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ABSTRACT 

The increasing demand for environmentally friendly and sustainable structures  

have led the engineers and scientists to develop new bio-based composites. Natural fibers 

in composites present many advantages which include high strength and stiffness to low 

weight ratios, biodegradability, renewability, economic viability and so on. Currently, the 

use of mechanical fastening joints exists in the production of sandwich composite 

structures, but literature indicates that it has unavoidable drawbacks such as the structure 

failing prematurely with a load far below the maximum strength of component parts. As a 

result, an adhesively bonded joint is a better method of joining.This research investigates 

the properties and performance of a novel sandwich composites incorporating kenaf fiber-

polyester matrix as skin material and sawdust-polyester matrix as core material, 

respectively. To this end, the kenaf fiber-polyester skin was fabricated in a unidirectional 

orientation with fiber volume fraction of 40 % from preliminary study, while the sawdust-

polyester core was produced in a random arrangement with fiber volume fraction of 20%, 

also from preliminary study and this was produced by varying the thickness of the core. 

Both the Kenaf Fiber Reinforced Polyester (KFRP) skins and the Sawdust Reinforced 

Polyester (SDRP) core were tested interm of tension, flexure, compression, and shear. 

These tests were carried out to determine their constituent material properties. 

Consequently, three types of bio-composites sandwich were manufactured based on 

geometry, and was subjected to flexural load through three-point bending test to establish 

the flexural properties. Numerical investigation was carried out using ABAQUS FEA code 

to validate experimental results. Besides, it has been observed from literature that the use 

of natural fiber composites have been restricted to non-structural and semi-structural 

applications due to not having sufficient test data on fracture toughness at adhesive joint. 

Therefore, the adhesive bond behaviour of the KFRP adherend and the SDRP adherend 

sandwich composites was carried out through the Double Lap Shear (DLS) joint test to 

ascertain the bond shear strength and stresses at the joints. The DLS joints were fabricated 

with different bond lengths and bond widths using polyester adhesive as joint material and 

subjected to direct axial compression load. Numerical simulation was implemented to 

validate experimental results. The results of the KFRP tensile properties shows that 

stiffness and strength were found to be highest in the longitudinal direction and least in 

the transverse direction with percentage difference of 152.50 % for the modulus of 

elasticity and 175.24 % for tensile strength, respectively. Also observed is that there exist 

a considerably variability in the SDRP tensile, compressive and flexural strengths, 

nevertheless, their stiffnesses are comparably closed to each other. The results of the core 

shear stress and facing bending stress of the bio-composites sandwich revealed an 

increment of 13.90 % was recorded as the core thickness increased from 10 mm to 20 mm 

for core shear stress, while the facing bending stress saw an increment of 13.93 % as the 

core thickness increased from 10 mm to 20 mm. Excellent agreement was reached between 

the numerical simulations and the experiments in predicting the flexural properties. 

Furthermore, it was found that the lap length and bond width increases the load carrying 

capacity of the joints but decreases the bond shear strength. The numerical analysis results 

were in good accord with the experimental results, and the use of KFRP and SDRP in 

bonded assemblies have demonstrated promised with good potentials for use in structural 

applications. 
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ABSTRAK 

Permintaan yang semakin meningkat untuk struktur yang mampan dan mesra alam 

mendorong para jurutera dan saintis untuk membangunkan komposit berasaskan bio baharu. 

Gentian semulajadi dalam komposit mempunyai banyak kelebihan termasuk kekuatan yang 

tinggi, kekukuhan kepada nisbah berat yang rendah, kebolehan biodegradasi, 

kebolehbaharuan, daya maju ekonomi dan sebagainya. Buat masa ini, penggunaan sambungan 

pengikat mekanikal wujud dalam pengeluaran struktur komposit sandwic tetapi kajian 

sebelum ini menunjukkan ia mempunyai kelemahan yang tidak dapat dielakkan seperti 

struktur gagal sebelum waktunya dengan beban yang ditanggung berada di bawah paras 

kekuatan maksimum pada bahagian komponen. Akibatnya, sambungan yang diikat dengan 

pelekat didapati menjadi kaedah penyambungan yang lebih baik. Kajian ini mengkaji sifat dan 

prestasi komposit sandwic baru yang menggabungkan matriks gentian kenaf-poliester sebagai 

