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ABSTRACT 

Prediction of rainfall-induced landslides has received considerable attention 

amongst the scientific community due to the geological hazard’s catastrophic impacts. 

The prediction is commonly performed based on rainfall threshold. However, less 

attention has been given to physical-based thresholds. The thresholds are also mainly 

determined based on deterministic model. The inherent uncertainties in soil properties 

are neglected. Therefore, this study aims to improve the prediction of landslides in 

unsaturated slopes by incorporating the uncertainties in soil properties. The 

performance of the landslide predictive models can be enhanced towards a more 

reliable landslides warning system. One of the major slope failure events in Kota 

Kinabalu, Sabah, Malaysia, is selected as a case study. Statistical analyses have been 

conducted to characterize the uncertainties in hydro-mechanical soil variables by 

identifying best-fitted marginal distribution amongst normal, lognormal, Gumbel, and 

Weibull distribution. The dependencies of the multivariate are assessed using different 

types of vine copula models. Then, a reliability-based probabilistic analysis has been 

proposed to determine the performance level of the slope by integrating the Monte 

Carlo Simulation and Multilayer Perceptron regressor, using 120 samples of soil 

properties generated from the Latin Hypercube Sampling. Three types of rainfall 

thresholds, namely intensity-duration, cumulative rainfall-duration, and daily rainfall-

antecedent rainfall for various antecedent days of 5, 10, 15, 20, 25, and 30 days are 

proposed. Comparison of rainfall threshold based on probabilistic and deterministic 

models shows that the former outperforms the latter in threat score. The antecedent 

rainfall of 10 and 15 days can well describe the landslides initiation compared to other 

antecedent rainfall durations for the daily rainfall-antecedent rainfall threshold. This 

study mainly contributes to the development of a new physical-based rainfall threshold 

for predicting landslides initiation using a reliability-based probabilistic approach by 

incorporating the uncertainties in dependent hydro-mechanical soil variables for the 

first time. 
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ABSTRAK 

Ramalan kejadian tanah runtuh akibat hujan telah menerima banyak perhatian dalam 

kalangan komuniti saintifik kerana bencana alam tersebut boleh mendatangkan impak yang 

memudaratkan. Ramalan tersebut lazimnya dilaksanakan berdasarkan nilai ambang hujan. 

Walau bagaimanapun, perhatian yang diberikan kepada ambang hujan berdasarkan 

pendekatan fizikal adalah kurang. Nilai ambang tersebut juga biasanya dikenal pasti dengan 

menggunakan model berketentuan. Ketidakpastian terwujud dalam sifat-sifat tanah diabaikan. 

Oleh itu, kajian ini bertujuan untuk menambahbaik ramalan kejadian tanah runtuh dalam cerun 

tak tepu dengan mempertimbangkan ketidakpastian dalam sifat-sifat tanah. Prestasi model 

ramalan tanah runtuh dapat dipertingkatkan bagi mewujudkan sistem amaran tanah runtuh 

yang lebih dipercayai.  Salah satu kejadian utama kegagalan cerun di Kota Kinabalu, Sabah, 

Malaysia telah dipilih sebagai kajian kes. Analisis geostatistik telah dilaksanakan untuk 

memperincikan ketidakpastian dalam pembolehubah hidro-mekanik tanah dengan 

mengenalpasti agihan jidar melibatkan agihan normal, lognormal, Gumbel, dan Weibull. 

Kebersandaran berbilang pembolehubah dinilai dengan menggunakan model kopula vine yang 

pelbagai. Kemudian, analisis kebarangkalian berdasarkan kebolehharapan telah dibuat bagi 

menentukan tahap perlakuan cerun dengan menggabungkan Simulasi Monte Carlo dan regresi 

Perceptron Berbilang Lapis, menggunakan 120 sampel sifat-sifat tanah yang dijana daripada 

persampelan Latin Hypercube. Tiga jenis ambang hujan iaitu keamatan-tempoh, hujan 

kumulatif-tempoh, dan hujan harian-hujan anteseden bagi pelbagai tempoh anteseden 5, 10, 

