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ABSTRACT 

Gypsum is one of the most widely used interior building materials, notably as a 

finishing material. However, because to its brittle nature, as well as low compressive and 

flexural strength, there has been a reduction in interest in the prospective use of gypsum as an 

interior finish in buildings in recent years. In order to meet other mechanical and technical 

characteristics that are acceptable for use as interior building materials, gypsum must have 

high ductility characteristics and good sound energy absorption capabilities. Therefore, it is 

important to reduce these engineering issues using environmentally friendly and economic 

solutions through the use of natural fibres in the gypsum composite mixture. This study aims 

to characterize the engineering and acoustic properties of gypsum composites containing 

pineapple leaf fibres (PALF) with 5 mm and 15 mm in sizes. In determining the physical 

chemical and mechanical properties of gypsum-PALF composites, five different 

configurations containing PALF of 2%, 3%, 5%, 10%, and 20% based on the weight of the 

gypsum composition were prepared for both sizes of PALF.  The composite specimens were 

tested under normal conditions after 7 and 28 days of curing. The microstructural 

characteristics of the composites were further examined using a Scanning Electron Microscope 

and an Energy Dispersive X-ray Spectroscopy (SEM/EDX), X-Ray Diffraction (XRD), and 

X-ray Fluorescence (XRF). The test results show that the materials reinforced with 2% PALF 

of 15mm in size provides composite materials with better mechanical properties of 3.70 MPa 

and 2.60 MPa, respectively for compressive and flexural strength. However, the compressive 

strength values are seen to decrease when more PALF content is mixed. The compressive 

strength increased up to 12.4% when 2% PALF was used in the gypsum composite. The 

flexural strength has increased up to 59% compared to ordinary gypsum when 2% PALF is 

added to the gypsum mixture. In comparison to materials reinforced with 5 mm fibre size, test 

results demonstrate that materials containing 15 mm PALF size provides a PALF-gypsum 

material with significantly better mechanical properties in terms of flexural strength. The 

optimum composition of the composite material was found to exist for a PALF content of 2% 

in the weight of the fibre size of 15 mm. Next, the study focused only on the optimal mix with 

2% PALF of 15mm size tested for its sound absorption and sound loss capabilities. The series 

of specimens from the optimal mix are made based on market thicknesses of 9 mm, 12 mm, 

and 15 mm. The sound absorption and loss properties of the specimens were measured using 

an impedance tube instrument based on ASTM C384-04 in the frequency range between 60 

Hz to 1600 Hz. As a result, it was found that there is an increase in sound absorption especially 

in the frequency range of 1000 Hz with a maximum value equal to 0.24. The average value of 

the sound absorption coefficient at 250 Hz, 500Hz, 1000 Hz and 1600 Hz or the noise 

reduction coefficient (NRC) shows an increase of 50% in the composite sample when 

compared to the gypsum sample without PALF. i.e., with a maximum value of 0.18. Sound 

transmission loss (SLT) also increases by 26% at a frequency of 1000 Hz. In general, adding 

2% PALF to the gypsum results in greater level of STL. Based on the result of acoustical and 

mechanical test, it is concluded that the novel composite developed has the potential to be used 

to reduce agricultural waste, i.e., pineapple leaf waste. and energy savings from the use of non-

natural fibres. Finally, design guidelines for gypsum-PALF composite materials in the future 

have also been proposed. 
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ABSTRAK 

 Gipsum adalah salah satu bahan binaan dalam bangunan yang paling banyak 

digunakan, terutamanya sebagai bahan kemasan. Walau bagaimanapun, kerana sifatnya yang 

rapuh, serta mempunyai kekuatan mampatan dan lentur yang rendah, maka terdapat 

pengurangan minat dalam penggunaan prospektif gipsum sebagai kemasan dalaman bangunan 

dalam beberapa tahun kebelakangan ini. Bagi memenuhi ciri mekanikal dan teknikal lain yang 

boleh diterima untuk digunakan sebagai bahan binaan dalaman, gipsum mesti mempunyai ciri-

ciri kemuluran yang tinggi dan keupayaan penyerapan tenaga bunyi yang baik. Oleh itu, adalah 

penting untuk mengurangkan isu kejuruteraan ini menggunakan penyelesaian yang mesra alam 

dan ekonomi melalui penggunaan serat asli dalam campuran komposit gipsum. Kajian ini 