bahan kulit dan matriks habuk papan-poliester sebagai bahan teras. Untuk tujuan ini, kulit 

gentian-poliester kenaf telah dibuat dalam orientasi satu arah dengan pecahan isipadu gentian 

sebanyak 40 % yang didapati daripada kajian awal. Teras habuk papan-poliester pula 

dihasilkan dalam susunan rawak dengan pecahan isipadu gentian sebanyak 20 %, juga 

daripada kajian awal dan ianya dihasilkan dengan mempelbagaikan ketebalan teras. Kedua-

dua kulit Kenaf Fiber Reinforced Polyester (KFRP) dan teras Sawdust Reinforced Polyester 

(SDRP) telah diuji sepenuhnya dari segi ketegangan, kelenturan, kemampatan dan kericihan. 

Ujian ini dijalankan untuk menentukan unsur sifat bahan tersebut. Hasil daripada itu, tiga jenis 

sandwic bio-komposit telah dihasilkan berdasarkan geometri, dan tertakluk kepada beban 

lentur melalui ujian lenturan tiga titik untuk mewujudkan sifat lenturan. Penyiasatan berangka 

telah dijalankan menggunakan kod ABAQUS FEA untuk mengesahkan keputusan 

eksperimen. Kajian terdahulu mendapati penggunaan komposit gentian semula jadi telah 

dihadkan kepada aplikasi bukan struktur dan separa struktur kerana data ujian yang tidak 

mencukupi berkenaan kekuatan menahan patah pada sambungan pelekat. Oleh itu, ujian 

terhadap sifat ikatan pelekat bagi komposit KFRP dan komposit sandwic adheren SDRP telah 

dijalankan melalui kaedah sambungan Double Lap Shear (DLS) untuk memastikan kekuatan 

ricih ikatan dan tekanan pada sambungan. Sambungan DLS telah direka dengan panjang dan 

lebar ikatan yang berbeza menggunakan pelekat poliester sebagai bahan sambungan dan 

tertakluk kepada beban mampatan paksi terus. Simulasi berangka telah dijalankan untuk 

mengesahkan keputusan eksperimen. Keputusan sifat tegangan KFRP menunjukkan kekakuan 

dan kekuatan didapati berada pada ukuran paling tinggi pada arah membujur dan paling sedikit 

pada arah melintang dengan peratus perbezaan masing-masing 152.50 % untuk modulus 

keanjalan dan 175.24 % untuk kekuatan tegangan. Hasil kajian juga mendapati terdapat 

kebolehubahan yang ketara dalam kekuatan tegangan, mampatan dan lentur SDRP. 

Bagaimanapun, bagi kekakuan, hasil keputusannya hampir sama antara satu sama lain. 

Keputusan tegasan ricih teras dan tegasan hadap lentur sandwic bio-komposit menunjukkan 

peningkatan sebanyak 13.90 % apabila ketebalan teras meningkat daripada 10 mm kepada 20 

mm untuk tegasan ricih teras, manakala tegasan lenturan menghadapi peningkatan sebanyak 

13.93 % kerana ketebalan teras meningkat daripada 10 mm kepada 20 mm. Persetujuan yang 

sangat baik telah dicapai antara simulasi berangka dan eksperimen dalam meramalkan sifat 

lentur. Kajian juga mendapati bahawa panjang pusingan dan lebar ikatan mampu 

meningkatkan keupayaan membawa beban sambungan tetapi ia mengurangkan kekuatan ricih 

ikatan. Keputusan analisis berangka adalah selari dengan keputusan eksperimen, dan 

penggunaan KFRP dan SDRP dalam pemasangan terikat telah menunjukkan potensi yang baik 

untuk digunakan dalam aplikasi struktur. 
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INTRODUCTION 

1.1 General Appraisal 

Sandwich construction, which combines composite skins with a variety of core 

materials, is becoming increasingly common for a variety of structural applications. 

