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ABSTRACT 

Due to the uncontrolled industrial applications of synthetic pigments that can 

cause a serious hazard to human health and the environment, the scientific community 

skewed towards natural colors. The simplest and efficient method to increase pigment 

production is by manipulating the medium. Among classical and statistical methods, 

one factor at a time and response surface methodology (RSM) is the most widely used 

in medium optimization. However, the main drawback of these methods is tedious wet 

experiments need to be conducted to predict the output for a new input data and prior 

to data processing and analytic for decision making. In the past few years, the rapid 

advances in the field of metaheuristic optimization algorithm have provided a solution 

in optimization problems. In this study, metaheuristic optimization scheme, together 

with the mathematical model which is regression analysis have been implemented to 

minimize time and cost of wet-lab experiments by increasing the pigment productions 

using the proposed compact experiments. Moreover, the predictive optimization 

performance and sensitivity analysis of metaheuristic algorithm have been evaluated 

to validate the results, and the authenticity has been proven by wet laboratory 

experiments. Analysis of the optimization showed that the percentage improvement 

for the proposed compact experiment which is particle swarm optimization (PSO) 

model improved from RSM model by 1.32%, while the percentage improvement for 

all compact experiments was better than multiple polynomial model (MPR) model 

with the highest PSO percentage of 2.0507%. Hence, the experimental findings 

revealed that, the metaheuristic-based approach successfully predicted the optimum 

fermentation parameters condition and concentration with better achievement on 

pigment production by using proposed compact experiment.  
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ABSTRAK 

Disebabkan industri sintetik pigmen yang tidak terkawal yang boleh 

menyebabkan bahaya yang serius terhadap kesihatan manusia dan alam sekitar, 

komuniti sains beralih kepada warna semulajadi. Kaedah yang paling mudah dan 

berkesan untuk meningkatkan pengeluaran pigmen adalah memanipulasi medium. Di 

antara kaedah klasik dan statistik, satu faktor pada satu masa dan kaedah rangsangan 

permukaan adalah yang banyak digunakan dalam pengoptimuman medium. Walau 

bagaimanapun, kelemahan utama kaedah ini adalah banyak eksperimen basah yang 

perlu dilakukan untuk meramal keputusan untuk input data baru dan sebelum 

pemprosesan data dan analitik untuk membuat keputusan. Dalam beberapa tahun 

kebelakangan ini, kemajuan pesat dalam bidang algoritma pengoptimuman 

metaheuristik memberikan penyelesaian dalam masalah pengoptimuman. Dalam 

kajian ini, skema pengoptimumam metaheuristik berserta model matematik iaitu 

analisis regresi telah dilaksanakan untuk meminimumkan masa dan kos eksperimen 

makmal basah dengan meningkatkan pengeluaran pigmen menggunakan eksperimen 

kompak yang dicadangkan. Tambahan pula, prestasi ramalan pengoptimuman dan 

analisis kepekaan algoritma metaheuristic telah dinilai untuk mengesahkan hasilnya, 

dan kesahihannya telah dibuktikan oleh eksperimen makmal basah. Analisis 

pengoptimumam menunjukkan peningkatan peratusan bagi cadangan eksperimen 

kompak iaitu Pengoptimuman Kawanan Zarah (PSO) meningkat daripada model RSM 

sebanyak 1.32%, manakala peratusan peningkatan bagi semua eksperimen kompak 

adalah lebih baik daripada Model Regresi Polinomial (MPR) dengan peratusan 

tertinggi PSO sebanyak 2.0507%. Oleh itu, penemuan eksperimen menunjukkan 

bahawa dengan menggunakan ekspermen kompak yang dicadangkan, pendekatan 

berasaskan metaheuristik berjaya meramalkan keadaan dan kepekatan fermentasi 

parameter yang optimum dengan pencapaian yang lebih baik pada pengeluaran 

pigmen.  
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Overview 

Currently, pigments are widely used in many industries such as painting, food, 

fabric, cosmetic and many more. Pigment is a substance or material that can change 

color. However, most industries used synthetic pigments that can be hazardous to 

human health and also environment.  This has led to increased demand in pigments 

derived from natural sources such as plants, animals and also microorganism. 

Compared to plant and animal, pigments from microorganism such as bacteria are 

much cheaper and can easily be found. Bacteria can nearly be found in almost any 

place, where there is a conducive environment for them to survive. Besides that, 

bacteria offer certain advantages based on its flexibility, short life cycle and simple 

propagation technique compared to plants and animals.  

