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ABSTRACT 

Association Rule Mining (ARM) is one of the fundamental components in the 

field of data mining that discovers frequent itemsets and interesting relationships for 

predicting the associative and correlative behaviours for new data. However, 

traditional ARM techniques are based on support-confidence that discovers interesting 

association rules (ARs) using predefined minimum support (minsupp) and minimum 

confidence (minconf) threshold. In addition, traditional AR techniques only consider 

frequent items while ignoring rare ones. Thus, a new parameter-less predicated based 

ARM technique was proposed to address these limitations, which was enhanced to 

handle the frequent and rare items at the same time. Furthermore, a new interestingness 

measure, called g measure, was developed to select only highly interesting rules. In 

this proposed technique, interesting combinations were firstly selected by considering 

both the frequent and the rare items from a dataset. They were then mapped to the 

pseudo implications using predefined logical conditions. Later, inference rules were 

used to validate the pseudo-implications to discover rules within the set of mapped 

pseudo-implications. The resultant set of interesting rules was then referred to as the 

predicate based association rules. Zoo, breast cancer, and car evaluation datasets were 

used for conducting experiments. The results of the experiments were evaluated by its 

comparison with various classification techniques, traditional ARM technique and the 

coherent rule mining technique. The predicate-based rule mining approach gained an 

accuracy of 93.33%. In addition, the results of the g measure were compared with a 

state-of-the-art interestingness measure developed for a coherent rule mining 

technique called the h value. Predicate rules were discovered with an average 

confidence value of 0.754 for the zoo dataset and 0.949 for the breast cancer dataset, 

while the average confidence of the predicate rules found from the car evaluation 

dataset was 0.582. Results of this study showed that a set of interesting and highly 

reliable rules were discovered, including frequent, rare and negative association rules 

that have a higher confidence value. This research resulted in designing a methodology 

in rule mining which does not rely on the minsupp and minconf threshold. Also, a 

complete set of association rules are discovered by the proposed technique. Finally, 

the interestingness measure property for the selection of combinations from datasets 

makes it possible to reduce the exponential searching of the rules.  
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ABSTRAK 

Perlombongan Peraturan Penyatuan (ARM) merupakan salah satu komponen 

asas dalam bidang perlombongan data yang menemui set item yang kerap dan 

perhubungan yang menarik bagi meramalkan tingkah laku asosiatif dan korelatif untuk 

data baharu. Walau bagaimanapun, teknik ARM tradisional adalah berdasarkan 

keyakinan sokongan yang menemui peraturan penyatuan (AR) yang menarik 

menggunakan ambang sokongan minimum yang dipratakrifkan (minsupp) dan 

keyakinan minimum (minconf) yang telah ditetapkan. Di samping itu, teknik AR 

tradisional hanya mempertimbangkan item yang kerap dan mengabaikan item yang 

jarang berlaku. Oleh itu, teknik ARM berasaskan penetapan predikat tanpa parameter 

baharu, telah dicadangkan untuk menangani batasan ini yang dipertingkatkan untuk 

mengendalikan item yang kerap dan jarang berlaku pada masa yang sama. Tambahan 

pula, satu pengukuran tahap daya tarikan yang baharu, disebut sebagai keputusan 

ukuran g telah dibangunkan untuk memilih peraturan yang berdaya tarikan tinggi 

sahaja. Dalam teknik yang dicadangkan ini, gabungan yang menarik telah dipilih 

terlebih dahulu dengan mempertimbangkan kedua-dua item yang kerap dan jarang 

berlaku daripada set data. Ia kemudiannya dipetakan kepada implikasi pseudo 

menggunakan kondisi logik yang telah ditetapkan. Selepas itu, peraturan inferens 

digunakan untuk mengesahkan implikasi pseudo untuk menemui peraturan dalam set 

implikasi pseudo yang dipetakan. Set peraturan yang menarik yang terhasil 

kemudiannya dirujuk sebagai peraturan penyatuan berasaskan penetapan predikat. Set 

data zoo, kanser payudara, dan penilaian kereta telah digunakan untuk menjalankan 

eksperimen. Keputusan eksperimen dinilai dengan perbandingannya dengan pelbagai 

teknik pengelasan, teknik ARM tradisional dan teknik perlombongan peraturan 

koheren. Pendekatan perlombongan peraturan berasaskan penetapan predikat telah 

mendapat ketepatan 93.33%. Selain itu, keputusan ukuran g telah dibandingkan 

dengan pengukuran daya tarikan terkini yang dibangunkan untuk teknik perlombongan 