Sandwich structured composites according to Sadeghian et al. (2016a), are special 

class of composite materials which have become very popular due to its high strength 

to weight ratio, high specific strength and stiffness, good fatigue resistance, low 

thermal expansion, good dampness property and in particular, the ability to give 

explicitly tailored material properties. These properties make sandwich composites 

suitable in the field of civil infrastructures, aeronautical engineering, automobile 

engineering and marine applications. In the past, sandwich panel usage was limited to 

aeronautical applications, however, they have recently been ustilized as structural 

components in buildings. A sandwich structure usually consists of two stiff, strong 

sheets of composite material separated by a relatively thick core layer. The necessity 

to combine high mechanical stiffness with a lightweight structure prompted the 

development of sandwich construction. This is accomplished by increasing the 

distance between the skins, which increases the inertial moment and hence increases 

the structure's bending stiffness (Vitale et al., 2017).  

Over the years, synthetic fiber such as carbon, glass, aramid and so on have 

been the traditional reinforcing agents in sandwich composite skin, while the core 

material usually composed of aluminum, or polymer materials such as expanded 

polystyrene, extruded polystyrene, polyisocyanurate, polyurethane or phenolic resin. 

However, these materials are relatively expensive, in addition, the rising 

environmental awareness of industrial pollution, combined with depletion of 

petroleum resources and high energy consumption, is forcing the construction and 

manufacturing industries to look for innovative materials that are reliable and 
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sustainable to replace conventional materials in sandwich composite structures 

(CoDyre et al., 2016; Silva et al., 2008). 

Natural fibers such as sisal, jute, cotton, flax, hemp, kenaf, and others have 

already been considered as viable replacements because of their environmental 

pleasantness, availability in fibrous form, and low cost of extraction from plants (Joshi 

et al., 2004).  On the other hand, residues of wood industry in form of sawdust are 

accumulating in an alarming rate, it then becomes a huge challenge to expand the 

profitable and sustainable use of these waste residues as raw material for value-added 

products in composite (Ahmed et al., 2015; Ashori & Nourbakhsh, 2008). Other 

advantages of natural fibers as highlighted by Karaduman & Onal (2016a), are 

renewability, sustainability, environmental friendliness, low density, flexibility of 

usage and biodegradability. Furthermore, natural fiber composites have a variety of 

recycling and degrading options at the end of their life cycle, depending on the type of 

polymer utilized. The worst-case scenario is the burning of natural fiber composites in 

an incinerator to create electricity, which decreases the volume of materials to bottom 

ash, which has numerous applications in concrete (Sadeghian et al., 2016a).  

Natural fiber reinforced polymer composites have attracted a lot of attention 

because of their advantages over synthetic fiber-based polymer composites. Although 

numerous types of natural fiber composites have been developed, their joining using 

adhesive bonding has not been fully investigated. Most instances, the composites to 

composites are joined using the traditional methods such as bolts and rivets. However,  

these traditional methods are not suitable for composites to composites joining because 

of stress concentration at the joint that usually resulted to premature failure. Therefore, 

an ideal joining method is the adhesive bonding. Adhesive bonding presents many 

advantages such as high strength to weight ratio, uniformly transfer of shear stresses 

between structural materials, good electrical and/or thermal insulation properties, 

corrosion and fatigue resistance over traditional mechanical fastened, riveted and 

bolted joints (Budzik, 2010; Durmuş & Akpinar, 2020; Singh, Castillo & Ingham, 

2019). 
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The use of natural fiber in polymer composites either in form of fibrous 

composites or particulate composites have been reported by Verma et al. (2013). 

Fibrous composites contain fibers that are held together by a polymeric matrix while 

particulate composites are made up of fibrous particles incorporated in a polymeric 

matrix.  

The usage of kenaf fiber-polyester reinforced composite as skin material and 

saw dust-polyester reinforced composite as core material in sandwich composite 

structures is lacking in literature. Also, in order to extend the application of this novel 

sandwich composite structure, the strength and failure mechanisms of the bonded 

joints between these two bio-fiber composites need to be understood completely. It is 

therefore important to investigate the characteristics of the aforementioned composites 

in sandwich materials system since this approach is still deficient in literature for now. 

1.2 Background of the Problem  

The increasing need for structures to have properties such as low self-weight, 

high strength and stiffness, and durability has made composite materials more 

attractive in a wide range of engineering applications of which sandwich composite 

structures is a good example (Yaman & Onal, 2016). Sandwich composite structures 

according Russo & Zuccarello (2007) are more preferred in various industrial 

applications over conventional materials in the sense that  a composite beam has a far 

better shear stiffness to weight ratio than a beam built only of the core or skin materials.  

