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ABSTRACT 

Three-dimensional (3D) reconstruction has the ability to capture and reproduce 

3D representation of a real object or scene. 3D telepresence allows the user to feel the 

presence of remote user that was remotely transferred in a digital representation. 

Holographic display is one of alternatives to discard wearable hardware restriction, it 

utilizes light diffraction to display 3D images to the viewers. However, to capture a 

real-time life-size or a full-body human is still challenging since it involves a dynamic 

scene. The remaining issue arises when dynamic object to be reconstructed is always 

moving and changes shapes and required multiple capturing views. The life-size data 

captured were multiplied exponentially when working with more depth cameras, it can 

cause the high computation time especially involving dynamic scene. To transfer high 

volume 3D images over network in real-time can also cause lag and latency issue. 

Hence, the aim of this research is to enhance life-size holographic telepresence 

framework with real-time 3D reconstruction for dynamic scene. There are three stages 

have been carried out, in the first stage the real-time 3D reconstruction with the 

Marching Square algorithm is combined during data acquisition of dynamic scenes 

captured by life-size setup of multiple Red Green Blue-Depth (RGB-D) cameras. 

Second stage is to transmit the data that was acquired from multiple RGB-D cameras 

in real-time and perform double compression for the life-size holographic 

telepresence. The third stage is to evaluate the life-size holographic telepresence 

framework that has been integrated with the real-time 3D reconstruction of dynamic 

scenes. The findings show that by enhancing life-size holographic telepresence 

framework with real-time 3D reconstruction, it has reduced the computation time and 

improved the 3D representation of remote user in dynamic scene. By running the 

double compression for the life-size holographic telepresence, 3D representations in 

life-size is smooth. It has proven can minimize the delay or latency during acquired 

frames synchronization in remote communications. 
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ABSTRAK 

Rekonstruksi tiga dimensi (3D) mempunyai kebolehan untuk menangkap dan 

menghasilkan semula perwakilan 3D objek atau pemandangan sebenar. Telehadir 3D 

membenarkan pengguna merasai keberadaan pengguna jarak jauh yang dipindahkan 

dalam perwakilan digital. Paparan holografik merupakan salah satu alternatif untuk 

membuang halangan terhadap perkakasan boleh pakai. Ia menggunakan pembelauan 

cahaya untuk memaparkan imej 3D kepada penonton. Walau bagaimanapun, 

menangkap saiz asal atau seluruh badan manusia secara masa nyata masih mencabar 

kerana ia melibatkan persekitaran yang dinamik. Isu yang berbaki timbul apabila objek 

dinamik yang akan dibina semula bergerak secara berterusan, berubah bentuk dan 

memerlukan beberapa tangkapan paparan. Tambahan pula, data saiz asal yang 

ditangkap akan didarab secara eksponen apabila bekerja dengan lebih banyak kamera 

kedalaman, yang boleh menyebabkan masa pengiraan yang tinggi terutamanya apabila 

melibatkan pemandangan dinamik. Memindahkan imej 3D yang tinggi jumlahnya 

melalui sesawang secara masa nyata juga boleh menyebabkan masalah sela masa dan 

latensi. Oleh itu, penyelidikan ini bertujuan untuk menambah baik rangka kerja 

telehadir saiz asal holografik bersama rekonstruksi 3D masa nyata untuk persekitaran 

dinamik. Tiga peringkat telah dijalankan. Pada peringkat pertama, rekonstruksi 3D 

masa nyata dengan algoritma Marching Square telah digabungkan semasa perolehan 

data dari persekitaran dinamik yang diambil oleh aturan saiz asal untuk kamera merah, 

hijau, biru-kedalaman (RGB-D) berbilang. Peringkat kedua adalah untuk menghantar 

data yang diambil dari kamera RGB-D berbilang secara masa nyata dan melakukan 

pemampatan berganda untuk telehadir saiz asal holografik. Peringkat ketiga menguji 

rangka kerja telehadir saiz asal holografik yang diintegrasikan dengan rekonstruksi 3D 

masa nyata dari persekitaran dinamik. Hasil penemuan menunjukkan bahawa dengan 

mempertingkatkan rangka kerja telehadir saiz asal holografik dengan rekonstruksi 3D 

masa nyata telah mengurangkan masa pengiraan dan menambah baik perwakilan 3D 

dari pengguna jarak jauh dalam persekitaran dinamik. Ia juga telah membuktikan 

bahawa dengan melaksanakan pemampatan berganda untuk telehadir saiz asal 

holografik, perwakilan 3D dalam saiz asal adalah lancar, dan dengan itu, 

meminimumkan ketinggalan dan latensi semasa sinkronisasi bingkai yang diperoleh 

dalam komunikasi jarak jauh. 