peraturan koheren yang dinamakan sebagai nilai h. Peraturan penetapan predikat 

ditemui dengan nilai keyakinan purata 0.754 untuk set data zoo dan 0.949 untuk set 

data kanser payudara, manakala purata keyakinan peraturan penetapan predikat yang 

ditemui daripada set data penilaian kereta adalah 0.582. Keputusan menunjukkan 

bahawa satu set peraturan yang menarik dan sangat dipercayai telah ditemui termasuk 

peraturan perkaitan yang kerap, jarang berlaku dan negatif yang mempunyai nilai 

keyakinan yang lebih tinggi. Kajian ini menghasilkan pembentukan metodologi dalam 

perlombongan peraturan yang tidak bergantung pada ambang minsupp dan minconf. 

Ia juga, adalah satu set lengkap peraturan persatuan yang ditemui oleh teknik yang 

dicadangkan. Akhir sekali, ciri pengukuran daya tarikan untuk pemilihan gabungan 

daripada set data memungkinkan untuk mengurangkan pencarian eksponen peraturan.   
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CHAPTER 1  

 

 

INTRODUCTION 

 

1.1 Overview 

Currently, vast amount of data is stored all over the Internet and the Web that 

has exceeded what human can comprehend on their own. Different tools and 

applications are needed to understand the data as the analysis of this data for turning it 

to useful information is crucial. This overwhelming state of the available data resulted 

in the discovery of data mining and has become a hot research topic. Data mining is 

defined by Witten et al. (2016) as the technique of extracting knowledge from the data. 

The knowledge gained from processing these large amounts of data can and has been 

used extensively for applications in various fields including market basket analysis, 

science exploration, production control and many more (Han et al., 2011).  

One of the dominant technique of data mining is the association rule mining 

(ARM). ARM deals with the discovery of relationships among frequently appearing 

item sets. The primary focus of ARM is to find rules with minimal human effort to 

predict co-occurrence of items and to discover relations, in the form of rules that are 

more interesting among items in large datasets. These interesting rules provide user 

with the ability of justifiable decision-making steps based on data pattern.  

In ARM techniques the interestingness of association rules (ARs) is calculated 

based on different statistical and mathematical equations. In case of traditional ARM 

techniques (Brin et al., 1997a; Park et al., 1995; Agrawal and Srikant, 1994; Agrawal 

et al., 1993), the interestingness of an AR is based on the idea to find all the rules that 

has a high support and high confidence threshold than a predefined minimum support 

(minsupp) and minimum confidence (minconf) threshold (Han et al., 2011; Agrawal et 

al., 1993). These measures select the most frequent item sets from the transaction 
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records and rejects the non-frequent and the frequent absent item sets from the 

transaction records. However, in some cases, the non-frequent items which are not 

reported, due to the restrictions applied by the minsupp and minconf, can be useful 

(Koh et al., 2008; Koh et al., 2006). Therefore, the mined rules found are incomplete 

and making decision on these incomplete rules may have unfavourable effects on 

decision making. In addition, predefining an appropriate minsupp and minconf 

threshold requires an expert user because if an inappropriate minsupp and minconf 

value is predefined then redundant rules are discovered or there is a loss of important 

rules.  

Moreover, ARM algorithms generate a huge number of rules, some of which 

are trivial and in some cases most of them are redundant. Understanding these large 

number of rules is difficult and in turn reduces the effectiveness of ARM algorithms. 

Thus, identification of the most useful rules and the filtering of the irrelevant rules 

must be carried out (Ju et al., 2015). The practical application of ARM algorithms will 

be benefitted by implementation of techniques that filters redundant rules and 

discovery of hidden useful information from the dataset.  