However, sandwich construction offers a variety of possible issues due to the 

various interfaces. These interfaces could serve as a source for failure initiation and 

growth. In addition, Ammar et al. (2017) stated that during fabrication or under service 

conditions of sandwich composite structures, failure can occur through modes of 

damage mechanism such as delamination (skin-core debonding), core indentation 

failure, core shear failure, local skin wrinkling,  and skin compression/tensile failure. 

Among the aforementioned mode of failures, skin-core interface debonding is of major 

importance because of its frequent occurrence and adverse effects.  Therefore, the 
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advancement in joining technologies is of great importance in sandwich composite 

structures. The traditional method of structure assembly is a mechanically fastened 

joint. However, the addition of a hole and bolt causes stress concentration, weight 

penalty, and fiber breakage in composites, resulting in multiple failures. Adhesive 

bonding is the most effective approach for joining two composite structures together. 

Adhesively bonded joints are increasingly being utilized instead of mechanically 

attached joints because load transmission between composite components is more 

evenly distributed (Jeevi et al., 2019). 

The development of fiber reinforced polymer sandwich composite structures 

has been quite exciting in terms of volume and applications over the years. Their 

primary applications are in the aerospace, automotive, and maritime industries due to 

weight reduction compared to aluminium and other metallic elements, fuel 

consumption efficiency will improve. The advancement of sandwich composite 

structures with improved green material systems has allowed this material to be used 

in more civil infrastructure applications.  The development and use of natural-fiber 

sandwich composite structures in civil engineering and construction are currently 

generating a lot of interest. Sandwich composites' reduced weight and therefore makes 

assembly easier, lowers installation and transportation costs, and lowers the cost of the 

foundation and its supporting sections even more. They also provide corrosion-

resistant construction that requires minimal maintenance (Fajrin et al., 2013). 

Similarly, Vitale et al. (2017) observed that research and engineering attention 

have been moving from conventional materials to natural fiber polymeric composite 

materials. Natural fiber in polymer composites has sparked a lot of attention in 

numerous engineering field including structural applications, as result of their low 

cost, carbon dioxide neutrality and comparatively small density as compared to when 

carbon, aramid or glass fibers are used in composites. Kenaf fiber as a natural fiber is 

becoming very popular due to environmental issues and its remarkable properties in 

composites and these have been reported in several research works (Bharath Raman, 

Ramnath Vijaya & Manoharan, 2015; Mahjoub et al., 2014; Hifizah et al., 2014). 

Kenaf is a highly efficient plant that grows quickly with little nutrients, energy, or 

chemical fertilizer. Kenaf is also noted for producing more biomass per acre than any 
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forest plantation while requiring less planting space. (Akil, Omar, Mazuki, & Safiee, 

2011). According to Mohd (2008), the Kyoto Protocol recognizes kenaf as an 

environmentally acceptable industrial organic materials that is effective in decreasing 

global warming. As a result of this acknowledgment, the Malaysian government has 

pushed the planting of kenaf to replace tobacco. Though the market for kenaf is yet 

unknown in Malaysia due to its newness, kenaf fiber has the ability to be marketed as 

a bio-composite material that can be utilized for a variety of structural applications. 

On the other hand, Curtu et al. (2011) pointed out that wastes wood in combination 

with other materials offers a variety of benefits and uses, and it's becoming a hot topic 

in research, with new concepts being tested and developed. 

Joints constitute is the weakest zones in sandwich composite structure. 

Therefore, to fully utilized the potential of kenaf fiber reinforced composite as skin 

material and sawdust reinforced composite as core material in sandwich system, the 

strength and stress distribution in the joints has to be fully understood so that suitable 

configuration can be chosen for various application. Is to this end, that effort is geared 

towards investigating the technical feasibility of using kenaf fiber-polyester and 

sawdust-polyester material systems in sandwich composites through experimental and 

numerical approaches. 