Nowadays, producing quality organic pigments is hampered by the high cost 

of production. In view of this, various studies have been carried out to explore other 

types of media which are cheaper and easily available such as agricultural waste 

materials (Venil et al., 2014). Besides that, the use of these agricultural wastes in 

pigments bioprocess can also reduce its environmental impact (Venil et al., 2014). 

Agricultural waste is waste produced on agricultural premises as a result in an 

agricultural activity. Agricultural waste is one of the places where bacteria grow 

rapidly and can easily be found. Some bacteria that thrive in these premises are capable 

to produce pigments such as Chromobacterium Violaceum (violet pigment), 

Chryseobacterium artocarpi (yellowish-orange pigment) and Serratia marcescens 

(red pigment). 

However, bacteria that grow in this agricultural waste have adapted with the 

surrounding environment, where this environmental condition and nutrients are 
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essential for bacteria to grow and reproduce. Bacteria have adapted to the habitats most 

suitable for their requirements in the natural environment (Ajdari et al., 2013). The 

effects of various nutritional factors are important in order to determine their influence 

on pigment production. The use of different growth media, directly affect the growth 

and production of pigments. Appropriate medium growth of bacteria for the optimum 

production of pigment is needed to achieve better pigment production. According to 

Zahra et al. (2012), the simplest and most efficacious strategy to increase the yield and 

productivity is the manipulation of nutritional requirements. Thus, medium 

optimization is important to improve the number of pigments production. 

Among statistical techniques, response surface methodology (RSM) is the 

most widely used methods in media optimization today (Lim et al., 2021). However, 

computational techniques inspired by biological phenomenon have been dramatically 

increased where it provides solution for many complex optimization problems. 

Biological inspired evolutionary algorithm also includes metaheuristic optimization 

algorithm. Hence, metaheuristic optimization algorithms such as particle swarm 

optimization (PSO), genetic algorithm (GA), differential evolution (DE), cuckoo 

search algorithm (CS), firefly algorithm (FA) and bat algorithm (BA) are used in this 

research. Metaheuristic algorithm has been one of the most prosperous technologies 

and is considered as one of the alternative tools to optimize pigment production, 

besides overcoming the drawback of the limitation of the classical method that have 

been discussed in detail in many earlier reports. Due to the limitation of the classical 

method, which requires tedious number of experiments, this study proposed compact 

wet laboratory experiments. 

Furthermore, metaheuristic algorithms will be applied in order to optimize the 

pigment production for the standard wet laboratory (wet-lab) experiments. The optimal 

metaheuristic process is proposed to increase the pigment productions through 

compact wet-lab experiments. The rationale of proposing this study is given in the 

background of the study followed by the objectives of the study, its significance and 

the scope of the research. Subsequent sections explicate the limitations of the classical 

method which lead to compact experiment discussed in next section. 
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1.2 Background of the Study 

Nowadays synthetic colors are utilized in most industries including food, 

cosmetic, clothing, painting, pharmaceutical, and many more. In the past, synthetic 

pigments are widely used and popular because of their stability and low cost. However, 

uncontrolled industrial application of synthetic pigments can be hazardous to human 

health and the environment. Additionally, synthetic pigments can cause problems 

since the chemical compounds that make good pigments are also toxic.  Concern over 

the potential toxicity of some synthetic pigments that can cause hazard has led interest 

in pigments derived from natural sources. In last decades, there has been an increasing 

trend towards replacement of synthetic pigments with natural pigments because of the 

strong consumer demand for more natural products.  

The major obstacles of producing quality organic pigments are normally 

hampered by the high production cost. Cost production is the most critical and primary 

focus in the industries in their effort increase production with low cost. Facing with 

the rising production cost and the competition in global industries in term of quality 

and price, the trend is shifting towards manufacturing pigments from bio-degradable 

materials such as agricultural waste. In recent years, utilization of agriculture gains 

more importance in bioprocess industries because of high nutrient content and low 

cost. Thus, pigments from the agricultural waste are the solution as they are 

environmentally friendly and save the production cost. In addition, there are some 

bacteria such as Chromobacterium Violaceum (violet), Chryseobacterium artocarpi 

(yellowish-orange), Serratia Marcescens (red), Monascus sp. (yellow, orange and 

red), Gardenia jasminoides var. radicans (yellow), Rhodotorula mucilaginosa (green 

and red) and others, that thrive in these agricultural wastes and produce pigments by 

fermentation process.  

However, there are many types of conditions that affect the fermentation 

process of pigment production because each bacterium has its own special conditions. 