15, 20, 25, dan 30 hari telah dikemukakan. Perbandingan ambang hujan antara model 

kebarangkalian dan berketentuan menunjukkan bahawa model kebarangkalian mempunyai 

skor prestasi yang lebih baik. Untuk ambang berdasarkan hujan harian-hujan anteseden, hujan 

anteseden bagi tempoh 10 dan 15 hari boleh menjelaskan permulaan tanah runtuh dengan lebih 

baik berbanding tempoh hujan anteseden yang lain. Secara utamanya, kajian ini menyumbang 

kepada pembangunan ambang hujan berdasarkan kaedah fizikal bagi meramalkan kejadian 

tanah runtuh dengan menggunakan pendekatan kebarangkalian berdasarkan keboleharapan 

yang mengambil kira ketidakpastian dalam pembolehubah hidro-mekanik tanah yang 

bersandaran buat pertama kalinya. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Landslide is one of the widespread geological hazards around the globe, which 

has caused damage to properties, economic loss, and numerous casualties. Based on 

natural hazards worldwide, landslides account for at least 17% of the fatalities (Chae 

et al., 2017). Most landslide occurrences are associated with rainfall. The antecedent 

rainfall is one of the main predisposing factors in triggering landslides, as it may cause 

a surge in the soil’s moisture content. The role of antecedent rainfall, which occurs for 

several days closely before the landslide event, has been widely accepted.  

The growth of population, urbanisation on hilly terrain, and global climate 

change have sharpened the impact of rainfall-induced landslides. The associated 

damages and losses are increasing with intensification in landslide frequency. 

Awareness of the catastrophic impacts that landslides can bring to life and social well-

being has led to study initiatives in mitigating the risk. One of the research areas which 

shows growing advances in recent times pertains to landslide prediction. The early 

detection of landslides can be performed based on in-situ ground movement 

monitoring, in response to changes in physical soil properties subjected to rainfall 

infiltration. This approach may provide a nearly real-time indicator of landslide 

initiation. However, establishing a proper setup of a landslide warning system may 

incur an expensive budget for both instrumentation and monitoring. Fortunately, the 

landslide prediction based on a rainfall threshold can provide a more cost-effective and 

practical yet reliable alternative for landslide forecasts (Segoni, Piciullo and Gariano, 

2018). The rainfall threshold may serve as a basis for on-ground monitoring of 

landslide initiation. 
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The rainfall thresholds can be developed using an empirical- or physical-based 

approach (Guzzetti et al., 2007). The former is commonly performed based on a 

statistical analysis of historical landslide events. The method is preferred by various 

researchers. It is relatively easy and can be carried out by relying on rainfall data and 

landslide incidents that are obtainable in most cases. The empirical-based approach for 

identifying rainfall thresholds has been observed as early as the 1970s (Onodera, 

Yoshinaka and Kazama, 1974). The latter mainly involves numerical modelling to 

simulate physical processes involving seepage and slope stability. Early application of 

the physical-based approach to identify the relationship between rainfall and slope 

failure can be observed since the 1980s (Crozier and Eyles, 1980). However, limited 

studies have been carried out based on the physical-based method compared to the 

empirical-based approach. The limited studies are mainly due to the complexity 

involved in the physical-based approach. Comprehensive spatial information such as 

hydrology, lithology, and morphology are required. The information is unavailable in 

most cases. Sufficient technical skills and knowledge are also essential for numerical 

simulation. Nonetheless, more attention should be given to the physical-based 

approach as it can provide a more in-depth understanding of the actual underlying 

landslide process. 

In the physical-based rainfall threshold, slope stability assessment is carried 

out to determine the rainfall condition which may trigger a landslide. The stability of 

the slope subjected to rainfall infiltration is commonly analysed using a deterministic 

approach (Tang, Li and Cao, 2016; Senthilkumar, Chandrasekaran and Maji, 2018; Z. 

Li et al., 2019). A factor of safety is quantitively used to indicate the slope stability 

condition, where the value of 1.0 theoretically marks the boundary between stable and 

unstable states. Nonetheless, the factor of safety is subjected to uncertainties since the 

slope’s resistance and disturbing factors involve various uncertainties mainly due to 

inherent variabilities in soil properties. Thus, it may not be reasonable to apply a 

similar minimal value of factor of safety for different conditions with various ranges 

of uncertainties degree. This shortcoming in deterministic analysis has led to the 

introduction of probabilistic analysis in slope engineering since the 1970s (Alonso, 

1976; Tang, Yucemen and Ang, 1976). The probabilistic approach systematically 

estimates the performance of the slope in terms of reliability index and probability of 

failure (POF) by incorporating various sources of uncertainties.  
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1.2 Problem Statement 

The stability of unsaturated slopes subjected to rainfall infiltration is governed 

by the coupled effect of mechanical and hydraulic soil properties. Current research 

shows that determinate values of hydro-mechanical soil properties have been 

considered in the slope stability analysis to predict landslide initiation. In contrast, 

variabilities in soil properties exist.  