Multiple algorithms are developed for the discovery of ARs using 

propositional and predicate logic. For example, a rule-based expert system was 

developed by (Ikram and Qamar, 2015) to predict earthquakes based on previous data 

where the rules discovered are polished using predicate logic. In addition, mining 

predicate association by gene expression programming is also proposed for the 

discovery of association rules that cannot be expressed and discovered by traditional 

techniques (Zuo et al., 2002). Propositional logic has also been used to overcome the 

limitations of minimum support and confidence model and to discover a set of coherent 

rules that are more reliable (Sim et al., 2010) 

 In order to overcome the above-mentioned limitations, an ARM algorithm is 

introduced for the discovery of interesting ARs based on the concepts of predicate 

logic without presetting the minsupp and minconf threshold. The proposed technique 

discovers all frequent rules and rules where the consequence of the rules is rare to 

address the issue of discovering incomplete set of rules. Moreover, an interestingness 
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measure is developed to identify and extract the most interesting and useful rules from 

datasets. 

In this chapter, section 1.2 provides an explanation on ARM followed by the 

problem background of this research and its related solutions in section 1.3. The 

problem statement is elaborated in section 1.4 and the research questions of the study 

is explained in section 1.5. Next, the aims and objectives are outlined in section 1.6, 

and the motivation of the research study is summarized in section 1.7. Section 1.8 

presents the scope of the study, while the significance of the study is discussed in 

section 1.9. The major contributions of this thesis are highlighted in section 1.10. 

Finally, the chapter concludes with a summary in section 1.11. 

1.2 Association Rule Mining 

Association rule mining (ARM), first introduced by Agrawal et al. (1993), is 

the process of finding frequent patterns, correlation, and associations among the items 

of a transactional database. It is one of the most frequently used tools to identify and 

extract relationships between items/attributes in a dataset/database. An association rule 

(AR) is generally in the 𝑋 → 𝑌 form where 𝑋 and 𝑌 are items or sets of items. The 

left-hand side of the rule is called the antecedent of the rule while the right-hand side 

of the rule is the consequence of the rule. This rule is read as 𝑋 implies 𝑌 and it states 

that wherever 𝑋 is present in a transactional record, 𝑌 will also be present in that 

transaction. Generally, the consequence of the rule consists of only one item found in 

combination with antecedent and the antecedent consist of one or more data items 

combined (Huang et al., 2017; Makino et al., 2017). 

ARM discovers extensively large set of rules that also contains redundant and 

trivial rules. To reduce the set of rules generally a measure is used to remove these 

redundant and uninteresting rules. The traditional approach is based on the support-

confidence concept as proposed by Agrawal et al. (1993), where the dependence of 

each item on the other is measured with two factors namely, support and confidence. 
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Support is the frequency of an item set appearing in a dataset, while confidence is the 

probability of both antecedent and consequence appearing in same transactions.  

The process of mining ARs is often divided into two steps; (a) discovering all 

the frequent item sets whose frequency exceeds the minsupp threshold and (b) 

generation of ARs from the frequent item set using the constraints of minsupp and 

minconf threshold (Han et al., 2011). In the first step, a given dataset is searched to 

discover the repeating pattern of attribute-value pairs that exceeds the preset minsupp 

threshold. These pairs of attribute-value are named as items which forms the frequent 

item sets. Next, these frequent item sets are analysed for the generation of ARs.  

A major challenge for mining ARs is the generation of huge number of frequent 

item sets from a large dataset. The number of frequent item sets increase especially 

when the minsupp threshold value is set to low. In this case, many of the rules 

generated are similar to each other and no new information can be gained from those 

rules (Fournier‐Viger et al., 2017). On the other hand, if the minsupp threshold value 

is set to high, interesting rules can be lost and an incomplete set of rules will be 

discovered. 

Suppose a grocery shop manager wants to know which items are frequently 

purchased together, then an AR mined from the transaction records of the grocery shop 

will look like:  

𝑏𝑢𝑦𝑠(𝑋, "Milk")→𝑏𝑢𝑦𝑠(X, "Bread") [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 5%, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  50%] 

where a customer is represented as 𝑋, a support of 5% indicates that 5% of all 

the customers, under the analysis, bought Milk and Bread together. While the 50% 

confidence indicates that there is a 50% chance that if a customer buys Milk, then 

he/she will also buy Bread. In this example, if any of the rules does not satisfy the user 

defined threshold for minsupp and minconf, then those rules will be discarded. 
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1.3 Problem Background 

ARM has various applications in different areas including market basket 

analysis, science exploration and many more. The rule mining process, introduced by 

Agrawal et al. (1993), uses the minsupp and minconf threshold for the discovery of 

ARs. The number of rules generated by mining ARs may be huge depending on how 

the minsupp threshold is set (Fournier‐Viger et al., 2017). This huge number of rules 

contains a lot of redundancy as well as a possibility of weak correlation between 

frequent item sets. Therefore, the analysis of these rules seems impossible and less 

productive. 