This is because the bacteria that grow in this agricultural waste have adapted to the 

surrounding environment, where this environmental condition and nutrients are 

essential for bacteria to grow and reproduce. Hence, the use of different concentration 
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of nutrient growth directly affects the growth and production of the pigment. 

Therefore, the modeling and optimization of fermentation process is important to 

achieve the optimal concentration of nutrient growth that increases the pigment 

production. 

As stated by Lopes and Ligabue-Braun (2021), medium optimization is the 

most important to maximize the production. The most critical problem on medium 

optimization is it involves large number of experiments, time consuming, high labour 

cost and is an open-ended experiment (Singh et al., 2017). In earlier time, the 

optimization of medium generally used one factor at time (OFAT) method. However, 

OFAT requires a large number of experiments which leads to time, reagents and 

material consumption as well as experiments expenses, especially when a large 

number of input variables are involved.  OFAT method involves changing one variable 

at a time while fixing other variables at certain level (Poorniammal, Gunasekaran & 

Murugesan, 2015; Saini et al., 2020). Therefore, optimal conditions may be missed 

because this method ignores interaction among the different medium components (Pal 

et al., 2009). Furthermore, all experiments generated from OFAT design need to be 

carried out to obtain the highest pigment production, and they are time consuming and 

incur higher cost. Thus, extensive research has been focused on cheaper methodologies 

and efforts have been made in order to reduce the production cost and time (Korumilli 

& Mishra, 2014). In the past few decades, statistical method such as Factorial design, 

Taguchi method and response surface methodology (RSM) have been used to 

overcome the drawback of OFAT method. 

Recently, experimental design such as response surface methodology (RSM) 

is the most widely used in medium optimization (Venil, Dufossé & Renuka Devi, 

2020). Even though RSM is widely used with much success, there are some limitations 

associated with RSM. Some literature also shows that by using RSM, tedious number 

of experiments need to be conducted to find the optimal solution. The prediction of 

response based on second-order polynomial equation in RSM is often limited to low 

levels and results in poor estimation of the optimal formulation (Singh et al., 2017). 

Therefore, the use of alternative optimization technique for finding the true optimal is 

needed due to the limitation of boundary parameters in RSM. In addition, RSM also 
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has a limitation in designing the objective function (Venil et al., 2020). The reliability 

of RSM will be confronted by the interaction between the factors and the response, 

which increases the difficulty of the study (Pal et al., 2009; Venil et al., 2020). 

Based on the previous studies, regression analysis is the easiest way to interpret 

and organized the fermentation parameters and design the objective function. The 

developed model for the fermentation process is a mathematical equation that shows 

the relationship between two parameters, process parameters (input variables) and 

fermentation performance (responses). In addition, the rapid advances in the field of 

soft computing technique such as metaheuristic optimization algorithm also have 

higher potential to provide solution in optimization problem. Soft computing 

techniques generally include the metaheuristics algorithm such as genetic algorithm 

(GA) (Goldberg, 1989), differential evolution (DE) (Gao et al., 2010), bat algorithm 

(BA) (Yang & He, 2013), firefly algorithm (FA) (Yang & He, 2013), cuckoo search 

(CS) (Gandomi, Yang & Alavi, 2013), and particle swarm optimization (PSO) 

(Kennedy and Eberthart, 1995). These metaheuristic techniques are easy to implement 

and have good local search ability. From the related studies, regression analysis 

together with metaheuristic optimization algorithm has been successfully applied in 

fermentation process to optimize and accurately predict the optimal solutions. For 

example, the optimization of the yellow pigment (Sharmila et al., 2019; Wu et al., 2021 

& Liu et al., 2021) red pigment (Ismail et al, 2021; Shetty et al., 2021; Asghari et al., 

2021), orange pigment (Venkatachalam et al., 2021), lipase (Chauhan et al., 2013 & 

de Menezes et al., 2021), cellulase (Bezerra et al., 2021) and ethylene (Jahromi et al., 

2018) production, respectively. However, there has been no scientific research done 

on the production of flexirubin (yellowish-orange pigment) using metaheuristic 

algorithm such as PSO, BA, FA, CS, GA and DE with compact experiment.  

Hence, a cost-effective metaheuristic approach is proposed in this study to 

improve the procedures of the conventional wet-lab experiments with a compact wet-

lab experiments. Compact experiment in this study is defined as smaller number of 

wet laboratories experiment together with the optimal fermentation parameters. In 

addition, the predictive optimization performance and sensitivity analysis will be 
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implemented for the result validation followed by the wet-lab experiments for further 

verification. 