  



viii 

TABLE OF CONTENTS 

 TITLE PAGE 

 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xii 

LIST OF FIGURES xiii 

LIST OF ABBREVIATIONS xviii 

LIST OF APPENDICES xx 

CHAPTER 1 INTRODUCTION 1 

1.1 Introduction 1 

1.2 Problem Background 3 

1.3 Problem Statement 5 

1.4 Aim 8 

1.5 Objectives 8 

1.6 Scopes of Research 9 

1.7 Research Significance 10 

1.8 Thesis Organization 10 

CHAPTER 2 LITERATURE REVIEW 13 

2.1 Introduction 13 

2.2 Real-Time 3D Reconstruction 13 

2.2.1 Early Works of 3D Reconstruction 16 

2.2.2 Existing Methods 18 

2.2.3 Multiple Cameras 25 

2.2.4 Synchronization 28 



ix 

2.2.5 Transmission 30 

2.2.6 Fusion Method 31 

2.3 Dynamic Scene 32 

2.4 Telepresence 34 

2.4.1 Holographic Telepresence 37 

2.4.2 Life-Size Telepresence 42 

2.4.3 3D Display 44 

2.4.3.1 Projectors-Based Telepresence 46 

2.4.3.2 Head Mounted Display (HMD) 52 

2.5 Previous Works 56 

2.5.1 Low-Bandwidth 3D Visual Telepresence 

System 56 

2.5.2 Professor Avatar Holographic Telepresence 

Model 57 

2.5.3 Room2Room 58 

2.5.4 3D Tele-Immersion Platform for Interactive 

Immersive Experiences Between Remote User 60 

2.5.5 An Immersive Bidirectional System for Life-

Size 3D Communication 61 

2.6 Comparison on Frameworks 63 

2.7 Discussion 65 

CHAPTER 3 RESEARCH METHODOLOGY 67 

3.1 Introduction 67 

3.2 Research Methodology 67 

3.3 Data Acquisition of Dynamic Scene 71 

3.3.1 Life-Size Setup of Multiple RGB-D Cameras 72 

3.3.2 Triangulation using Marching Square 73 

3.4 Data Transmission 75 

3.4.1 Double Compression Method of Acquired 

Data 75 

3.4.2 Synchronization of Captured Frame 77 

3.5 Life-Size Holographic Telepresence 78 

3.5.1 Telepresence Remote Communication 

Configuration 78 



x 

3.5.2 Setting up Life-Size Holographic Telepresence 79 

3.6 Framework of Life-Size Holographic Telepresence 

with The Real-Time 3D Reconstruction for Dynamic 

Scene 82 

3.7 Evaluation 84 

3.8 Requirements and Specifications 84 

3.9 Summary 86 

CHAPTER 4 REAL-TIME 3D RECONSTRUCTION FOR 

DYNAMIC SCENE 87 

4.1 Introduction 87 

4.2 Real-Time Reconstruction Framework 87 

4.2.1 Data Capture using Life-Size Setup of 

Multiple RGB-D Cameras 89 

4.2.2 Point Cloud Extraction 92 

4.2.3 Generating Triangulation using Marching 

Square 93 

4.3 Data Transmission Method 95 

4.3.1 Performing Double Compression Method 96 

4.3.2 Synchronizing the Captured Frame 97 

4.4 Surface Mesh Rendering and Texture Mapping 98 

4.5 Summary 99 

CHAPTER 5 LIFE-SIZE HOLOGRAPHIC TELEPRESENCE 

FRAMEWORK 101 

5.1 Introduction 101 

5.2 Configuring Telepresence Remote Communication 101 

5.3 Setting up Life-Size Holographic Display for 

Telepresence 104 

5.4 Integrating Life-Size Holographic Telepresence with 

the Real-Time 3D Reconstruction for Dynamic Scene. 107 

5.5 Summary 108 

CHAPTER 6 TESTING AND EVALUATION 109 

6.1 Introduction 109 

6.2 Performance Evaluation of Real-Time 3D 

reconstruction for Dynamic Scene 109 



xi 

6.2.1 Result of Real-Time Measurement Testing 110 

6.2.2 Result of 3D Reconstruction for Dynamic 

Scene using Marching Square 112 

6.2.3 Data Transmission Result 113 

6.2.4 Result of Synchronization Testing 115 

6.3 User Testing on the Life-Size Holographic 

Telepresence Framework 118 

6.3.1 Experimental Setup 119 

6.3.2 Participants and Tasks 121 

6.3.3 Procedure and Data Collection 124 

6.3.4 Results 128 

6.4 Benchmarking of the Framework 132 

6.5 Summary 135 

CHAPTER 7 CONCLUSION 137 

7.1 Research Findings 137 

7.2 Research Contribution 138 

7.2.1 Real-Time 3D Reconstruction for Dynamic 

Scene from Multiple RGB-D Cameras 138 

7.2.2 Data Transmission and Synchronization of 

Captured Frame 139 

7.2.3 Enhanced Life-Size Holographic Telepresence 

Framework 140 

7.3 Research Limitation 140 

7.4 Future Works 141 

REFERENCES 143 

LIST OF APPENDICES 168 

LIST OF PUBLICATIONS 194 

 