The explosion in data growth in the recent history resulted in the birth of the 

data mining techniques for knowledge extraction. ARM was the initial development 

in the data mining to extract the meaningful information from the huge data (Agrawal, 

Imielinski, & Swami, 1993; Agrawal & Srikant, 1994). The ARM is then rigorously 

studied and improved by the researchers in the following years such as Yan et al. 

(2009), Djenouri et al. (2013), Soysal (2015), Goyal et al. (2015), Narvekar and Syed 

(2015), and in Yuan and Ding (2012). The key limitation of the Apriori algorithm was 

its performance issues with respect to the time, thus many researchers proposed 

efficient techniques such as Hong and Bian (2008), Yang (2004), Kuo and Shih (2007), 

Guo et al. (2017), and in Han et al. (2004). Among all these, the FP-growth was a 

breakthrough in the time of the extraction of frequent rules (Han et al., 2004).  

However, there are a number of other disadvantages identified by the 

researchers. a) Requirement of user input parameters such as minimum support 

(minsupp) and minimum confidence (minconf); b) the exponential number of 

candidate rules generation. Researchers are working on the improvement of both 

issues. Selection of the predefined values are input parameters is difficult, especially 

for large databases and handling of large candidate rules is humanly not possible. The 

generation of the large rules may also negatively impact the results (Yan et al., 2009).  

Thus, researchers proposed automatic parameter setting approaches as well parameter 

less approaches as discussed by Yan et al. (2009), Kuoa et al. (2011), Dash et al. 

(2013), and Minaei-Bidgoli et al. (2013). Another important task is identifying 
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interesting rules (Dash et al., 2013; Minaei-Bidgoli et al., 2013; Nandhini et al., 2012). 

A large number of techniques are developed that evaluate the interestingness of 

frequent rules. 

The selection of a subset of rules is always risky and its impact is twofold. The 

subset may consist of the strongest rules and the analysis will only considers subset of 

the rules. There is no guarantee that we found all the interesting rules, similarly there 

is also no guarantee that we have less interesting rule in the selected subset (Sim et al., 

2010). The rejection of hidden strong rules will lead to flawed conclusions of decision 

makers who are taken by the consideration that the selected rules are all the rules 

discovered from the data. Moreover, it can be considered that there always exists an 

appropriate minsupp threshold for each dataset, but it is hard to find. This leads to the 

major issue of discovering interesting rules in a dataset (Webb and Vreeken, 2014). 

Therefore, algorithms have been designed for the extraction of concise 

representation from the discovered frequent item sets. This representation summarizes 

the whole set of the frequent item sets into a much smaller set of frequent item sets 

(Fournier‐Viger et al., 2017). It is also reported that the discovery of these concise 

representation is much faster as compared to the discovery of frequent item sets in the 

traditional ARM techniques as there is no need to scan the dataset multiple times for 

calculating the support of each item set (Aliberti et al., 2015; Soulet and Rioult, 2014; 

Fournier-Viger et al., 2014; Szathmary et al., 2014; Lucchese et al., 2006). Some of 

the most popular examples for extraction the summary set of the frequent item sets 

from a dataset are closed item sets (Aliberti et al., 2015; Vo et al., 2012), maximal 

item sets (Uno et al., 2004), and generator item sets (Soulet and Rioult, 2014; Fournier-

Viger et al., 2014; Szathmary et al., 2014). 

Furthermore, in discovering frequent item sets the mining process considers 

that all items as equal (Fournier‐Viger et al., 2017), however, in real life items are 

much more different than each other (Liu et al., 1999a). For example, milk and 

avocado are two different items with selling frequencies very much different than each 

other in a retail store. The sale of avocado is infrequent as compared to the milk, 

therefore, these both or not equal item in real life. This introduce the importance of the 
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infrequent items which is almost negative of the frequent items and represent rarity of 

items set (Liu et al., 1999a). Thus, meaning that some items from a transaction record 

are less likely to show up in frequent item sets as compared to others. These infrequent 

items or rare items are mostly discarded by the traditional ARM techniques by failing 

the minsupp and the minconf condition. The ARs that satisfies the minsupp threshold 

requirement are important to be identified in some cases, however, there is the 

possibility to discover more useful knowledge using the ARs of the infrequent items 

(de Sá et al., 2018; Kim and Yun, 2016; Lin et al., 2015; Troiano and Scibelli, 2014). 