bertujuan untuk mencirikan sifat-sifat  kejuruteraan dan akustik bagi komposit gypsum yang 

mengandungi serat daun nanas (PALF) berukuran 5 mm dan 15mm. Dalam menentukan sifat-

sifat fizikal, kimia dan mekanikal komposit gypsum-PALF, lima konfigurasi berbeza 

mengandungi PALF sebanyak 2%, 3%, 5%, 10%, dan 20% berdasarkan  berat komposisi 

gipsum  telah disediakan bagi kedua-dua saiz PALF. Spesimen-spesimen  komposit diuji di 

bawah keadaan normal selepas 7 dan 28 hari pengawetan. Ciri mikrostruktur komposit diuji 

menggunakan Mikroskop Elektron Pengimbasan dan Spektroskopi sinar-X Energy Dispersive 

(SEM / EDX), Difraksi Sinar-X (XRD), dan Fluoresensi sinar-X (XRF). Keputusan ujian 

menunjukkan bahawa bahan-bahan yang diperkukuh dengan 2% PALF bersaiz 15mm 

memberikan bahan komposit dengan sifat mekanikal yang lebih baik iaitu 3.70 MPa dan 2.60 

MPa, masing-masing bagi kekuatan mampatan dan lenturan. Bagaimanapun, nilai kekuatan 

mampatan dilihat menurunkan apabila lebih banyak kandungan PALF dicampurkan. Kekuatan 

mampatan meningkat sehingga 12.4% apabila 2% PALF digunakan dalam komposit gipsum. 

Manakala kekuatan lenturan pula telah meningkat sehingga 59% berbanding gipsum biasa 

apabila 2% PALF dimasukkan ke dalam campuran gipsum. Berbanding dengan bahan yang 

diperkukuh dengan saiz gentian 5 mm, keputusan ujian menunjukkan bahawa bahan yang 

mengandungi saiz PALF 15 mm memberikan bahan PALF-gipsum dengan sifat mekanikal 

yang jauh lebih baik dari segi kekuatan lenturan. Komposisi optimum bahan komposit didapati 

wujud untuk kandungan PALF sebanyak 2% dalam berat saiz gentian 15 mm. Seterusnya, 

kajian menumpukan hanya campuran optimum  dengan PALF 2% bersaiz 15mm diuji 

keupayaannya terhadap penyerapan bunyi dan kehilangan bunyi. Siri spesimen dari campuran 

optimum diperbuat berdasarkan ketebalan pasaran iaitu  9 mm, 12 mm, dan 15 mm. Sifat 

penyerapan dan kehilangan bunyi  spesimen diukur dengan menggunakan instrumen tiub 

impedans berdasarkan ASTM C384-04 dalam julat frekuensi antara 60 Hz hingga 1600 Hz. 

Hasilnya, didapati terdapat peningkatan  penyerapan bunyi  terutamanya pada julat frekuensi 

1000 Hz dengan nilai maksimum bersamaan 0.24. Nilai purata pekali penyerapan bunyi pada 

250 Hz, 500Hz, 1000 Hz dan 1600 Hz atau pekali pengurangan bunyi (NRC) menunjukkan 

peningkatan sebanyak 50% dalam sampel komposit jika dibandingkan dengan sampel gipsum 

tanpa PALF iaitu dengan  nilai maksimum 0.18. Kehilangan bunyi juga meningkat sebanyak 

26% pada frekuensi 1000 Hz. Secara umum, menambah 2% PALF pada gipsum menghasilkan 

tahap kehilangan penghantaran bunyi (STL) yang lebih besar. Berdasarkan keputusan ujian 

akustik dan mekanikal ini, disimpulkan bahawa komposit novel yang dibangunkan berpotensi 

digunakan bagi mengurangkan bagi sisa pertanian iaitu sisa daun nanas dan penjimatan tenaga 

dari penggunaan serat bukan asli. Seterusnya, garis panduan reka bentuk bagi campuran bahan 

komposit gipsum-PALF pada masa hadapan juga telah dicadangkan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 General 

Gypsum is one of the oldest materials used by humans for construction 

purposes and is a binding material generally produced by heating and extracting some 

or all the crystallization water present in the structure of gypsum rock. Gypsum-based 

materials such as mortar, composites, and board are now widely used materials in the 

world, owing to their ease and speed of assembly, adaptability, cleanliness, excellent 

fire resistance, thermal properties, and sound insulation properties (Boccarusso et al., 

2020; Erbs et al., 2018; Gencel et al., 2016; Gutiérrez-González et al., 2012; Jeong et 

al., 2017; Skujans et al., 2007; Toppi and Mazzarella, 2013). 