In predicting rainfall-induced landslides, the physical-based thresholds in the 

literature have been identified based on deterministic analysis where the soil 

uncertainties have been neglected. The deterministic approach is adopted to identify 

the condition at which slope failure may occur, i.e., when the factor of safety is lesser 

than unity. The deterministic method relies on a single and unique value of factor of 

safety. The factor of safety is computed based on the determinate value of the selected 

soil properties. However, using specific values of soil properties may not represent the 

uncertainties in the soil properties. Thus, the proposed threshold may not reflect a 

reliable slope stability condition. The shape and location of critical slip planes in the 

deterministic analysis may not necessarily be equal to that in the probabilistic analysis. 

The distributions in soil properties variabilities are not considered in the former 

analysis.  Some applications of probabilistic analyses have been demonstrated in 

geotechnical engineering over the past few decades. However, not much recent 

progress has been observed in the method application, especially in assessing rainfall-

induced landslides in unsaturated slopes. The limited progress is likely due to the 

perception that the probabilistic analysis is more rigorous and time-consuming. 

Researchers and practising engineers may also receive inadequate exposure to the 

application of probabilistic methods in slope engineering.  
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1.3 Study Area 

The capital city of Sabah in Malaysia, i.e., Kota Kinabalu, is one of the densely 

populated areas in the territory. Many rainfall-induced landslides have been reported 

in Kota Kinabalu. The density of the landslide is increasing with the pace of urban 

development in the city. The landslides that mostly happen in inhabited areas have 

attracted the local community’s attention due to the direct adverse impact of the 

incident, especially in terms of socio-economic and safety. Therefore, a reliable 

landslide warning system should be established so that the authority can take proper 

action. A local rainfall threshold for landslide initiation in Kota Kinabalu is yet to be 

developed. Thus, this study is timely and will pioneer the development of rainfall 

threshold for Kota Kinabalu area.  

One of the landslide-prone areas within the vicinity of Kota Kinabalu is 

situated at a natural hilly terrain around a local access road, known as Jalan 

Penempatan. Thus, the location is selected as a case study. The study area is situated 

to the east of Kota Kinabalu city (Figure 1.1), which can be found at latitude and 

longitude of 5°59'7.41" N and 116°4'41.63" E, respectively. The road stretches about 

3 km long (from 5°57'16.14" N, 116°5'40.19" E to 5°56'5.36" N, 116°5'32.13" E). It 

serves as an important route that connects several housing areas to the city centre. The 

study location covers an area of about 320 hectares. 

  

(a) (b) 

Figure 1.1 Location of study area in (a) Sabah at east of Malaysia and (b) Kota 

Kinabalu in Sabah 
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1.4 Goal and Objectives 

The goal of this study is to improve the prediction of rainfall-induced landslides 

within a probabilistic framework. To meet the goal, three (3) objectives have been 

identified as follows: 

1. To characterise the variabilities, uncertainties, and dependencies of soil 

properties. 

2. To propose an efficient reliability-based probabilistic model for back analysis 

of unsaturated slope. 

3. To develop probabilistic-based predictive models of rainfall-induced 

landslides. 

 

1.5 Research Questions 

Several research questions related to the study objectives have been identified, 

as explained in Table 1.1. 

Table 1.1 Research questions in this study 

No. Objective Research Questions 

1 To characterise the 

variabilities, 

uncertainties, and 

dependencies of soil 

properties. 

i. What are the soil properties that should be 

considered as random variables? 

ii. Which probability density functions can best 

describe the variabilities and uncertainties for 

each soil property? 

iii. How can the dependencies of the multivariate 

be modelled and assessed? 

 

 

 



 

6 

No. Objective Research Questions 

2 To propose an 

efficient reliability-

based probabilistic 

model for back 

analysis of 

unsaturated slope. 

i. How does the soil uncertainties affect the 

unsaturated slope behaviour under rainfall 

infiltration? 

ii. How can the probabilistic approach be 

integrated with machine learning for the 

optimization of computational cost? 

iii. What is the performance level which can 

initiate a landslide in the study area? 

iv. What is the effect of different dependencies 

models in slope reliability assessment? 

v. What is the contribution of each selected 

random variable on the slope performance? 

3 To develop a 

probabilistic-based 

predictive model of 

rainfall-induced 

landslides. 

i. What is the effect of different combinations 

of slope geometry and groundwater table on 

slope stability? 

ii. What is the dominant factor that should be 

considered for the development of the rainfall 

threshold? 

iii. What is the rainfall threshold which can 

initiate landslides in the study area? 

iv. How can the proposed rainfall threshold be 

validated? 

v. How does the probabilistic-based rainfall 

thresholds differ than those based on 

deterministic model? 
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1.6 Scope of Study 

This study presents the temporal prediction of landslide initiation in 

unsaturated soil slope subjected to antecedent rainfall within a probabilistic approach. 