  



xii 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 2.1  Characteristics of real-time 3D reconstruction and non-real-

time 3D reconstruction. 15 

Table 2.2 Comparison between photogrammetry and laser scanning 

(Barsanti et al., 2012) 16 

Table 2.3 Categories of Holography 39 

Table 2.4 Comparison table of 3D display for 3D telepresence. 55 

Table 2.5 Previous 3D reconstruction for life-size telepresence 

system works comparative study. 64 

Table 3.1 Research requirements and specifications 85 

Table 6.1 Average measurement of processing time, processing rate, 

and the number of vertices and triangles. 111 

Table 6.2 Performance result of MS compared with MC result by 

previous work. 112 

Table 6.3 Performance result of the separate mesh generated 

compared with previous work. 113 

Table 6.4 Amount of data in bytes transmitted per frame. 114 

Table 6.5 Number of a frame transmitted in 1 second. 114 

Table 6.6 Amount of data in bytes transmitted per frame compared 

with the previous work. 115 

Table 6.7 Task completion time to complete assembling the puzzle 

block. 128 

Table 6.8 Benchmark of the mean value for task completion time, 

presence, communication efficiency and Cronbach's alpha 

value compared with previous work. 134 

Table 6.9 Benchmark of the framework compared with previous 

work. 134 

 

  



xiii 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

Figure 1.1 Research focus area. 5 

Figure 2.1 Examples of two volumetric 3D reconstruction methods: 

(a) Curless and Levoy (1996), and (b) Hoppe et al. (1992). 20 

Figure 2.2 The 4 cases of the MS algorithm. (Garg and Semwal, 2018)

 25 

Figure 2.3 A pipeline for multiple depth cameras, client-server model 

(Meruvia-Pastor, 2019) 26 

Figure 2.4 Several setups of multiple RGB-D cameras for 3D 

reconstruction (Berger, 2014) 27 

Figure 2.5 Life-sized capture using Microsoft Kinect. (Thati and 

Mareedu, 2017) 27 

Figure 2.6 Dynamic scene classification (Ingale, 2021) 33 

Figure 2.7 Real-time 3D Reconstruction Pipeline (Keller et al., 2013) 34 

Figure 2.8 (a) The outside view of regular remote-control activity. (b) 