1.3 Statement of the Problem  

Synthetic fiber such as glass, carbon or aramid have played a dominant role for 

a long time as fiber reinforcement in composites production for variety of structural 

applications. However, in recent years, growing environmental issues coupled with the 

uncertainty about petroleum resources and high energy consumption during processing 

have triggered much interest in developing composite materials from bio-fibers. Also, 

the widespread usage and disposal of conventional composite materials presents a 

significant challenge. Natural fibers on the other hand, have been gaining considerable 

attention for their potential contribution to addressing environmental issues, such as 

carbon dioxide neutrality and the saving of fossil resources. Bio-fibers such as kenaf 

fiber and sawdust could be the main candidates for bio-composites as reinforcing fibers 
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since they are found abundant in Malaysia. Therefore, characterization of these fibers 

in composites to serve as materials for sandwich structures become paramount subject 

for discussion. 

 The biggest potential drawback of the sandwich composite structure is the 

possibility of decohesion at the interface between the skins and the core, which have 

very different mechanical properties. This may lead to skins-core debonding due to 

energy absorption under loading. If the interface between the load-bearing skin 

material and the thick core fails, the composite may lose its structural integrity 

completely. Therefore, to ensure the used of kenaf fiber reinforced polymer skin and 

sawdust reinforced polymer core in sandwich materials system, an understanding of 

the bonding mechanism and fracture toughness is highly essential. 

Numerious research works have been carried out to give a reliable prediction 

data of adhesive bonding mechanism of conventional composite structures. Other 

researchers have used analytical approach and numerical methods to evaluate the bond 

strength (stress analysis) in adhesively bonded joints of conventional composite 

materials. However,  bio-fiber composites are left unexplored and this has limited its 

application to non-structural components due to lack of enough data and knowledge 

of the bonded interfaces and bond behavior of these materials. The structural 

performance of any sandwich construction depends largely on the quality of the 

adhesive bond between skin and core. Thus, it is highly necessary to investigate the 

adhesive joints between kenaf fiber reinforced polymer composite/sawdust reinforced 

polymer composite, to assess the feasibility of joining, and their bonding performance 

as sandwich structure’s materials.  

1.4 Aim and Objectives  

The aim of this research is to investigate the properties and performance of 

kenaf fiber reinforced polymer composite/sawdust reinforced polymer composite as 

sandwich composite structure constituent materials. The specific objectives of this 

study are as follows: 
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(a) To characterize the mechanical and physical properties of kenaf fiber 

reinforced polymer composite and sawdust reinforced polymer composite. 

(b) To investigate experimentally and numerically the flexural performance of 

kenaf fiber-sawdust sandwich bio-composite, through the optimization of 

core thicknesses. 

(c) To examine the adhesive bond mechanical performance of kenaf fiber 

reinforced polymer composite/sawdust reinforced polymer composite as 

constituent materials in sandwich system. 

(d) To determine and validate the stress distribution in the adhesive joints of 

kenaf fiber reinforced polymer composite/sawdust reinforced polymer 

composite. 

 

1.5 Scope of the Study  

This research work covers the understanding of the overall project need 

through literature survey, and it is experimental and numerical in nature which is 

within the limit of the set objectives. The scope of the study is divided into four stages: 

(a) Characterization of the constituent materials of kenaf fiber reinforced polymer 

composite at 40% volume fraction and sawdust reinforced polymer composite 

at 20% volume fraction, by identifying their mechanical and physical 

properties such as tensile test, compressive test, flexural test, shear test and 

density, and it is done in compliance with ASTM standard specification. 

(b) Flexural properties of the sandwich system with various core thicknesses 

developed from the kenaf fiber reinforced polymer composite skin and sawdust 

reinforced polymer composite core is investigated and experimental results 

validated numerically using ABAQUS software. 

(c) Double lap shear joint fabrication and testing with different overlap length and 

adherend width are investigated. The specimen preparation, test procedure, and 
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instrumentation are all discussed. Furthermore, the experimental data for each 

type of double lap shear joint is shown, including bond shear strength, load-

displacement curves, and failure of the various surfaces. 

(d) Parameters such as load-displacement response, von Mises stress distribution 

as well as the shear stress distibution (SS13) and peel stress distribution (SS33) 

using ABAQUS software were implemented for the double lap shear joint. The 

structural integrity of the kenaf fiber reinforced polymer adherend skin, the 

sawdust reinforced polymer adherend core and the polyester adhesive were 

investigated and discussed. The data from the analysis was compared with the 

experimental data. 

 

1.6 Significance of the Study  

One of the most pressing issues facing the construction sector today is to 

improve its image in terms of sustainability. Therefore, using green materials to the 

best of their abilities is one of the key strategies to achieving sustainable construction. 