Gypsum board, also known as drywall, plasterboard, or wallboard, is the most 

popular gypsum mineral product. Gypsum board is composed of a gypsum plaster 

core, typically bonded to a durable paper liner. Gypsum plasterboards are primarily 

used as a lining material in lightweight construction and are a cost-effective and 

reliable way to provide compact partitioning assemblies in residential and commercial 

buildings. To meet specified acoustic and structural specifications, the thickness of the 

gypsum board lining and the design of the framing can be flexibly modified. The use 

of this device is growing every day, and more research into its properties and behaviors 

is required. 

Gypsum is made up of a "network of linked needle-like calcium sulfate 

dihydrate crystals" (Chen et al., 2010). Gypsum crystals are uniformly sized and have 

a high porosity of up to 70%. Crystal porosity influences elastic modulus, tensile 

strength, and fracture toughness. The mechanical characteristics of gypsum are 

influenced to some extent by network structure, crystal size, and porosity. Individual 
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crystal features and orientation are also suggested to influence mechanical properties 

(Chen et al., 2010). Gypsum boards are naturally brittle; however, they have undesired 

mechanical qualities including low tensile and flexural strengths. When utilized, it 

shrinks and cracks, causing parts of the gypsum boards to fall. 

Furthermore, gypsum boards act as sound insulation. They can reduce noise 

levels by 2 to 4 decibels (Ragab, 2015). Gypsum boards are utilized in buildings near 

the workshop, such as classrooms and offices, to reduce noise. Sound transmission 

management can be aided by certain construction methods and drywall building 

systems. Gypsum boards also have a high level of durability, which is why they are 

utilized for high-end walls and ceilings. Furthermore, the boards are very adaptable to 

various architectural designs and  to all types of ornamentation (Ragab, 2015). 

The idea of using fibres to reinforce brittle materials has a long history. Natural 

fibres have been utilized to reinforce fragile matrices (Mohammed et al., 2015). 

Though minor strength gains can be achieved, the major goal of fibre inclusion in 

cementitious materials is to improve toughness and ductility. Fibres in the gypsum 

matrix can improve mechanical qualities including compressive and flexural strength, 

as well as toughness. This is due to the ability of fibres to bridge cracks due to features 

such as high tensile strength, length, and aspect ratio. 

Pineapple leaf fibres (PALF) has gained a lot of attention as a result of 

advancements in their strength and toughness for civil engineering applications with a 

wide range of applications in the building industry, including PALF/polyester 

composites (Senthilkumar et al., 2019), hybrid composites (Zin et al., 2018), 

PALF/polypropylene composites (Arib et al., 2006), and extracted PALF for sound 

absorption (Putra et al., 2018; Yahya et al., 2019). Furthermore, following the highly 

publicized findings of the health risks linked with synthetic fibres, it is rapidly being 

used as an alternative. As a result, PALF has a lot of potential as a reinforcing material 

and can also be used as a fibre source in gypsum composites. 
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1.2 Background of Study 

Gypsum is the most common building material, and its use is on the rise all 

over the world. Higher ductility and energy absorption capacity are frequently required 

in the production of gypsum board, in addition to the usual applications. Plain gypsum 

board, on the other hand, has poor tensile strength, limited ductility, low crack 

resistance, and negligible energy absorption. Internal microcracks in gypsum board 

materials are naturally present, and their low tensile strength is due to the development 

of such microcracks, which eventually leads to brittle fracture of the gypsum material. 

As a result, increasing the toughness of the gypsum board will result in improved 

gypsum board performance. Previously, researchers attempted to improve the 

mechanical properties of gypsum by adding palm fibre, as seen in (Al-Rifaie and Al-

Niami, 2016). The findings showed that increasing the palm fibre content had a 

negative effect on the composites' compressive strength, but that there was an 

improvement over fibreglass composites. In their analysis of mechanical properties 

and microstructure, Eve et al. (2002) discovered the effect of the aspect ratio and fibre 

concentration on the mechanical properties of polyamide fibre reinforced gypsum. 