the telepresence application view. (Sherman et al., 2019) 37 

Figure 2.9 A remotely controlled robot allow the police to interact with 

parties on the other side. (Sherman et al., 2019) 37 

Figure 2.10 Stage setup for Pepper's Ghost (Conner et al., 2021). 38 

Figure 2.11 Generating a hologram with two coherent light beams 

(Yang et al., 2016). 39 

Figure 2.12 Reconstructing the object beams (Yang et al., 2016). 40 

Figure 2.13 Two viewpoints of a multi-view stereoscopic view. (a) left-

side (b) right-side (Wetzstein et al., 2012). 41 

Figure 2.14  Telepresence space with remote users (Beck et al., 2013). 42 

Figure 2.15 The floating hologram using one transparent panel (Oh and 

Kwon, 2017). 43 

Figure 2.16 Chronological review on 3D reconstruction for the 3D 

telepresence system. 44 

Figure 2.17 Schematic setup for large-scale Pepper's Ghost by Musion 

Eyeliner (Gingrich et al., 2014). 47 



xiv 

Figure 2.18 A remote user, represented in 3D on an autostereoscopic 

display, is interacted with the audiences(Jones et al., 2009) 48 

Figure 2.19 (a) The TeleHuman hardware (b) the local user interacting 

with remote user on the screen. (Kim et al., 2012). 49 

Figure 2.20 The light-field display system of the telepresence from 

different viewpoint (Cserkaszky et al., 2018). 50 

Figure 2.21  Simulated holographic display and the views that are 

projected on the display (Cordova-Esparza et al.,2019). 51 

Figure 2.22 A holographic projection of a professor from a distant place 

is shown on a local campus.(Luevano and Quintero, 2019) 51 

Figure 2.23 HMD for stereo 3D display (Geng, 2013). 52 

Figure 2.24 Overview of the system’s architecture of MR telepresence 

(Joachimczak et al., 2017). 53 

Figure 2.25 Different display devices with each of its own occlusion 

issues (Fairchild et al., 2016). 53 

Figure 2.26 Overview of system pipeline.  (Cordova-Esparza et al., 

2019). 56 

Figure 2.27 The holographic telepresence reception setup (Pejsa et al., 

2017). 57 

Figure 2.28 The holographic display. 58 

Figure 2.29 Room2Room uses projected AR, so that remote participants 

feel co-exist.  (Pejsa et al., 2017). 59 

Figure 2.30 (a) Three procam units installed on the ceiling; (b) example 

of procam; (c) Unity editor visualizing the 3D room 

geometry. (Pejsa et al., 2016). 59 

Figure 2.31 The overall implemented architecture (Zioulis et al., 2016) 60 

Figure 2.32 The telecommunications system displaying the remote 

users. (Kuster et al., 2019) 61 

Figure 2.33 The flow schematic diagram. (Kuster et al., 2019) 62 

Figure 3.1 Research Methodology 68 

Figure 3.2 The review process flow diagram used in this research. 70 

Figure 3.3 Diagram flow of the real-time 3D reconstruction for 

dynamic scene. 71 

Figure 3.4 Setup dual Microsoft Kinect position. 73 

Figure 3.5 The triangle consists of three vertexes. 74 



xv 

Figure 3.6 The MS triangulation cases lookup table. 74 

Figure 3.7 Data transmission module architecture. 76 

Figure 3.8 Fusion process. 77 

Figure 3.9 The framework structure for enabling network. 79 

Figure 3.10 Schematic overview of the experimental setup for  

local site. 80 

Figure 3.11 The reflective ray principle of the Z-hologram. 80 

Figure 3.12 Schematic overview of the experimental setup for the 

remote site. 81 

Figure 3.13 Overall framework of life-size holographic telepresence 

with the real-time 3D reconstruction for dynamic scene. 83 

Figure 4.1 The framework of the real-time 3D reconstruction of 

dynamic scene using multiple RGB-D cameras. 88 

Figure 4.2 The data acquisition module to capture inputs from two 

RGB-D cameras. 88 

Figure 4.3 Experimental setup to capture the user. 90 

Figure 4.4 The input image of the (a) coloured image and (b) depth 

image captured from the front-view RGB-D cameras. 91 

Figure 4.5 The point cloud data was extracted using the depth image. 93 

Figure 4.6 (a) The grid on the captured depth image and the (b) sample 

data. 94 

Figure 4.7 Mesh generated using the MS algorithm from (a) front-

viewpoint (b) back-viewpoint. 95 

Figure 4.8 Schematic process of the data transmission. 96 

Figure 4.9 The synchronization algorithm. 97 

Figure 4.10 The dynamic scene involves a reconstructed moving human 

per frame. 99 

Figure 5.1 The virtual camera in the scene capturing the 3D 

reconstructed mesh. 101 

Figure 5.2 The workflow of Agora SDK to stream custom video 

source. 102 

Figure 5.3 The interface for the user to run telepresence. 103 

Figure 5.4 The local and remote user need to enter the same room ID. 103 



xvi 

Figure 5.5 The reconstructed model of local user that was streamed to 

the remote site. 104 

Figure 5.6 The life-size holographic display. 105 

Figure 5.7 The (a) projector that was tilted to (b) 30° angle. 106 

Figure 5.8 The distance placement of the user, projector and 

holographic display. 106 

Figure 5.9 The framework of life-size holographic telepresence with 

real-time 3D reconstruction for dynamic scene. 108 

Figure 6.1 The evaluation procedure flowchart for 3D reconstruction 

testing. 110 

Figure 6.2 The reconstructed mesh result for (a) separate mesh, (b) 

without texture, MS with grid (c) size 3, (d) size 6 and (e) 

size 9. 111 

Figure 6.3 Result comparison between (a) before the synchronization 

algorithm and (b) after the synchronization algorithm. 117 

Figure 6.4 The result (a) before and (b) after the synchronization 

algorithm is implemented 118 

Figure 6.5 The evaluation procedure flowchart for life-size 

holographic telepresence. 119 

Figure 6.6 Experimental setup for the local user. 120 

Figure 6.7 Experimental setup for the remote user. 120 

Figure 6.8 The participants’ (a) gender and (b) age. 121 

Figure 6.9 Results of participants’ basic information on telepresence, 

holographic display and RGB-D camera. 122 

Figure 6.10 Results of participant familiarity with telepresence and 

holographic display. 122 

Figure 6.11 The target shapes needed to be arranged by the  

remote user. 123 

Figure 6.12 The (a) printed schematic designs (b) being flipped upside 

down and to be picked randomly by the local user. 123 

Figure 6.13 The participants were filling out the consent form. 124 

Figure 6.14 The participants were answering the questionnaire. 125 

Figure 6.15 The height of the participant was measured. 125 

Figure 6.16 (a) Local user at the local site. (b) The local user participates 

as the instructor. 126 



xvii 

Figure 6.17 (a) The instructor  view on the life-size holographic display. 

(b) The projected user compared to the real-world size. 127 

Figure 6.18 Participants’ feedback on the presence aspect 129 

Figure 6.19 Participants’ feedback on the efficiency of communication 

aspect. 130 

Figure 6.20 Participants’ feedback on the life-size aspect. 130 

Figure 6.21 Participants’ feedback on the holographic display aspect. 131 

Figure 6.22 Participants’ feedback on the overall experience. 131 

Figure 6.23 Compilation of overall feedback from participants. 132 

 

  