The utilization of synthetic fiber such as glass fiber, carbon fiber or aramid fiber as 

skin material and polymer materials such as expanded polystyrene, extruded 

polystyrene, polyisocyanurate, polyurethane or phenolic resin as core material in 

sandwich composite structures presently exits worldwide, but the aforementioned 

materials are non-renewable materials and therefore cannot be sustained (Lim & Kang, 

2006; Liu et al., 2006; Pickering et al., 2016; Ramesh et al., 2017; Sharaf & Fam, 

2005). 

 That is why the current attention is shifting to replacing synthetic and polymer 

materials with green and renewable materials for sustainable development. Also, the 

results obtained from this research are expected to make contribution in the 

understanding of the adhesive bonding performance of bio-fiber composite structures, 

particularly, kenaf fiber polymer composite/sawdust polymer composite. The current 

research is hereby set towards the following outcomes: 
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(a) The information obtained from this research work will promote the use of 

bio- fibers such as kenaf fiber and sawdust in composite as against 

synthetic and polymer materials because of its sustainability and light 

weight. Also, to reduce the adverse effect on the environment from the 

production of synthetic and polymer materials which is one of the major 

contributors of green gas emission that is implicated in global warming 

and climate change (Thakur, 2014). 

(b) Sandwich structures are notable for being lightweight, while bio-fibers 

composites offer numerous preferences that make them appropriate as 

alternative materials for numerous applications. Thus, the utilization of 

bio-fibers composites like kenaf fiber composite and sawdust composite 

in sandwich structure is likely to yield added advantages in the design of 

lightweight structures, leading to environmentally sandwich structures.  

(c) The information from this research will provide a wealth of new 

experimental and numerical data about connecting system of bonded joint 

of kenaf fiber reinforced composite/sawdust reinforced composite. This is 

necessary because prediction of strength and stress distribution in kenaf 

fiber composite/sawdust composite joints with satisfactory degree of 

accuracy is required in the construction industry. Besides, eliminating 

problems of bonding at advanced stage of construction and also at the 

service stage, a reliable prediction model will reduce construction cost 

when time dependent experiment can be omitted.  

(d) The utilization of bio-fibers composite like kenaf fiber composite and 

sawdust composite as against synthetic fiber reinforced polymer 

composite is likely to lessen the harmful effects of synthetic fiber 

reinforced composite handling on human health, such as respiratory 

irritation. Also, to promote the provision of innovative, affordable and 

sustainable housing in localities where these agricultural natural resources 

and agricultural wastes (kenaf fiber and sawdust) are abundant. 
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1.7 Thesis Organization  

In line with the specific requirements spelt out in the UTM thesis manual, the 

research was organized and documented. Consequently, the whole thesis was 

presented in seven chapters: Chapter 1 presents a general appraisal and a brief 

description of the background problem. More so, the aim and the objectives, scope and 

limitation, significance of the research and research approach are presented. Chapter 2 

provides comprehensive knowledge of the relevant subject presented in this thesis. It 

presents research works carried out by past investigators on the relevant and related 

literature. Chapter 3 presents information of the raw materials used, fabrication 

techniques, test procedures and employing appropriate standard where necessary in 

conducting the tests for the successful completion of the research. Chapter 4 focuses 

on the constituent materials' characterisation, comprising of kenaf fiber reinforced 

composite and sawdust reinforced composite. Tests falling in this category include 

physical test such as density and mechanical tests such as tensile test, compressive test, 

shear test and flexural test. These tests were carried out to established the constituent’s 

material properties which formed the sandwich bio-composite panels. Chapter 5 

focuses on the flexural characteristics of the sandwich bio-composite produced with 

kenaf fiber reinforced composite and sawdust reinforced composite. Three-point 

bending test was considered and experimental results are compared and validated with 

the numerical simulation. Chapter 6 focuses on the double lap shear joint's 

experimental investigations and numerical simulation. The experimental results, 

which include load-displacement curves, bond shear strength and failure surface for 

each type of the sandwich joints were presented. Numerical simulations to identify 

critical stress and FE validation were implemented.  Chapter 7 provides the conclusion 

of this thesis by stating the outcomes and, success of the study and contribution of the 

research to the existing knowledge. Recommendations are proposed for further 

research work in related areas. 
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