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ABSTRACT 

The increase in energy usage, material cost and environmental concerns encourage the 

need for cheaper and environmentally sustainable asphalt pavements. The development of 

Warm Mix Asphalt (WMA) technology has brought environmental and economic benefits. 

However, there are significant concerns related to WMA performance, such as rutting potential 

and moisture susceptibility. Recent research shows that the recycling of industrial by-products 

in WMA mixture offers technical benefits for road construction. Therefore, this research aimed 

to evaluate the compatibility of Bottom Ash (BA) as fine aggregate in WMA production using 

chemical additives. The research was initiated with the physicochemical and mineralogical 

characterisation of BA compared to the granite aggregate. Laboratory tests were conducted to 

investigate the behaviour of binder incorporated with chemical additives (Cecabase RT and 

Evotherm 3G) at concentrations of 0.3%, 0.4% and 0.5% by the total weight of 60/70 

penetration grade bitumen. The compatibility of the additives, optimal dose, and production 

temperature for WMA was evaluated and compared to the control asphalt mixtures through 

the mechanical properties. Laboratory tests were also carried out to assess the performance of 

the asphalt mixtures, including moisture susceptibility, resilient modulus, dynamic creep, 

rutting resistance, and cooling rate. The mixtures’ potential contamination of leachates and 

pollutant emissions were assessed using a TCLP test and a combustion analyser.  The 

characterisation of BA disclosed that it is porous and rough-edged granular particles with high 

abrasion loss, which does not favour its use as coarse aggregates but is applicable as fine 

aggregate for producing asphalt mixtures. The Marshall properties of the mixture containing 

BA satisfied the minimum requirements for the design of the binder course. The addition of 

chemical additives did not significantly change the binder properties, and the viscosity 

remained un-change. BA improved the tensile strength, resilient modulus, and resistance to 

permanent deformation of WMA mixtures by increasing aggregate interlocking and stiffness. 

The incorporation of BA into asphalt also did not indicate the presence of heavy metals but 

slightly increased the carbon dioxide emission compared to the control asphalt. However, the 

reduction of 25°C in production temperature significantly reduced the concentration of 

pollutant emissions and energy usage. Evotherm 3G combined with BA and granite aggregate 

produced a productive WMA mixture by eliminating hydrated lime as an anti-stripping agent. 

In conclusion, the WMA mixture with bottom ash (BAWMA) demonstrates a stiffer and more 

durable mixture for the binder course. 
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ABSTRAK 

Peningkatan penggunaan tenaga, kos bahan dan keprihatinan terhadap alam sekitar 

mendorong kepada keperluan terhadap turapan berasfalt yang lebih murah dan mampan. 

Pembangunan teknologi Asfalt Campuran Suam (WMA) telah membawa manfaat terhadap 

alam sekitar dan ekonomi. Walau bagaimanapun, masih terdapat beberapa kebimbangan yang 

signifikan berkaitan dengan prestasi WMA, seperti potensi aluran dan kerentanan lembapan. 

Penyelidikan terkini menunjukkan bahawa kitar semula produk sampingan industri dalam 

campuran WMA menawarkan manfaat teknikal terhadap pembinaan jalan raya. Oleh itu, 

penyelidikan ini bertujuan untuk menilai keserasian Abu Dasar (BA) sebagai agregat halus 

dalam penghasilan WMA menggunakan bahan tambah kimia. Penyelidikan telah dimulakan 

dengan pencirian fizikokimia dan mineralogi BA dibandingkan dengan agregat granit. Ujian 

makmal telah dijalankan untuk menyiasat tingkah laku pengikat yang digabungkan dengan 

bahan tambah kimia (Cecabase RT dan Evotherm 3G) pada kepekatan 0.3%, 0.4% dan 0.5% 

dengan jumlah berat bitumen gred penusukan 60/70. Keserasian bahan tambah, dos optimum 

dan suhu penghasilan campuran WMA dinilai dan dibandingkan dengan campuran asfalt 

kawalan melalui ciri-ciri mekanikal. Ujian makmal juga dijalankan untuk menilai prestasi 

