
EXPERIMENTAL AND NUMERICAL MODELING OF OUTRIGGER SYSTEMS

OF TALL BUILDING STRUCTURES

BAHRAM MARABI

A thesis submitted in fulfillment of the 

requirements for the award of the degree of 

Doctor of Philosophy (Civil Engineering)

School of Civil Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia

APRIL 2022



ACKNOW LEDGEM ENT

Praise Be to Allah S.W.T, the Lord of the World

Foremost, I would like to express my sincere gratitude to my supervisors 

Assoc. Prof. Ts. Dr. Sophia C. Alih. And Assoc. Prof. Ts. Dr. Mohammadreza Vafaei 

for the continuous support of my study and research, for her patience, motivation, 

enthusiasm, and immense knowledge. Their guidance helped me in all the time of 

research and writing of this thesis. I could not have imagined having better advisors 

and mentors for my study.

My sincere thanks also go to all staff, lectures, and individuals who directly or 

indirectly support me throughout completing this study. I am deeply thankful to my 

friends and officemates who always support and motivate me during ups and downs.

v



ABSTRACT

The tall building’s height recently has exceeded a thousand meters. An 
appropriate lateral load resisting system to drift-control seems necessary. Considering 
that the lateral deflections play a vital role in selecting the type of tall building 
structures. Top-drift in tall buildings has not yet been entirely resolved for seismic 
demands. That is way, utilizing the structural outrigger systems is one of the most 
efficient structural systems to enhance the structure's lateral stiffness and minimize the 
top-drift without increasing the building's components sizes and mass it will need. This 
study aims to specify the lateral resisting responses of conventional structural outrigger 
models through experimental works. A new type of outrigger model was proposed to 
compare its effectiveness with the conventional models. Finally, to optimize the 
parameters affecting the new outrigger model's lateral response is proposed through 
the Finite Element Method (FEM). A total of eight 3D models including three types of 
structural core models (no outrigger), two types of single outrigger models, two types 
of multi outrigger models, and a proposed new outrigger model, were experimented 
using a quasi-static cyclic test. The models are termed the Core Models (Core-1,2 and 
3), Opti-models (1-Out, 2-Out), Conv-models (Cap-Out, 2-Out), new model (Dev­
Out) and FE Dev-Out. This research, inspired by the 2D analytical method with an 
idealized pattern, has been used to advance to 3D experimental modeling to achieve 
more reliable results. The hysteresis curves have been calculated to obtain the initial 
lateral stiffness, effective stiffness, ultimate lateral strength, ductility ratio, energy 
dissipation capacity, and failure mechanism in all experiments through the quasi-static 
cyclic test models. Results indicated that the outrigger systems' optimal forms failed 
at the first outrigger's upper level while the conventional forms and core models failed 
at the base. The 2-Out optimal form up to 140% have higher effective stiffness than 1- 
Out, and Cap-Out 36% higher than 2-Out conventional form, while the Dev-Out form 
is 31% higher than the 1-Out Opti model. The Cap-out 6% is higher than the 1-Out 
Opti form as well. The energy dissipation of the 2-Out conventional form has the 
highest level by 686.1 kN.mm, while the Dev-Out model has the lowest value by 297.7 
kN.mm than other outrigger forms. The 2-Out conventional form by 6.73 is ductile, 
and the 2-Out Opti model by 3.84 ratios has a second-place than other forms. The 
proposed new model can increase the effective lateral stiffness by 2.2 times at the 
develop-outrigger location due to added outer peripheral columns. The FE Dev-Out 
model to reduce the top-drift was optimized when the outrigger is placed at 0.4H from 
the top of the model. Also, the base moment was minimized if the outrigger is placed 
at the mid-height and base position range. In final, the developed 3D method compared 
to the traditional 2D methods indicated a significant difference in the conventional 
outrigger forms' performance with optimal forms under lateral loads, stiffness, 
ductility, and energy dissipation in tall building structures.
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ABSTRAK