The rejected rules that do not satisfy the condition of minsupp might be needed to 

improve data mining models for different datasets. 

The infrequent item problem has been addressed by researchers using the 

technique of multiple minsupp threshold algorithms (Kiran and Reddy, 2011; Hu and 

Chen, 2006; Liu et al., 1999a). In these algorithms, users can choose different minsupp 

threshold for each item based on their appearance in the transaction records. 

Furthermore, other methods have also been proposed where the infrequent item sets 

are searched in the dataset instead of searching the frequent items (Koh and Ravana, 

2016; Szathmary et al., 2012; Szathmary et al., 2007).  

Next, ARM techniques are working on the concept of the presence of the items 

in the dataset while it does not consider the absence of an item in a given transaction 

record. Ignoring the rules with stronger association that shows the absence of an item 

in the transaction can be misleading. For example, ignoring a stronger association 

among the presence of item 𝑋 and absence of item 𝑌 is misleading in comparison with 

reporting the presence of item 𝑋 with presence of item 𝑌 which has less strong 

association than the former association. Therefore, leading to inappropriate decisions 

as a consequence. 

Moreover, selection of interesting ARs requires a detailed insight into the data 

as it is infeasible to include all the frequent item sets discovered. Through this step, all 

the ARs that are less interesting will be dropped while the most interesting rules will 

be used for decision making. Consequently, the evaluation methodology for mining 
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association rules is of great significance in both theory design and practical 

application.  

In the recent past, the researchers achieved a reasonable success in the 

development of the interestingness measure of association rules (Datta and Mali, 2017; 

Ju et al., 2015; Chen, 2007). Chen (2007) introduced a data envelopment analysis 

(DEA) as a post-processing approach. The DEA is used after discovering of the AR to 

rank these rules based of a predefined criterion. Toloo et al. (2019) improved the DEA 

by introducing mixed integer linear programming (MILP). Objective interestingness 

mainly considers statistical significance features of objective data, including Support, 

Confidence and Lift, which are classic, as well as Validity, Conviction, Improvement, 

and Chi-square analysis, which are relatively new (Geng and Hamilton, 2006). The 

common objectives of all researchers are to discover the rules that truly reflect the 

users’ interest in the generated rules set. However, various interestingness measures 

conflict with one another as they produce different results in different circumstances  

In the recent past, the researchers introduced logic-based discovery of ARs. 

(Sim et al., 2010) proposed a coherent rule based on predicate logic to extract 

knowledge from dataset. These techniques neither use background knowledge nor pre-

set parameters. The coherent rules are then used to discover the ARs without setting 

the minsupp or minconf. Chen et al. (2013b) improved the logic-based rules by using 

fuzziness in the rules. In the process, it generates the fuzzy candidate coherent rules. 

Then, the confusion matrix is calculated that these candidates satisfy the four different 

criteria. If it passes all the criteria, then they are coherent rules. Chen et al. (2014) also 

used a logic-based AR to avoid the minsupp and minconf and used coherent rules to 

discover the hidden knowledge from dataset.  

The above discussion generates the following hypothesis that need to evaluate.  

H1: The minsupp and minconf can be replaced by the logic-based techniques 

that will not require the domain knowledge for generating the association rules.  
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H2: The infrequent and rare item also possess important information like 

frequent items.  

H3: The interestingness measure can identify the frequent and infrequent item 

and improve the quality of the ARs. 

 

1.4 Problem Statement 

The pre-setting of a minsupp threshold in the ARM leads to the rejection of 

rules falling below the threshold value. If the minsupp is not specified or the threshold 

is set to a very low value, it will result in huge number of rules. This makes it 

impossible to examine all the discovered rules and make decisions based on these 

rules. However, setting the minsupp results in loss of rules that may lead to information 

loss that can be yielded from a dataset. (Fournier‐Viger et al., 2017). On the other 

hand, there always exists an appropriate minsupp threshold for each dataset, but 

identifying it is almost impossible as it requires an in-depth knowledge of each domain 

to be mined. Sim et al. (2010) introduced logic-based AR that did not use the minsupp 

and minconf. Their technique has the ability to extract very strong rule from the dataset. 