campuran asfalt, termasuk kerentanan lembapan, modulus berdaya tahan, rayapan dinamik, 

rintangan aluran, dan kadar penyejukan. Potensi pencemaran campuran terhadap bahan larut 

lesap dan pelepasan bahan cemar dinilai menggunakan ujian TCLP dan penganalisis 

pembakaran. Pencirian BA mendedahkan bahawa ia adalah zarah berliang dan berbutir kasar 

dengan kehilangan lelasan yang tinggi, yang mana tidak sesuai digunakan sebagai agregat 

kasar tetapi boleh digunakan sebagai agregat halus untuk menghasilkan campuran asfalt. Ciri-

ciri Marshall bagi campuran yang mengandungi BA memenuhi keperluan minimum untuk 

reka bentuk lapisan pengikat. Penambahan bahan tambah kimia tidak mengubah sifat pengikat 

dengan ketara, dan kelikatan kekal tidak berubah. BA meningkatkan kekuatan tegangan, 

modulus berdaya tahan dan rintangan terhadap ubah bentuk kekal dengan menambah baik 

agregat saling mengunci dan kekukuhan. Penggabungan BA ke dalam asfalt juga tidak 

menunjukkan kehadiran logam berat tetapi sedikit peningkatan terhadap pelepasan karbon 

dioksida berbanding asfalt kawalan. Walau bagaimanapun, pengurangan 25°C dalam suhu 

pengeluaran telah mengurangkan kepekatan pelepasan bahan pencemar dan penggunaan 

tenaga dengan ketara. Evotherm 3G digabungkan dengan BA dan agregat granit menghasilkan 

campuran WMA yang produktif dengan menghapuskan kapur terhidrat sebagai agen anti-

pelucutan. Kesimpulannya, campuran WMA dengan abu dasar (BAWMA) menunjukkan 

campuran yang lebih kukuh dan tahan lama untuk lapisan pengikat. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

A significant amount of energy and fuel is consumed to produce Hot Mix 

Asphalt (HMA) and generates greenhouse gas emissions. The rising cost of fuel and 

material and environmental issues have prompted the introduction of less expensive 

asphalt paving techniques.  Therefore, more study is needed to find constructive 

solutions in this sector that are technically possible, cost-effective and environment 

friendly. One of the appropriate approaches could be the application of reusable 

materials generated in the form of waste material from industrialisation. The utilisation 

of industrial by-products may resolve two major issues: the problem related to the 

disposal of industrial by-products and the alternative raw material in place of 

traditional quarried stone aggregate used for pavement construction. Nowadays, there 

is a strong demand for alternative materials for road construction by private 

companies, highway agencies and public administrations [1].  

Several issues related to HMA have been addressed by the invention of Warm 

Mix Asphalt technology. In 1995, this technique was launched in Europe to provide 

environmental and economic advantages [2, 3]. WMA is produced and compacted at 

a lower temperature; therefore, less energy is required for its production, resulting in 

less atmospheric emission than hot mix asphalt [4, 5]. The WMA temperature allows 

for the production, placement and compacting of asphalt mixtures without affecting 

their properties [6, 7]. It is broadly classified into water-based or water-bearing, 

organic or wax additives and chemical additives [4, 7, 8]. Furthermore, numerous 

advantages of WMA technology have been reported. These include lower production 

temperature, reduced plant emission, increased paving season, prolonged hauling 

distance, ensuring earlier traffic opening, reduced binder ageing or oxidative 

hardening, and less cracking [9–11]. Numerous investigations have been conducted to 
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evaluate the compatibility of alternative materials with WMA to enhance its 

environmental and performance properties using recycled asphalt pavement (RAP) 

[12–14]. Despite this, literature is available regarding industrial by-products (steel 

slag) as an alternative aggregate for WMA production and reported similar or even 

better performance than HMA [7, 15–17]. Consequently, there is a scope to investigate 

the performance of other industrial by-products like Bottom Ash (BA) as alternative 

aggregates in WMA.  