Ketinggian bangunan pencakar langit akhir-akhir ini telah melebihi seribu meter. 
Sistem penahan beban sisi yang sesuai untuk kawalan anjakan adalah perlu. Memandangkan 
pesongan sisi memainkan peranan penting dalam memilih jenis struktur bangunan tinggi, 
anjakan besar di bangunan tinggi belum dapat diatasi sepenuhnya untuk beban seismik. Oleh 
yang demikian, penggunaan sistem pencetus struktur adalah salah satu sistem yang paling 
efisien bagi meningkatkan kekakuan sisi struktur dan meminimumkan anjakan tertinggi tanpa 
meningkatkan ukuran dan jisim komponen bangunan. Kajian ini bertujuan untuk 
membandingkan tindak balas sisi sistem pencetus struktur konvensional yang berbeza melalui 
kerja-kerja eksperimen. Model pencetus jenis baru dicadangkan untuk membandingkan 
keberkesanannya dengan model konvensional melalui eksperimen. Akhirnya, untuk 
mengoptimumkan parameter yang mempengaruhi tindak balas sisi model pencetus baru 
dicadangkan melalui kaedah unsur terhingga (FEM). Sebanyak lapan model 3D merangkumi 
tiga jenis model teras struktur, dua jenis model pencetus tunggal, dua jenis model pencetus 
pelbagai, dan model pencetus baru yang dicadangkan, dieksperimen menggunakan ujian 
kitaran kuasi-statik. Models tersebut dinamakan Core Models (Core-1,2 and 3), Opti-models 
(1-Out, 2-Out), Conv-models (Cap-Out, 2-Out), new model (Dev-Out) and FE Dev-Out. 
Penyelidikan ini, yang diilhami oleh kaedah analitik 2D dengan corak ideal, telah digunakan 
untuk dimajukan ke model eksperimen 3D bagi mencapai hasil yang lebih dipercayai. 
Lengkung histeresis telah dianalisa untuk mendapatkan kekakuan sisi awal, kekakuan 
berkesan, kekuatan sisi akhir, nisbah kemuluran, kapasiti pelesapan tenaga, dan mekanisma 
kegagalan dalam semua eksperimen melalui model ujian kitaran kuasi-statik. Hasil 
menunjukkan bahawa bentuk optimum sistem pencetus telah gagal di bahagian atas pencetus 
pertama sementara bentuk konvensional dan model teras telah gagal di bahagian asas. Bentuk 
optimum 2-Out mempunyai kekakuan efektif sehingga 140% lebih tinggi daripada 1-Out, dan 
Cap-Out 36% lebih tinggi daripada bentuk konvensional 2-Out, sementara bentuk Dev-Out 
31% lebih tinggi daripada model 1-Out Opti. Cap-out 6% lebih tinggi daripada bentuk 1-Out 
Opti juga. Pembebasan tenaga dari bentuk konvensional 2-Out mempunyai tahap tertinggi 
sebanyak 686.1 kN.mm, sementara model Dev-Out mempunyai nilai terendah sebanyak 297.7 
kN.mm daripada bentuk pencetus lain. Bentuk konvensional 2-Out dengan 6.73 adalah mulur, 
dan model 2-Out Opti dengan nisbah 3.84 mempunyai tempat kedua daripada bentuk lain. 
Model baru yang dicadangkan dapat meningkatkan kekakuan sisi yang efektif sebanyak 2.2 
kali pada lokasi pengembangan-pencetus disebabkan penambahan tiang periferal luar. Model 
FE Dev-Out untuk mengurangkan anjakan atas akan dioptimumkan apabila pencetus 
diletakkan pada 0.4H dari bahagian atas model. Juga, momentum asas akan diminimumkan 
jika pencetus diletakkan pada jarak pertengahan dan kedudukan asas. Kesimpulannya, kaedah 
3D yang dibangunkan berbanding dengan kaedah 2D tradisional menunjukkan bahawa 
terdapat perbezaan yang signifikan dalam prestasi bentuk pencetus konvensional dengan 
bentuk yang optimum di bawah beban sisi, kekakuan, kemuluran dan pelesapan tenaga dalam 
struktur bangunan tinggi.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The construction of tall buildings and towers has become symbolic and 

application aspects. Since ancient times to the present, high-rise buildings have been 

of human interest, and in less than half a recent century, it develops faster than the 

building codes themselves. This change was primarily due to the response to 

commercial needs close to cities' centers. Another tall building indicator needs include 

management for business, tourist attractions, and hotels with a detailed, favorable 

economic return. On the other hand, the rapid growth in the urban population and the 

rising cost of land and less agricultural activities make the city's horizontal expansion 

unbearable. The advent of high-quality materials such as composite, steel, and concrete 

has resulted in a lightweight and slender frame construction that longs to increase 

buildings' height, as shown in Figure 1.1.

After World War II, particular interest to increase the height of buildings has 

triggered an introduction of various new high-performance structural systems using 

high-strength materials. Gradually, unique structural systems and curved structural 

members such as columns, beams, and shear walls have to lead to freedom in the 

architecture and design of systems. The role of the advanced structural analysis 

software and Building Information Modeling (BIM) has assisted this progress. 