The development of the predictive model mainly includes statistical analysis, machine 

learning, and two-dimensional numerical modelling. This research involves computer 

programming and finite element-based simulation. 

A major incident of a rainfall-induced landslide at Jalan Penempatan Kilometre 

(KM) 2.00 in Kota Kinabalu, Sabah, is selected as a case study. This site-scale study 

aims to demonstrate the application of the proposed reliability-based method based on 

the actual scenario. Data such as soil investigation and laboratory testing reports, and 

rainfall records were obtained from government departments. Various hydraulic and 

mechanical soil properties are considered random variables. The uncertainties of the 

variables are quantified, and the dependencies of the multivariate are modelled 

systematically. A sampling-based probabilistic approach is adopted to estimate the 

slope’s performance level in terms of probability of failure. The reliability analysis is 

coupled with supervised machine learning to determine the regression function, where 

training and testing of the dataset are performed. 

The method in the case study will be extended to develop the predictive model 

of landslide initiation in the Kota Kinabalu area at a distributed scale. The soil 

properties in the case study are also considered representative for the Kota Kinabalu 

area as the locations are underlain by similar geological formations, namely Crocker 

Formation. The formation typically consisted of a thick sequence of grey to bluish-

grey of fine to medium-grained sandstone and combinations of red and grey shale beds. 

Series of parametric analyses are performed to investigate the contribution of different 

combinations of slope geometry and groundwater table on the stability condition of 

the slope. The dominant factor will be adopted to construct the predictive model. 

Besides the probabilistic-based predictive model, the deterministic-based model is 

constructed to assess the performance of the former model. 
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1.7 Significance of Study 

This study mainly improves the existing technique to predict rainfall-induced 

landslides in unsaturated slopes with a more reliable approach. Several benefits can be 

gained from this study as follows: 

1. The proposed method for slope probabilistic analysis that systematically 

considers the quantification of uncertainties and dependencies of soil variables 

can be used as a practical guide for estimating the performance level of slope.  

2. This study also forms the foundation of a more reliable landslide warning 

system in the future. Thus, the local authority can execute a proactive measure 

to reduce the risk of landslides, especially in populated areas near the hillsides.   

 

 

1.8 Structure of Thesis 

 This thesis consists of eight chapters: Introduction (Chapter 1), Literature 

Review (Chapter 2), Methodology (Chapter 3), Verification Study of Numerical 

Modelling (Chapter 4), Characterisation of Variabilities, Uncertainties, and 

Dependencies of Soil Properties (Chapter 5), Probabilistic Model for Back Analysis 

of Unsaturated Slope (Chapter 6), Predictive Models of Rainfall-induced Landslides 

(Chapter 7), and lastly Conclusions and Recommendations (Chapter 8).  

Chapter 1 explains the background, problem statement, study area, goal and 

objectives, research questions, scope of study, significance of study, and structure of 

thesis. 

Chapter 2 presents a review on a coupled hydro-mechanical constitutive model, 

variability and uncertainty in geotechnical engineering, dependency of variables, 

probabilistic analysis in slope engineering, and prediction of rainfall-induced 

landslides. 
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Chapter 3 describes the case study, data, application of software, development 

of Soil Water Characteristic Curve (SWCC), best-fitting of marginal distribution, 

construction of vine copula, numerical modelling, Multilayer Perceptron regression, 

Monte Carlo simulation, sensitivity analysis, parametric analysis, and rainfall 

threshold for landslide initiation. 

Chapter 4 explains the selected case study at Zaoyang, Hubei, China, soil 

properties, slope geometry model, meshing, and boundary conditions, initial condition, 

and the analysis and result. 

Chapter 5 describes the characterisation of variabilities of soil properties, 

characterisation of uncertainties of soil properties, characterisation of dependencies of 

soil properties, and performance of vine copula models. 

Chapter 6 discusses the soil properties, slope model, coupled seepage-

deformation modelling, slope stability analysis, regression based on Multilayer 

Perceptron Network, Monte Carlo simulation, performance level threshold, impact of 

vine copula on slope performance, and sensitivity of hydro-mechanical soil properties. 

Chapter 7 presents the parametric study, development of new rainfall 

thresholds, and the validation of rainfall thresholds. 

Chapter 8 provides the conclusions of this study. Recommendations for future 

study are also presented. 
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