xviii 

LIST OF ABBREVIATIONS 

2D - Two-Dimensional 

3D - Three-Dimensional 

6DOF - Six Degrees of Freedom  

AR - Augmented Reality 

AV - Augmented Virtuality 

CCD 

CGH 

CGI 

CMOS 

- 

- 

- 

- 

Charge-coupled device 

Computer-Generated Holography 

Computer-Generated Imaginary 

Complementary Metal Oxide Semiconductor 

CNUI - Continuous Natural User Interfaces 

CPU - Computer Processing Unit 

DCG - Dichromated Gelatin 

FOV 

FPS 

GB 

GHz 

GTX 

GUI 

GPU 

GPGPU 

HD 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Field of View 

Frame per Second 

Gigabyte 

Gigahertz 

Graphic hardware NVDIA series 

Graphical User Interfaces 

Graphics Processor Unit  

General Purpose Graphics Processor Unit 

High-Definition 

HMD 

IDE 

ID 

IP 

ICP 

LCD 

- 

- 

- 

- 

- 

- 

Head Mounted Display 

Integrated Development Environment 

Identification 

Internet Protocol 

Iterative Closest Point 

Liquid Crystal Device 

LDDV - Least Distance of Distinctive Vision 

LZF - Lempel-Ziv-Free 

MR - Mixed Reality 



xix 

MC - Marching Cube 

MS - Marching Square 

MLS - Moving Least Square 

MUI 

NTP 

NVDIA 

OLED 

- 

- 

- 

- 

Multimodal User Interfaces 

Network Time Protocol 

Next Version of GPU hardware 

Organic Light-Emitting Device 

PC - Personal Computer 

PDLC 

POV 

PRISMA 

 

RAM 

RGB 

RGB-D 

SFM 

SFS 

SDF 

SFR 

SLR 

- 

- 

- 

 

- 

- 

- 

- 

- 

- 

- 

- 

Polymer-dispersed Liquid Crystals 

Point of View 

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses 

Random Access Memory 

Red Green Blue 

Red Green Blue-Depth  

Structure-from-Motion 

Shape from Silhouette 

Signed Distance Function 

Signed Removal Function 

Systematic Literature Review 

SDK - Software Development Kit 

TCP - Transmission Control Protocol 

TSDF - Truncated Signed Removal Function 

UAV - Unmanned Aerial Vehicle 

UTM - Universiti Teknologi Malaysia 

UV -  “U” and “V” denote the axes of the 2D texture 

VR - Virtual Reality 

  



xx 

LIST OF APPENDICES 

APPENDIX TITLE   PAGE 

Appendix A Table of the Current 3D Reconstruction in Telepresence 

Technology 168 

Appendix B Consent Form 186 

Appendix C Pre-Test Questionnaire 187 

Appendix D Post-Test Questionnaire 189 

Appendix E Copyright 193 

 

 

 

 



 

1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

The emergence of new technologies has encouraged the emergence of an 

increasing number of devices that are capable of replicating and recreating the 

environments that was found in everyday lives. Technologies that alter the perception 

of the real world through computers include virtual reality (VR), augmented reality 

(AR), and mixed reality (MR). People live in a three-dimensional (3D) world and 

perceive information in 3D directly. A key goal in computer vision, inspired by this, 

is to gather 3D geometric information using computers and digital sensing devices. 

This is known as 3D reconstruction. Fundamentally, 3D reconstruction refers to the 

ability to capture and reproduce a 3D representation of a real object or scene through 

some methods. Visual geometry and static 3D scene reconstruction have been the 

subject of substantial research over the last two decades. The focus of 3D 

reconstruction has increasingly switched from 3D static structure reconstruction to 

dynamic scene reconstruction due to rapid improvements in technology and reducing 

costs of computer and sensing hardware. 

3D reconstruction seems to have become highly significant for certain 

applications in order to acquire the visual appearance of real objects, and an accurate 

and robust 3D reconstruction of real-world objects is a tedious process studied by the 

research community in computer vision, computer graphics, multimedia and other 

fields (Alexiadis et al., 2013). Since the introduction of depth cameras a decade ago, 

research in human body reconstruction has made significant progress (Xia et al., 2017). 

It is not only significantly cheaper than typical 3D scanners, but it could also capture 

dynamic Red Green Blue-Depth (RGB-D) data. 
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With the simultaneous emergence and public release of depth cameras, such as 

Microsoft's Kinect series, the new generation of telepresence systems can now be 

developed by coupling of real-time 3D reconstruction approach with these 

technologies. This combination enables users to communicate in the direct 

environment with remote people by seeing the 3D virtual representations of the remote 

people. Telepresence is defined by Steuer (1992) as the experience of presence in an 

environment by means of a communication medium. The concept of telepresence was 

also being employed by Steuer (1992) VR without reference to any particular hardware 

system. O'connell (2019) also define telepresence as a real-time communication 

system that enables two or more individuals placed separately from each other to share 

a dialogue centred on telephony principles (“Tele”), improved by the immersive 

experience of the lowest time latency for high-quality of participant's life-size motion 

imagery by utilizing large video display monitors, typically High-Definition (HD) 

standard and keeping eye-to-eye contact between participants during dialogue 

complemented by audio ("Presence").  

In simpler word, telepresence is a technology that allows a user to feel present 

in a specific place, so the user was remotely transferred in a digital representation. 

Telepresence could be beneficial for diverse applications such as remote collaboration, 

entertainment, advertisement, education, the discovery of hazards, and rehabilitation. 