However, in the structural engineering perspective, high-performance structures and 

appropriate construction methods regarding bearing systems have created the adverse 

effects of increasing the structures' height.
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Figure 1.1 Schematic of the height increase in high-rise buildings of the world 

from 1885 to 2010 (Marshall Gerometta, 2009)

The primary role of tall buildings structures is to carry the gravity loads and 

the lateral loads, statically or dynamically. Duo to the destructive effects of lateral 

loads (earthquake or wind) over a building's life, it is necessary to provide a robust 

structural system that should also be economical and stable. The secondary effect led 

to the overturning of the structures by the lateral load's act. This force is directly related 

to the ratio of the squares of the height increases of the structure. In this regard, the 

development and evolution of tall structural systems with the resisting shear core walls 

as a lateral load's resisting system was combined with other structures since 1960' S, 

as shown in Figure 1.2.

The concept of a tall building is known as a cantilever structure. They are 

designed to carry loads, stiffness, strength, and ductility (Al-Subaihawi, Kolay et al. 

2020). However, top-drift control is essential for designing tall building structures 

(Gunel and Ilgin 2014). Dual structures such as structural outrigger systems are usually 

combined with other structural forms to enhance performance against the lateral loads.
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Figure 1.2 Evolution of structural systems (Buyukozturk and Gunes, 2004)

The gradual growth up of the development and evolution of dual tall structural 

forms are shown in Figure 1.3.

One of the functions that the lateral load resisting system could enhance in tall 

buildings is using a structural outrigger system. Utilizing an outrigger beams 

connection to the core-frame systems to create a strength couple to the external 

columns. The outrigger systems increase the flexural stiffness's effective depth in the 

lateral load resisting system of the tall building's structure as a vertical cantilever 

structure (Taranath 2011). The outriggered structural systems resist rotation and 

overturning moments of the building compared to a conventional structural system 

(Chen and Zhang 2018). The performance of the tall buildings structures associated 

with the outrigger systems could obviate this problem.

Among the tall buildings globally, most high-rise buildings with heights 

ranging from 40-to-100 floors are usually mixed-use (Fatima, Fawzia et al. 2011, 

Moon 2011). In high-rise buildings with such height, the outrigger systems are 

frequently applied, effectively decreasing the top drift from a lateral load such as wind 

or earthquake loads (Mazzotta, Brunesi et al. 2017). The use of the outrigger systems
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is necessary, especially in tall buildings above 100 stories. Creating an outrigger 

system combined with peripheral columns is often adopted to resist high-rise buildings' 

lateral load resisting system (Mohamed and Najm 2016).
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Figure 1.3 Category of dual structural systems (Ali and Moon, 2007)

This study investigates the slender structure in high-rise buildings by using the 

outrigger systems to create the lateral load resisting systems and minimize horizontal 

roof displacement. Application of the outrigger systems could also enhance the 

buildings' lateral stiffness without changing their component sizes or increasing their 

mass. The slender buildings or narrow-tall building usually forms inner shear core 

walls as a primary lateral resisting system. The outrigger element is coupled to the core 

with the external columns making it a big rigid body. Thus, components of the 

structural outrigger systems can include a central core, outrigger beams, and peripheral 

columns. An outrigger element can be a deep beam, concrete wall, or truss that 

occupied one or two-story height. It is duplicated at one or a few levels throughout the 

structure's total height, as shown in Figure 1.4.
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With this new concept in design and construction, many countries constructed 

enormous capital cities' structures. For example; Taipei in Taiwan in 2010 with a 510m 

height, Petronas Twin Towers in Malaysia in 1998 with a 452 m height, The Shanghai 

Tower in 2015 with a 632 m height and 124 levels with six outrigger levels, the 

skyscraper of Burj Dubai in 2010 with an 828m height, and Jeddah Tower in 2018 

with a height that exceed 1000 m were completed (Lee, Shin et al. 2018).

Figure 1.4 The concept of conventional structural outrigger system in the tall 

building with central core, outrigger and belt truss (Taranath, 2009)

The structural outrigger systems' experimental-theoric performance as a dual- 

structural system under quasi-static cyclic loads in the tall buildings was examined in 

this research. They considered that the tall buildings' primary lateral load resistance 

systems had been a resisting central core. In this way, an outrigger system combined 

with a structural core system has considered creating a dual system as a lateral load 

resisting structural outrigger system. In combination with the central core, the 

mechanism of the outrigger system is using deep beam concepts. The deep beams were 

fixed to the central core and pinned to the peripheral columns. Conventional outrigger 

models versus the developed outrigger model investigated the capacity and 

performance of the outrigger systems. This study examines a new type of outrigger

5



system's ability to mitigate lateral deflection in a tall building structure compared to 

conventional outrigger models. The developed model has added an extra column after 

the core and perimeter columns to extend the width and enhance its stiffness on both 

sides of the building. The effectiveness of a new type of outrigger system efficiency 

was compared to conventional models through experimental works.