However, the evaluation shows that their logic-based technique is losing information 

due to their strict internal criteria.  

Moreover, traditional ARM does not consider the negative and infrequent 

rules. Infrequent rules possess the important information that highlight the rarity and 

casual activities such as fraud, however ARM techniques are not capable of capturing 

such rules. This also results in loss of rules that contains the association between the 

presence and absence of items in ARM. The rules discovered will be inadequate and 

may lead to flawed actions (Chen et al., 2013b). 

Besides the minsupp and minconf, the interestingness measure is also used to 

select the important rules. There are a number of interestingness measure that are used 

in the literature. However, these measure either effectively select the frequent ARs or 
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infrequent ARs (Geng and Hamilton, 2006). To the best of the author knowledge, there 

is not a single technique that can measure the interestingness of both the frequent and 

infrequent interesting ARs at the same time. An appropriate interestingness measure 

increases the accuracy and efficiency of discovering interesting ARs by selecting rules 

using knowledge from a given dataset (Datta and Mali, 2017).  

1.5 Research Questions 

This research will focus on the following research questions.  

(a) How to discover the association rules without minsupp and minconf using 

predicate logic? 

(b) How to discover the infrequent and negative ARs from a dataset? 

(c) How to devise an interestingness measure that can evaluate and improve the 

frequent and infrequent rules in dataset.  

 

1.6 Aims and Objectives 

The aim of the current research was to overcome the limitations of the 

traditional ARM technique that are connected with the selection of minsupp and 

minconf for the discovery of interesting ARs. An ARM algorithm is proposed for 

discovering interesting ARs without presetting the minsupp and minconf threshold. 

The discovery of the ARs is performed using the concepts of predicate logic and a new 

interestingness measure called the g measure that addresses the issue of discovering 

incomplete set of rules. Moreover, the g measure identifies and extracts the most 

interesting and useful rules from datasets. 

This research will focus on achieving the following objectives: 
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(a) To develop a technique for discovering association rules without minsupp and 

minconf using predicate logic. 

(b) To design a model for discovering infrequent and negative ARs from a dataset. 

(c) To propose an interestingness measure to evaluate frequent and infrequent 

interesting ARs. 

 

1.7 Motivation 

The classical approach of ARM uses the minsupp and minconf threshold for 

the discovery of frequent item sets that are strongly associated. However, weakly 

associated rules that are non-interesting and exceeds the minsupp threshold are also 

generated in this support-confidence based techniques. Moreover, the rules which does 

not satisfy the minsupp are rejected. This results in the loss of rules that may not be 

frequent but are strongly associated, deriving an incomplete set of interesting ARs. 

Decision making on such incomplete set of rules leads to inappropriate and erroneous 

decisions.  

In addition, the support-confidence does not consider the absence of items 

during the discovery of ARs even if they are strongly associated and has the 

interestingness property for a transactional database. Again, loss of strong and 

interesting rules occurs, providing the users with incomplete set of rules unknowingly 

misleading them to take flawed decisions about the relationship among items in a 

dataset.  

Extensively large set of rules are generated in ARM for which algorithms are 

designed to extract only the strongest rules. Yet, extraction of the strongest rules from 

an incomplete set of rules does not guarantee a complete set of strong and very 

interesting rules as they can be hidden due to the rejection of rules in the previous 

steps. 
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The motivation of this research study is the limitations discussed above and to 

develop a technique that finds ARs without the requirement of minsupp and minconf 

threshold. This eliminates the adverse effect of missing ARs and discovers a complete 

set of rules by observing the presence as well as the absence of the item in a transaction 

record. Moreover, logic deals with understanding of how information is captured and 

how it is possible for one statement to be the consequence of another. It means that, 

how the information needed for the conclusion to be drawn is already present in the 

statement or a group of statements. Therefore, the integration of logic with ARM will 

lead to discover the complete, valid, and sound ARs from a given dataset.  

1.8 Scope of Study 

This research study deals with generation of ARs without presetting the 

threshold for minsupp and minconf. Thus, the proposed technique will not require the 

domain knowledge for the user that is required for setting the minsupp and minconf 

threshold. Although, theoretically, this study can deal with the huge size of the 

transactional data, certain assumptions are to define the scope of this study.  

