020; Bauer, 2019; 

Nowak et al., 2018; Hasegawa et al., 2017; Schneider and Vos, 2017). In order to 

realize these demands, speed performance is becoming a significant factor in 

producing a robust and convincing game. Here the optimization methods play an 

essential role in increasing the performance. On the development side, the optimization 

methods could help the game developers (either programmers or design artists) to 

complete their assigned tasks in a shorter time, thus accelerating the whole game 

production. Furthermore, major game engines such as the Unity Engine and the Unreal 

Engine do not ship with a default implementation for volumetric cloudscapes. 

Therefore a custom implementation or a third-party plugin is required (Bittner, 2020). 

In movie productions, to make a 90-minute film incorporating large amounts 

of computer-generated imagery (CGI), as much as 100 hours of footage may be 

rendered and discarded, just as a conventional movie director shoots and reshoots the 

same scene many times (Azultec, 2019). In addition, a single movie release can spend 

as much as USD 50 million on rendering scenes. One of the essential elements in 

creating a CGI is the atmospheric effects of the sky, clouds, and precipitations. These 

effects could give the scenes an impressive and distinct mood with their presence. To 

realize visually convincing effects, the 3D artists have to put extensive efforts because 

it is a complicated task and requires long hours of rendering processes in order to 

obtain the desired outcomes (Hanrahan and Catmull, 2021; Georgiev et al., 2018). By 

proposing the solution and simplifying specific rendering processes via optimization 
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methods in the existing rendering engine, the artists could make the realistic 

requirement needed and leave the computational tasks run by the computer at the back 

to accelerate the rendering to gain the final results. Pixar’s RenderMan and Autodesk’s 

Arnold are two examples of active rendering engines for movie productions available 

on the market (Christensen et al., 2018; Kulla et al., 2018). 

In the aviation industry, atmospheric cloud rendering and visualization could 

be implemented as a part of the weather model in the flight simulation system. It could 

be used for training purposes. It is beneficial for beginner-level pilots to master their 

maneuvering skills and feel immersively the virtual outdoor environment during the 

flight session before experiencing the actual physical plane. In contrast, it is hazardous 

to fly near any cumulonimbus cloud formations because activities within and around 

it could drag the plane into it, leading to a crash (Azultec, 2019). Real-time display 

and visual scene updates are necessary for this flight system in order to simulate and 

emulate the real-world environment. The proposed optimization methods in this thesis 

could become a handy solution to realize the requirements mentioned earlier. 

Microsoft Flight Simulator, Prepar3D, and X-Plane are examples of the existing flight 

simulation systems that could be used to train and sharpen the pilot’s navigation skills, 

knowledge, and experience (Benedikz et al., 2020; EuroFighter, 2017). 

1.7.3 Impact on Government Sectors 

The atmospheric cloud rendering and visualization system could also be 

applied for government sectors, especially the education and meteorological agencies.  

For the education agency, it could be exploited to teach subjects related to the 

atmospheric sciences to the students to expose them to understand the natural 

atmospheric phenomena, the cloud behaviors, and its related surrounding elements in 

real-time visual form. It can be implemented in school (e.g., Malleus et al., 2017) or 

university level (e.g., Petters, 2021; Jiménez de Parga and Gómez Palomo, 2019). It 

could also be taught in a virtual reality environment to immerse the related concepts 
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(e.g., Li et al., 2020). In Malaysia, the related agencies are the Ministry of Education 

(MOE) and the Ministry of Higher Education (MOHE). 

The atmospheric clouds could be valuable aids in weather-related systems for 

the meteorological agency. Visualizing the atmospheric clouds in a real-time 

environment would help understand the characteristics of clouds to anticipate future 

weather conditions and climate activities (Pałubicki et al., 2022; Bony et al., 2017; 

Cohn, 2017). The Malaysian Meteorological Department, located under the Ministry 

of Environment and Water (MEWA), could play a crucial role in applying it in 

Malaysia. 

1.7.4 Impact on Communities 

The research work proposed in this thesis would majorly impact research and 

development communities from different domains. This research could collaborate 

between the computer graphics community and subject matter experts from other 

communities such as meteorological, geo-information, remote sensing, and education. 

A great deal of research work could be conducted and expanded to solve the global 

issues related to atmospheric clouds (e.g., Hofmann et al., 2021; Hädrich et al., 2020; 

Li et al., 2020; Yu, 2020; Satilmis et al., 2020; Xie et al., 2019; Kaur and Sohi, 2017; 

Malleus et al., 2017). 

1.7.5 Impact on Body of Knowledge 

The research in this thesis follows the 2012 ACM Computing Classification 

System developed by the Association for Computing Machinery (2012) as the main 

body of knowledge. Figure 1.9 denotes the related taxonomic classification and the 

focus areas targeted for this research. By proposing three optimization methods for 

rendering atmospheric clouds, these methods contribute to three different categories. 

First, the enhanced real-time path tracing optimization method has expanded the 

computing capability of ray tracing. Second, the simplified scattering-related lighting 
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method has contributed to reflectance modeling by speeding up the system's 

performance. Third, the unification of the ray tracing-based method with LOD and the 

culling of unnecessary data to be loaded in real-time via visibility consideration has 

minimized the memory consumption of running the real-time atmospheric cloud 

rendering. 

 

Figure 1.9 The 2012 ACM Computing Classification System (black-filled 

rectangles represent the focused areas of this research). 

 

1.8 Thesis Organization 

This thesis is organized into six chapters, and a general summarization of each 

chapter is provided as follows:  

(a) Chapter 1 gives an overview of the research background and determines the 

research problems, problem statement, goal, objectives, scopes, and 

significance. 

(b) Chapter 2 presents the basic concepts of atmospheric cloud visualization and 

rendering. It also reviews the existing methods of atmospheric cloud ray 
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tracing, lighting, and visibility to develop the specific research direction for 

this study.  

(c) Chapter 3 describes the situational analysis and research framework 

supporting this study’s objectives. The other matters include data sources, 

instrumentations, and procedures for analyzing the experimental results. 

(d) Chapter 4 explains the proposed solutions in detail for each designated path 

tracing, light scattering, and visibility acceleration method step-by-step 

procedures. 

(e) Chapter 5 presents and discusses the experimental results. 

(f) Chapter 6 outlines the results’ overall conclusions and presents the 

contributions to the research. This chapter also recommends several potential 

improvements for future research works. 
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