1.2 Statement of the Problem

Vertical growth of the modern cities for land scarcity and the limit of urban 

habitats' horizontal progress become significant. Construction of the high-rise building 

is progressing as competition in the globe. The lateral deflections mitigation of the tall 

buildings or mainly top-displacement control of the buildings is a significant challenge 

in choosing the type and design of high-rising construction structures. Utilizing the 

different types of structures with high-quality, new materials and lightweight could not 

solve the problem unless using an enhanced structural technique. Using the structural 

outrigger systems to support the lateral load resisting frames often as a particular 

structural system has been the best choice for this problem. Determining the best-fit 

place of the outrigger locations to obtain high efficiency in reducing the building's top- 

drift due to horizontal forces is another problem. Preventing the destructive effects of 

lateral loads is another problem as well. For this purpose, using the structural outrigger 

systems could raise the building's height without increasing the mass and changing the 

size of the structure's components to satisfy the problem.

In this research, the lateral load resisting system in tall buildings structure 

utilizing the outrigger systems has been investigated. An innovative method to increase 

accuracy was followed by converting the 2D basic theoretical models to three­

dimensional (3D) modelling. Experimental works and 3D numerical modelling on the 

conventional outrigged frames are considered to respond to all conventional 2D 

models' theoretical methods. In this study, the structural outrigger systems' theoretical 

conventional method is examined to develop experimental 3D models to compare the 

accuracy of this method. The accuracy of the 3D modeling method is able to response 

of the stiffness demand for designers in the tall buildings compared to the 2D
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modelling to eliminate problem-solving assumptions in the previous traditional 

methods that are applicable to optimize the structural outrigger systems.

The conventional outrigger systems can not completely solve the problem of 

lateral stiffness of high-rise buildings. A developed type of the outrigger structures had 

been proposed in which is a column row added after the peripheral columns with 

extending outrigger length that led to increase the wide of the building. The proposed 

new outrigger structure model increased the structure's depth of flexural rigidity and 

to increase the lateral load resisting system in tall buildings. In this research, a new 

system is proposed to able to improve the lateral stiffness and top-drift problem. The 

conventional outrigger systems compared to the proposed outrigger system are 

evaluated. In both models, the efficiency of the outriggers to minimize the top-drift 

was investigated. The lateral capacity of the structural outrigger systems to respond to 

the seismic loads needs to propose a highly efficient new model. The obvious is that 

previous studies show that the researchers have ignored this matter.

Due to the complexity of traditional equations analysis of the interaction 

between the core action, outriggers, and columns in the outriggered frame, an 

advanced Finite Element (FE) software program is required. The numerical analysis 

procedures are appropriate alternatives at the actual conceptual in the structural design 

comparable to estimated costs and save times versus the traditional methods and 

experimental works. This way, investigating numerical parameters affecting the 

proposed new outrigger model's efficiency under quasi-static cyclic load is needed. 

The 3D simulation proposed experiment model of the proposed the new outrigger 

model must be compared and validated to save the cost and time.

1.3 Objectives of the Study

This study's main objectives are experimenting with conventional models and 

developing a new type of outrigger systems in tall buildings structures to increase the 

lateral load resisting system. In this research, utility a new technique on the scale-down 

simplified 3D models (SRM) using the experimental works and numerical analysis

7



(FEA). The performance of structural outrigger systems under the quasi-static cyclic 

test and an investigation of the factors affecting the lateral stiffness and efficiency in 

reducing drift at the top of the buildings. The objectives of this research are as follows:

i. To compare the lateral response of the optimum and conventional outrigger 

models through experimental works

ii. To develop a new type of outrigger system and compare its stiffness and 

location effectiveness with the conventional models through experimental 

works

iii. To conduct a sensitivity analysis of the stiffness and outrigger place parameters 

affecting the lateral response of the developed outrigger system through FEM

1.4 Scope of the Study

The scope comprises the experimentally and numerically response of the 

conventional models of the outriggered structural systems in tall buildings under quasi­

static cyclic loads. A proposed new type of outrigger model is investigated to examine 

its effective parameters compared to conventional forms. This research focuses on the 

experimental analysis of 9 scale-down models of the structural outrigger systems with 

different forms. The primary experiment models were performed as follows:

• A core structural system, Core-1 model (no Outrigger, Regular Cross-Section,

H =  2550 mm) with a duplicate model

• A core structural system, Core-2 model (no Outrigger, Thicker Cross-Section,

H =  2550 mm)