This study is introducing an innovative ARM technique that discover 

interesting predicate rules. This technique does not deal with the partition datasets. 

Thus, the assumption is made that entire dataset may be loaded in the memory. 

Moreover, Python programming language was used for the implementation of the 

proposed techniques and testing it against state-of-the-art techniques for discovering 

ARs. Due to its productivity, speed, extensive availability of support libraries and 

having open-source development capabilities, Python is selected as the programming 

tool.  

According to the research field of associative classification, it is a common 

practice to constraint the right-hand side of the rule to be a single consequence. This 

research will use the same technique that will search only the rules with a single item 

set at the right-hand side. The reason for this restriction is to reduce the repeated 
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scanning and evaluation of the rules where at some point the same subset of the rules 

appear at the right-hand side.   

1.9 Significance of Study 

In this research, a new technique is introduced for mining predicate rules in 

datasets without presetting a minsupp and minconf threshold. Implications and 

inference rules of predicate logic are used for discovering ARs from frequent as well 

as infrequent items that are interesting from datasets. Using the truth table values of 

items in a dataset for mapping implications to ARs eliminates the requirement of 

minsupp and minconf threshold. Thus, extracting ARs that are hidden but strong and 

making it a statistically sound process to prove the rules are valid. 

Moreover, the techniques proposed in this study will enable user to consider 

all possible combination of item sets that are both present and absent in each 

transaction record. Therefore, providing a complete set of rules resulting in user 

confidence on the knowledge discovery from the data. However, minimum threshold 

requirement results in discovering incomplete rules from the data mining activities. 

Therefore, the decision made on the incomplete rules will lead to erroneous decisions.  

A new interestingness measure proposed that has a property for reducing the 

exponential searching during the discovery of ARs. Thus, discarding the non-

interesting ARs at the start of the rule discovery and limit the processing. In addition, 

a significant characteristic of this property is the discovery of ARs whose consequence 

is frequent or rare by comparing the reliability differences between the presence and 

absence of the consequence of the rule. Furthermore, the interestingness measure ranks 

the rules based on their interestingness and provides users with a set of complete and 

interesting rules building user’s confidence for decision making.  
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1.10 Contributions 

This research makes the following contribution by introducing a new ARM 

technique offering a complete set of rules discovered using a new interestingness 

measure:  

(a) Parameter-less association rules mining technique: The concepts of predicate 

logic including implications and inference rules are used to discover ARs. This 

results in designing a methodology in rule mining which does not rely on the 

minsupp and minconf threshold.  

(b) Negative and rare itemset ARs: Beside frequent, the negative and infrequent 

item sets are considered during the discovery of AR to overcome the limitation 

of traditional ARM techniques that only considers the discovery of frequent 

item set. A complete set of predicate rules are discovered that are interesting 

because the selection of rules is performed based on logical techniques.  

(c) Eliminating / limiting exponential search space: The interestingness measure 

property for selection of combinations from datasets makes it possible to 

reduce the exponential searching of the rules. The rules discovered only 

considers the most interesting items from the dataset and discards the non-

interesting item/item sets. This reduces the complexity of the searching process 

and also makes the rule mining process computationally adequate to be 

implemented. 

(d) Measure for Predicate rules: A new measure is developed for selection of the 

interesting predicate rules from the dataset called the 𝑔 measure. The measure 

is designed to find consequence of a rule that is rare or frequent by comparing 

the reliability difference between the presence and the absence of the 

consequence of the rule. Thus, rule discovered are highly reliable and decision 

made on these rules are correct in comparison to the incomplete set of rules 

discovered using traditional ARM techniques.  
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1.11 Summary and Thesis Organization 

This chapter provided an overview of the research conducted, highlighting the 

problem background and the objectives of the research. The scope of the research to 

be covered is introduced and the contributions attained during the research study is 

described. 

This thesis is divided into six chapters. The second chapter of the thesis 

describes the basic concepts and terminologies of ARM and a critical analysis of the 

state-of-the-art research conducted in the field of ARM. Chapter 3 focuses on the 

research methodology describing the steps to discover ARs without minsupp and 

minconf threshold. It is followed by chapter 4, which presents the ARM process in 

detail. The results and discussion are provided in chapter 5 and finally, chapter 6 

presents the conclusion of the research study and the future directions for further 

improvements. 
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