According to Parikh and Khara (2018), telepresence has been a notable research area 

because of its high motivation and potential technology to reduce travelling costs and 

the burden of travel which is getting more expensive and tiresome. This technology 

also aims at saving time and money and is also proving to be the next technological 

wave. Holographic display which according to He et al. (2021) has the potential to be 

applied in 3D application such as 3D telepresence. This is because it is possible to put 

together a set of technologies that could make up for the remote user's lack of physical 

presence with 3D representation displayed using holographic display as agreed by 

Luevano et al. (2015). 
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1.2 Problem Background 

The number of researches and projects related to 3D reconstruction integrated 

with telepresence systems has grown significantly after the affordable commodity 

depth cameras such as Microsoft Kinect, which are able to acquire video images along 

with per-pixel depth information, were made available. Maimone and Fuch (2011) 

have proposed a proof-of-concept telepresence system that is fully dynamic, could 

capture the 3D scene in continuous-viewpoint in real-time, and has a 3D display which 

does not require the user to wear a tracking or viewing device. Meerits et al. (2019) 

claimed that many of the works that have been created to this date have been for static 

scenes. But for telepresence, 3D reconstruction with a dynamic setting, as in a scene 

where geometric and colourimetric properties are not constant with time, was required. 

Xu et al. (2019) suggested the common schemes to overcome this issue are mostly rely 

on studio capture environments which consist of multiple calibrated static cameras. 

McCurrach (2017) stated that multiple cameras where two or more cameras 

that was carefully controlled may meet the needs of a particular vision system. 

Nevertheless, the issue of multi-stereo device interference arose as to when each depth 

camera projects the same dot pattern at the same wavelength, each of the camera units 

may see projected patterns of all other devices, so it could be difficult to discern 

patterns from other units separately. The capability to reconstruct the 3D structure or 

depth of a captured scene is a benefit of utilising multiple camera systems. 

Nonetheless, different types of cameras, including depth cameras may not be reliably 

synchronized during recording resulting in problems in depth estimates and scene 

rendering (Dima et al., 2021). Therefore, as according to Kim and Ishikawa (2021), 

frame synchronisation is frequently recognised as an essential aspect for data fusion in 

multiple camera systems and camera networks, and stated that numerous research has 

been undertaken to support this notion. 

For sharing live experiences using telepresence applications, according to 

Stotko et al. (2019), rely on real-time 3D scene capture and the underlying scene 

representation where the scene is reconstructed based on the fusion of incoming depth 

camera data is of particular significance. Orts-Escolano et al. (2016) stated that in the 
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early days, research in telepresence centred on the capturing of realistic scenes using 

an array of cameras. However, only low-resolution 3D models were able to be captured 

and broadcast to remote viewers due to the hardware and technical limitation of the 

early devices. The researchers also shared that progress could be noted since the early 

research in capturing 3D models with multiple cameras in real-time. While the results 

were remarkable with the limitations on real-time and hardware constraints, however, 

the resulting captured 3D models are still far from standard or in a low-quality state.  

Poor visual quality issues may occur due to the lack of 3D model capture 

temporal consistency, sensor noise, interference and lack of camera synchronization, 

according to Molyneaux et al. (2012).  The quality of 3D representation has the 

potential to be improved, as shown by Orts-Escolano et al. (2016). However, the 

achieved high-quality 3D reconstruction was high cost and high computational as the 

system requires 24 RGB-D cameras. When the display for the 3D telepresence was 

using a head-mounted display (HMD), where Stamm (2019) has mentioned that 

rendering complex graphics on a mobile device such as HMD generally leads to a 

delayed image, also known as latency, which causes major discomfort for users who 

experience real-time rendering. A study by Park et al. (2022) discovered that 

holographic display is one of the immersive displays that able to influenced the users’ 

satisfaction. This finding is able to be the solution for the issue of using HMD as 

display technology of the 3D telepresence. 

Data transmission over the network is one of the main processes of 3D 

reconstruction using a multiple depth cameras system that implements a client-server 

distribution model as well as a telepresence system. Anton et al. (2017) claimed that 

networking is one of the existing issues when the system passes captured data to the 

networking module to be sent to the server and remote place as a slight delay could 

occur if the internet is unstable or due to weak speed of transmission. According to 

Córdova-Esparza et al. (2019), there are two phases involved in data transmission, 

which are data transmission from clients to a server and final result transmission from 

server to remote user. Remote rendering refers to the process after receiving the data 

of a user or objects of interest which were acquired and transferred to a remote place 

where it is to be rendered. Ha et al. (2020) claimed that telepresence application works 
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efficiently if the bandwidth is sufficient, which helps to lower the packet delay. 

Manolova et al. (2019) stated that one of the major problems in the telepresence system 

is how the communication channel's limitation could be resolved when large volumes 

of data produced during the capture process are transmitted. The streaming of large 

quantities of data even with broadband networks, results in a latency that affects the 

natural perception of communications.  

Figure 1.1 shows the research focus for this study which begins with real-time 

3D reconstruction, which is divided into static or dynamic scenes. Since the real-time 

3D reconstruction is implemented in a telepresence system which involves a dynamic 

scene that consists of dynamic and moving objects such as human, this research 

significantly studies the real-time fusion method which focuses on the synchronization 

and data transmission from multiple depth cameras. As according to Olagoke et al. 

(2020), multiple cameras refer to combining two or more cameras which could help to 

expend the measuring area and improve measurement accuracy. 

 

Figure 1.1 Research focus area. 