• A core structural system, Core-3 model (no Outrigger, Regular Cross-Section,

H =  1850 mm)
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One-Outrigger system, Conventional Model (Outrigger at x =  0.5H, H = 

2550 mm, B =  850 mm)

One-Outrigger system, Cap-Outrigger Model (Outrigger at x =  0H, H = 

2550 mm, B =  850 mm)

Two-Outrigger system, Optimal Model (Outriggers at xx =  H /3 , x2 =  2H /3, 

H =  2550 mm, B =  850 mm)

Two-Outrigger system, Conventional Model (Outriggers at xx =  0H, x2 = 

H /2, H =  1850 mm, B =  850 mm)

One-Outrigger developed system, New Model (Outrigger at xx =  H /2  , H = 

2550 mm, B =  1275 mm), a row-column added after the peripheral columns 

with extended the outrigger length

The accuracy and efficiency performance of the 3D conventional models and 

the proposed new model will be verified by conducting quasi-static cyclic loading on 

the approximately 1:100 scale models in the laboratory. The down-scaled models' 

geometric dimensions are considered by the aspect ratio (H/B=3), where H is the 

height, and B is the building's width. The experimental models' fabrication is used by 

available ordinary Aluminum (Al) profiles in the Malaysian market (Alloy 6061 T6). 

The effect of gravitational loads is considered as a self-weigh structure. The models' 

experimental behavior with imposed fixed vertical load under the lateral loads is 

evaluated to fully achieve the relationship of force versus displacement responses and 

failure mode mechanism. A general foundation was provided for the models that were 

restrained against the movement. A point load is applied horizontally at the top of the 

models through incremental reversing loading and unloading until the models' full 

failure.

The numerical simulations were analyzed by the Abaqus (CAE) program. 

Nonlinear Finite Element Analysis (NLFEA) through ABAQUS software version
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6.11-1 is conducted on the models. To achieve the study's objectives and save time is 

required, three-dimensional Finite Element Analysis (FEA) models of outrigger 

systems simulate similarly to the experimental models. The quasi-static cyclic loading 

is undertaken with loading protocol compliance with FEMA 440 Code. The 

experimental models under reverse quasi-static cyclic tested similar to the numerical 

analysis.

1.5 Significance of the Study

This research is evident and essential to enhance structural outrigger systems' 

rigidity and increasing performance in tall buildings structures to decrease lateral 

deflections due to horizontal forces. Although there are currently high-strength and 

lightweight materials for construction, it may not be sufficient to increase lateral stiff 

in structural systems in tall buildings unless using the outrigger technique. The 

significant issues that would be gained:

1. Present a developed new type of outrigger model for tall- structures with a row- 

column added after the peripheral columns with extended the outrigger length.

2. It can be achieved by constructing a larger size of tall buildings instead of 

slender buildings and consequently to design structures due to a decrease in 

mass towards raising the height.

3. Suggest a new configuration of the outrigger system in tall buildings associated 

with shear wall core compared to the outrigger systems' conventional shape.

1.6 Thesis Layout

A summary description of this thesis is divided into six main chapters that 

consist of the written research report: Chapter 1 is a concise introduction of the
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structural outrigger systems followed by a statement of the study's objectives and 

scope. Chapter 2 is presented in a review of structural outrigger systems and relevant 

research works of reinforced concrete shear core walls with an outriggered structure 

in tall buildings. Chapter 3 is the experimental and numerical studies' methodology 

and includes the models' outrigger systems details, materials properties, load protocols, 

test conducting, discussion on other equipment testing issues. The numerical analysis 

method and simulate procedure Abaqus/CAE program are presented in details.

Chapter 4 were presented in the experimental work results are presented and 

discussed. The experimental results in the format of the ultimate capacity of outrigger 

braced, outrigger connections, the behavior of models, failure mode, cumulative 

energy dissipation, ultimate lateral load capacity, lateral displacement of the outrigger 

models are presented. The results were compared with the experiments to validate the 

accuracy of the proposed 3D modelling and discussions. Chapter 5 focuses on the 

experimental proposed new outrigger model, and FEA results employ Abaqus 

software. The 3D modelling outputs in terms of lateral capacity, failure modes, the 

strain of outrigger connections, the perimeter columns' axial capacity, load- 

displacement curves, hysteresis loops and backbone curve are discussed and compared 

with experimental results. Chapter 6 are presented the principal conclusions regarding 

the effects of using outriggers with resistant central core structures in tall buildings in 

the earthquake areas and recommendations drawn from this research.
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