Bottom Ash (BA) is one of the major by-products of coal combustion in coal 

power plants, known as Coal Combustion Products (CCP). Approximately 52.4% of 

CCPs produced in Europe are utilised in the building sector and as raw material in 

underground mining, while the remaining 35.9% are utilised to restore open cast 

mines, quarries and pits [18]. The BA is not a novel ingredient in HMA because, 

between 1971 and 1976, the state of West Virginia has built rural roads of 

approximately 200 miles utilising BA in asphalt mixtures, followed by the first 

scholarly scientific paper on this subject [18]. Due to some unfavourable 

characteristics of BA, its potential has mostly been studied in unbound subsequent 

(subgrade, sub-base and base) pavement layers [19, 20]. However, according to recent 

research, BA may have favourable technical characteristics and would not influence 

the mechanical properties of asphalt mixtures if it is used to substitute a portion of fine 

aggregate [21].  Substitution of fine aggregate with 10 and 20% BA by weight of total 

aggregate for wearing course and binder course does not degrade tensile strength, 

lower temperature cracking and rutting resistance of HMA mixtures [21–25].  

Therefore, a comprehensive investigation is required to determine the effectiveness of 

using BA in asphalt with further consideration made on WMA for sustainable 

pavements.   

1.2 Problem Statement 

The increase in the generation of industrial by-products has become one of 

today’s major issues because a large area of land needs to be acquired to dispose of 

this raw material. Industrialists are looking for ways to get rid of the wastes generated 
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from their productions. On the other hand, the construction industries are causing 

depletion of natural resources as they require a considerable amount of construction 

material for their projects. Hence the construction industry needs to utilise alternative 

products and advanced procedures to overcome related concerns.  

Potentially reusable by-products are generated from the coal power plants of 

Malaysia in the form of fly ash and bottom ash. Most fly ash is being used to produce 

cement and concrete structures. However, the bottom ash is still being treated as waste 

material and dumped into landfills without any potential application. Bottom ash is 

composed of weak and brittle particles that make it relatively an unfavourable material 

for the surface course. Despite this, pyrites are volumetrically unstable, expansive and 

produce a reddish stain when exposed to water over an extended time [26]. Therefore, 

its potential has widely been investigated for unbound subsurface pavement layers, 

where material strength, toughness and gradation requirements are not much critical. 

However, potentially heavy metals and toxic elements that have been detected in the 

unbound blends containing BA may pollute the surrounding soil and water [27, 28]. 

Numerous recent studies reported that substituting a small portion of fine aggregate 

with BA may not degrade the performance of the asphalt pavement layer [18, 23], 

which encourages its application in asphalt mixtures.  

WMA is a revolutionary step towards the design and construction of 

sustainable pavements. However, still, there are concerns in context with the 

performance of different techniques of WMA technology perform differently. The 

literature reveals that the deficiencies found in WMA can be addressed using 

potentially alternative materials [29–31]. In this perspective, sufficient literature is 

available on applying RAP and steel slag as alternative aggregate to fabricate WMA 

mixtures. Despite this, the upgraded versions of chemical additives like Evotherm 3G 

were very effective in moisture susceptibility, depending on their compatibility with 

the type of aggregates used. There is sufficient literature on the investigation of HMA 

containing BA as fine aggregate, but scarce literature is available on its evaluation in 

WMA. Therefore, the performance of WMA mixtures incorporating bottom ash as fine 

aggregate for binder course was thoroughly investigated in this study. The 

compatibility of bottom ash in WMA was critically investigated with two types of 
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chemical additives, and as a result, the suitable additive was used for further 

performance investigation. Because BA has not been extensively used as a constituent 

of asphaltic layer in binder course in Malaysia or even globally and WMA technology 

was considered for its sustainability in this study. In other words, the WMA technology 

coupled with alternative construction materials is the future of green road construction.  

1.3 Aim and Objectives  

This research aims to evaluate the performance of WMA containing Bottom 

Ash as alternative aggregates (fine aggregate). Detailed objectives are as follows:   

1. To characterise the physical, chemical, and microstructural properties of 

bottom ash compared to control aggregate. 