1.3 Problem Statement 

A dynamic scene is one in which one or more moving objects must be depicted, 

with the possibility of shape change over time (Mustafa, 2017). However, according 

to Ingale (2021), dynamic reconstruction of non-rigid situations is still largely 
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unsolved because of constraints such as the necessity for a well-constructed capturing 

environment, as well as high quality and multiple videos acquiring equipment. Ingale 

(2021) also claimed that modelling dynamic objects in real-time are challenging as it 

requires to track the object which undergoes deformation, such as human interaction 

and hand movements.  

Multiple camera systems usually allow users to receive visual data that would 

otherwise be unavailable from a single point of view in a single-camera configuration. 

Meruvia-Pastor (2019) pointed out that using several depth cameras could provide 

distinct benefits in the model collection, such as capture from complementary angles 

of view and better sample density, as well as the possibility to reduce depth camera 

noise effects. However, according to Meruvia-Pastor (2019), there are several 

difficulties in deploying multi-depth camera systems, such as calibration, 

synchronization, and registration. Due to inaccurate geometry, occlusion seams, and 

significant time restrictions, merging dynamic meshes with multi-view video textures 

remains difficult. Multi-view methods that are based on coherent space-time 

reconstruction of general deformable objects in real-time from multiple cameras are 

still a challenging problem. Even though the multi-view techniques were able to handle 

large and fast topological changes and also was able to reconstruct finer detail of 3D 

models, there is still a challenge in setting up the environment to capture objects. Thus, 

this research uses multiple RGB-D cameras to capture and acquire data on the dynamic 

scene. 

In recent years, there have been considerable advances in the real-time 

reconstruction of 3D scenes using RGB-D camera data (Stotko et al., 2019). Pioneer 

systems like Fusion4D (Dou et al., 2016). The modelling of human body meshes is 

performed on a collection of registered scans (Xu et al., 2019). To address such 

limitations, systems with multiple Kinects have been developed. However, the 

acquirement of high-quality human body meshes and fuse the meshes are challenging 

(Xu et al., 2019). Cordova-Esparza (2019) has reduced the amount of data transmitted 

from each RGB-D camera to the server computer using data reduction steps, including 

data compression. Sari and Riasetiawan (2018) emphasized that it is important to 

reduce the memory usage in the data transmission, because the more data stored and 
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in the long period of time, the greater size of the data were generated and the possible 

solution is the data compression. This research performs fusion by compressing the 

captured data using multiple RGB-D cameras so it can be sent over the network to the 

server site in order to synchronize the captured frames.  

Researchers are now working to combine holographic telepresence systems 

into aspects such as capture and rendering, transmission, and display (He et al., 2023). 

Manalova et al., (2021) claimed that the hardware components in holographic 

communication system always include an integrated multi-camera imaging system and 

displays for visualization. Walker et al. (2019) believed that a user’s relative size has 

an influence on realism as it has an important effect on many aspects of human 

communication, including perceived dominance and persuasiveness. Tuli (2017) has 

claimed 3D reconstruction technique could be used in a telepresence system that uses 

a simulated life-sized representation of the remote user’s position to maintain the user's 

viewpoint and the vertical gaze by re-centring both the head and the eye position.  

Stotko et al. (2019) have introduced a life-sized real-time 3D reconstruction and 

streaming for live telepresence. The algorithm, however, has a limitation, a trade-off 

between quality and performance. Modern telepresence with holographic projection is 

able to provide a full-body, human-sized virtual representation of remote people for 

remote communication (Gotsch et al., 2018). According to Pejsa et al. (2016)., life-

size able to help the participants feel more realistic and present at the faraway place 

Therefore, for this research, the real-time 3D reconstruction of the dynamic scene was 

integrated with life-size holographic telepresence to perform remote communication 

with the 3D representation in real time. 

This research explores the real-time 3D reconstruction method of dynamic scene 

to be performed into life-sized telepresence with holographic projection. Based on the 

remaining issues mentioned above, the following problems need to be addressed: 

 

a) How to combine the processes for real-time 3D reconstruction using data 

from dynamic scenes acquired by a life-size setup of multiple RGB-D 

cameras? 
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b) How to transmit the large size data acquired from multiple RGB-D cameras 

for the life-size holographic telepresence in real-time?  

c) How to evaluate the enhanced life-size holographic telepresence 

framework with real-time 3D reconstruction for dynamic scene? 

Based on the above research questions, this research contributes by producing 

an enhance 3D reconstruction method to be well-suited with real-time and cover 

dynamic scene. This is to ensure the real-time 3D reconstruction method is able to 

support and be integrated into a life-sized holographic telepresence framework where 

the user’s 3D representations to be reconstructed and be transmitted to a remote 

location is executed in real-time. 

1.4 Aim 

The aim of this study is to enhance the life-size holographic telepresence 

framework with real-time 3D reconstruction for dynamic scene.  