1.3 Problem Statement 

The most important issue regarding natural pigment is the price of final product 

which is more expensive than synthesized color. Thus, the fermentation product cost 

could be reduced by cheaper sources such as bacteria together with optimization 

strategy. Furthermore, a proper growth medium for the optimum production of 

pigment is needed for better pigments production. Currently, the implication of 

different growth medium directly affects the production of pigment. This is because 

the bacteria have to adapt to certain environmental condition and nutrient as source of 

energy.  Currently, one factor at time (OFAT) and statistical method such as RSM, 

factorial design and Taguchi method have been used extensively to solve this problem. 

However, the are some limitations of the statistical method that have been discussed 

in earlier reports, whereby tedious experiments are required and both methods are 

incapable to find the optimal solution. Hence, metaheuristic optimization algorithm is 

implemented in this study in order to achieve the optimal pigment production while 

minimizing the time and cost.  

Thus, the following issues need to be addressed as stated below; 

1) Could the problem of pigmentation bio-process be solved using metaheuristic 

optimization algorithm? 

2) How to implement metaheuristic optimization algorithm in fermentation 

process of pigmentation?  

3) Could the metaheuristic algorithm improve the efficiency of the pigment 

productions problem? 

4) Could metaheuristic algorithm compact the experiments (minimize 

experiments) for pigment production?  
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1.4 Research Aim 

The aim of the study is to propose metaheuristic optimization scheme for 

Chryseobacterium artocarpi bacteria (in agricultural waste) and to obtain the optimized 

pigment production (flexirubin) and minimizing the time (experiments) and cost using 

cost-effective metaheuristic analysis through compact experiment. 

1.5 Objective of the Research 

In order to achieve the answers to the above questions, the objectives of this 

study have been identified as: 

1) To propose metaheuristic optimization scheme for pigments production and 

develop mathematical model of pigment parameters for optimal concentration. 

2) To design compact experiments for cost-effective pigment production for the 

proposed scheme.  

3) To validate the proposed scheme with the wet laboratory experiments based on 

the optimal solutions from the compact experiment.  

 

1.6 Scope of the Study 

To achieve the above objectives, the scope of this study is bound to the 

following: 

1) Bacteria from the agricultural waste are selected to produce quality pigment 

(natural sources) for production of flexirubin (yellowish-orange pigment). 

2) Bacteria strain C. artocarpi CECT 8497T (=KCTC 32509T) used in the present 

work was procured from an orchard at Universiti Teknologi Malaysia (UTM), 

Skudai, Malaysia. 
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3) Focusing on finding optimum medium fermentation of Chryseobacterium 

artocarpi bacteria. 

4) Using metaheuristic optimization algorithm.  

5) Using Matlab to develop the metaheuristic algorithms and visualization. 

6) Using Minitab and SPSS to analyze the statistical analysis of the results. 

 

1.7 Significance of the Study 

This study investigates the capabilities of cost-effective metaheuristic 

optimization scheme to increase the pigment production through compact wet 

laboratory experiments. Moreover, the solution can be obtained by using the ideal 

parameters with a limited number of experiments, minimize the time and cost of wet-

lab experiments through the proposed compact experiments. Consequently, the 

proposed solution could be new research area for the fermentation process engineering 

community to explore more on advance metaheuristic methods in dealing with cost-

effective solutions. This is due to the proposed method which is so-called cost-

effective compact experiment would be the first scheme on fermentation optimization 

for the pigment production. 

1.8 Thesis Outline 

This thesis consists of six chapters, which include chapter one (introduction), 

chapter two (literature review), chapter three (research methodology, mathematical 

modeling and metaheuristic optimization), chapter four (compact experiment) and 

chapter five (conclusion and future work), respectively. 

Chapter 1 contains an introduction, background of the problem, problem 

statement, aim, objective scope of the research and research significant of the study. 
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Consequently, Chapter 2 presents the literature review of the study includes the review 

of the pigment, modeling, optimization, compact experiment and related works. 

Chapter 3 presents the framework of the study and methods to the research problem. 

The schematic of metaheuristic implementation on pigment production also been 

presented in this chapter. Furthermore, Chapter 3 discusses on the modeling process 

of the preliminary experimental data using regression analysis method. The predictive 

analysis of the metaheuristic algorithms also explains in this chapter. In addition, 

Chapter 4 describes the optimization of metaheuristic techniques and the proposed 

compact experiments including the discussion on the result and analysis. Finally, 

Chapter 5 highlights the findings and contributions of the research work, consequently, 

provides suggestions and recommendations for the future study of research. 
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