2.  To investigate the performance properties and cooling rate of binder course 

WMA mixtures containing bottom ash compared to control asphalt mixtures. 

3. To estimate the environmental emission, possible contamination and leachate 

of WMA mixtures containing bottom ash. 

1.4 Scope of the Study 

The scope of the study was to investigate the compatibility of bottom ash as 

fine aggregate in WMA mixtures using chemical additives. Due to the unfavourable 

engineering properties of BA, this study was limited to Asphalt Concrete Binder 

Course, AC 28 mixture type, which was selected according to the Malaysian Public 

Works Department (2008) specification.  

Two types of aggregate (granite and bottom ash) were used, and all the design 

mixtures were incorporated with 60/70 bitumen. Chemical additives (Ceca base RT 

and Evotherm 3G) were used to design WMA mixtures. The granite was collected 
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from Hanson Heidelberg Cement Group, Kulai, Johor Bahru. The bottom ash was 

obtained from Tanjung Bin Power Plant, Johor. The aggregates’ physical, chemical 

and microstructural properties were evaluated to predict their influence on the 

performance of asphalt mixtures. The basic properties of blended bitumen were 

examined to estimate the impact of chemical additives on the virgin binder.  

After validating that the chemical additives do not reduce the binder’s viscosity 

but improve the workability of asphalt mixtures at reduced temperatures. The 

workability of WMA mixtures with and without BA was evaluated through the basic 

mechanical properties of the mixtures. The cooling rate test was included in this study 

to assess the influence of BA on the Time Allowed for Compaction (TAC). Despite 

this, the pollutant emission measurement test was also included to estimate the 

influence of BA coupled with lower temperature on the greenhouse gases released 

from asphalt mixtures during their production. Almost all of the tests, including the 

characterisation and performance tests, were conducted at the Transportation 

Laboratory, School of Civil Engineering UTM Skudai, Johor, Malaysia. 

1.4.1 Significance and Contribution to the Knowledge 

It is evident from the previous literature analysis that various alternative 

materials in the form of aggregate or binder modifiers were compatible with WMA 

technology when used to fabricate asphalt mixtures. Except for the strength and 

brittleness, bottom ash exhibits similar physical characteristics as demonstrated by 

steel slag and predominantly siliceous like granite aggregate. Hence investigating the 

compatibility of BA with WMA technology and its influence on the performance of 

WMA mixtures would be an effective approach.  

Studies show that BA’s heavy metals and volatile elements may contaminate 

groundwater and the surrounding soil when used in unbound or water-bound pavement 

layers. While the bitumen encapsulated mixtures containing BA were found to be 

nontoxic. However, BA’s lower strength and brittleness exhibit higher losses due to 

abrasion and impact loading due to the direct contact of the vehicles to the surface 



 

6 

 

course. Therefore, instead of wearing course, the application of BA in binder course 

would be a practical approach and significantly help to counter the related concerns 

like the durability of pavement structure and the release of heavy metals and toxicity.   

It has been reported that industrial wastes (bottom ash) may contain heavy 

metals and volatile elements. The emission of volatile elements present in BA may 

pollute the atmosphere upon heating, which may not have been considered in previous 

studies. Thus, quantifying the pollutant emissions during elevated temperatures at 

which asphalt mixtures are produced would add to the knowledge to access its 

potential in terms of environmental concerns.  

1.5 Thesis Outline 

This thesis is outlined as follows: 

Chapter 1 comprises the background of the study, problem statement, aim and 

objectives, scope and contribution to the knowledge. 

Chapter 2 provides detailed literature on HMA, WMA technology, merits and 

demerits and previous studies on their performance. Simultaneously, the production, 

basic characterisation, and possible bottom ash application in asphalt mixtures are 

explained thoroughly. 

Chapter 3 describes the methodology in three stages with reference to the 

objectives of this study, including the description of materials used, specimen 

preparation and testing procedures for material characterisation, performance 

evaluation and environmental impact.  

Chapter 4 presents the results, data analysis and detailed discussion of the 

properties evaluated. 
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Chapter 5 concludes the findings of this study, potential applications and 

recommendations for future research.     
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