1.5 Objectives 

Research objectives that need to be achieved which are:  

 

i. To combine the processes in real-time 3D reconstruction with the Marching 

Square algorithm during data acquisition of dynamic scenes captured by life-size 

setup of multiple RGB-D cameras. 

ii. To transmit the data that was acquired from multiple RGB-D cameras in real-

time and perform double compression for the life-size holographic telepresence. 

iii. To evaluate the life-size holographic telepresence framework that has been 

integrated with the real-time 3D reconstruction of dynamic scenes. 
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1.6 Scopes of Research 

This research focuses on issues in 3D reconstruction in life-sized holographic 

telepresence. So, this research aims enhance the life-size holographic telepresence 

framework with real-time 3D reconstruction for dynamic scene. Therefore, the real-

time 3D reconstruction for this research only covers the covers dynamic scenes which 

involve non-rigid objects which is the user. The human body with movement is 

considered as a dynamic scene. The data transmission of the acquired data only 

involved with synchronization and double compression method where lossless 

compression of the data was executed two times. 

For this research, there was local user in a room setup with two inexpensive 

RGB-D cameras, Microsoft Kinect, used to capture the user’s full-motion human body 

and 3D data. The height of the Microsoft Kinect device and distance between the user 

with the devices were also setup, as referred to Thati and Mareedu (2017) and Yun et 

al. (2019). Life-size capture is possible with the Microsoft Kinect device situated at a 

height of 1.1-metres and a distance of 2.1 metres from the user for full-length visibility 

with arms extended upwards. Data acquisition using depth cameras gathers the 3D data 

along with the texture that is used to reconstruct the user’s full-body. The scene can 

only be rendered with approximately one life-size user in another remote room using 

the holographic display. There were two users in this research, local and remote users. 

The holographic display is composed of a commodity light projector and a 

transparent glass or acrylic box of 2.44-metres height and 0.74- metres prepared for 

the life-size holographic display. The distance of the user with the holographic display, 

the distance between the projector and holographic display as well as the angle of the 

projector have been setup to project the life-size local user. The measurement of these 

setup has been referred and derived from Luevano et al. (2019). Good internet 

connection is important for live transmission of the 3D data. Audio equipment, two 

headphones with microphone for each room were used to capture audio 

communication.  
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1.7 Research Significance 

The research focuses on improving the 3D reconstruction method to make it 

into a real-time and cover dynamic scene as well as well-suited with life-size 

telepresence. The method should be able to reconstruct the user’s life-size in real-time, 

and the data captured from multiple RGB-D cameras with a server-client model setup 

generated more data from different viewpoints to be transmitted from each client to 

the server, particularly when the dynamic scene is involved. The compression of the 

acquired data is needed in order to transmit the data in real-time and synchronize the 

acquired frames. The synchronization algorithm and fast triangulation method such as 

Marching Square are to help reducing the delay or latency between both frames from 

each of the RGB-D devices to avoid misalignment of the reconstructed 3D model. It 

is significant to reconstruct the user representation and compress the data captured by 

multiple RGB-D cameras, which are to help speed up the data transmission of the 

captured data from multiple RGB-D cameras, that eventually can speed up the process 

of aligning frames using the synchronization algorithm. Therefore, this research 

discovers an enhancement in the 3D reconstruction method implemented in real-time 

to be well suited to life-sized holographic telepresence framework. Besides, hopefully 

it can contribute to benefit the computer vision and computer graphics research 

community. 

1.8 Thesis Organization 

This chapter has explained about the introduction of this study. The next 

chapter continues with Chapter 2 which describes the early works of 3D 

reconstructions, real-time 3D reconstruction for dynamic scene, using multiple 

cameras as well as the synchronization and transmission process. The definition of 

telepresence and its fundamental along with the chronology of early telepresence 

systems from the earlier time it was developed until the works had expanded in many 

research areas today will be discuss in the Chapter 2 as well. The chapter also presents 

the overview of the 3D display technology and the holographic 3D telepresence as 

well as the systematic literature review and presents the previous works. 
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Chapter 3 introduces the research methodology for this study. This is an 

important chapter to ensure the research aims and objectives are aligned with the 

phases that have been planned. The methodology consists of several phases, and a list 

of the specifications and requirements has also been highlighted.  

Chapter 4 explains the real-time 3D reconstruction for dynamic scene. It 

involves data acquisition and data transmission from multiple RGB-D cameras. The 

experiment and the life-size setup of the multiple RGB-D cameras were also discussed 

and analysed in this chapter.  

Chapter 5 discusses the life-size holographic telepresence framework. The 

telepresence remote communication configuration and setting up the holographic 

telepresence were explained. The experimental workspace setting for life-sized 

holographic projection was also introduced. The framework was prepared and 

described in this chapter also. 

Chapter 6 has presented the testing and evaluation. The chapter presents the 

results of the evaluation of the life-size holographic telepresence integrated with the 

real-time 3D reconstruction method. The user testing is to measure how the improved 

fusion method in real-time 3D reconstruction for life-size holographic telepresence 

could increase the feeling of the presence of the reconstructed user is in the same room. 

The evaluation of the experiment that has been conducted has been explained and 

illustrated in the form of graphs, charts and tables. 

Chapter 7 is the last chapter of this report. The chapter explains the research 

findings which have been discovered. The research contributions and the limitations 

of this research were also discussed in this chapter to make the next researcher aware 

of the current drawback of this research. Finally, the suggestions for the improvements 

that can be made in the future are also explained in the future works section. 
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