Another recent research by Zhu et al. (2018) looked at how polyvinyl alcohol and 

polypropylene fibres influenced the physical and mechanical properties of gypsum-

based composites. Iucolano et al. (2018a) found that using bio-degummed hemp as 

reinforcements increased the mechanical properties and thermal resistance of gypsum 

composites.  

Other than mechanical properties, acoustic properties analysis are greatly 

considered in assessing the behavior and potential use of fibre in gypsum board 

production. As a result, sound absorption material design is becoming increasingly 

important on a global basis. A sound absorber is one of the most significant 

components in a building's noise control system for reducing sound energy. 

Uncontrolled noise can disrupt sleep and lead to various health problems. Hence, 

providing a system to control noise is of great significance in engineering practice.  

In recent years, because of the need and demand for cost-effective and 

sustainable materials that are stronger, lighter, and more robust, gypsum-based 
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composite materials have seen major advances. The energy required for the calcination 

of calcium sulphate hemihydrate (CaSO4.0.5H2O) is substantially lower than that 

necessary for the calcination of cement or lime, making it one of the most 

environmentally friendly binders. While lime is burned at over 1000℃ and cement at 

over 1400℃, the temperature at which gypsum is calcined does not surpass 200℃. 

Making gypsum an excellent material for utilization. Gypsum is also used in internal 

partitions, drywall, and façade panels because of its excellent thermal insulation, 

lightweight, low energy consumption, fire resistance, acoustic insulation, and quick 

healing time (Aghaee et al., 2015; Garg and Pundir, 2014; Li et al., 2003; Mohandesi 

et al., 2012; Rahman et al., 2007; Zhang et al., 2011). 

This prompt research into the manufacture of composite natural fibre materials 

to replace synthetic fibres with sustainable natural fibres, mainly from vegetables such 

as sisal, bagasse sugarcane, coir, and date palm fibres, which are otherwise waste 

products and contribute to contamination of the environment by creating problems 

with disposal. In addressing the problem of disposal, and cost-effectiveness, the use of 

these fibres as reinforcements provides advantages such as lightweight, low cost, high 

specific strength, ease of processing, increased energy recovery, low density, 

decreased equipment wear, renewability and biodegradability (Oladele et al., 2016). 

These often outweigh the inconveniences of low fibre-matrix compatibility and heavy 

moisture absorption of these natural fibres (Ghali et al., 2011).  

On the other hands, PALF threads have historically been used in many 

countries' textile industries. PALF is used elsewhere to manufacture craft products, 

though attempts to use PALF in Malaysia have only begun, even though the country 

is one of the largest producers of pineapple in South East Asia (Mohamed et al., 2009). 

PALF are suitable for a wide range of applications due to their mechanical properties 

(Satyanarayana et al., 1990). In addition, pineapple leaves can be help alleviate the 

environmental burden, because the leaves are usually waste. Hence, the porous fibrous 

material of pineapple leaf can be used to reinforce and strengthen building materials. 

This study is devoted to researching the engineering properties and acoustic 

performance of PALF-gypsum composite. Recently, demand for the use of eco-
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friendly materials for construction applications has made a tremendous contribution to 

the selection of this study objective. The research findings will be useful in the 

construction industry, where strong and lightweight materials are required in greater 

quantities. For this reason, PALF-gypsum composites have been developed and their 

engineering and acoustic properties have been investigated.  

1.3 Problem Statement 

Building energy conservation, green building, and environmental protection 

issues have steadily gained attention as modern society has progressed. Gypsum is 

widely used in construction, especially as a finishing material, and is one of the most 

popular indoor building materials. Gypsum boards are widely used for ceilings and 

partitioning in manufacturing, residential, and industrial buildings. Gypsum board is 

becoming increasingly popular due to its high sound insulation capability, green and 

non-pollutive material, speed of erection, and ease of installation (Ma et al., 2020). 

Plain gypsum board, on the other hand, is brittle, with low flexural strength and weak 

sound absorption required in building for the interior. Because of this material's low 

flexural strength and weak ability to absorb sound, several researchers have focused 

their research in recent years on how to strengthen these properties by incorporating 

fibre as reinforcements. Fibre, which has a higher tensile strength than the gypsum 

matrix in most situations, appears to help increase the mechanical efficiency of the 

composite by distributing the applied stress load (Bilici et al., 2019; Kuqo and Mai, 

2021). Fibreglass and natural fibres have been used to solve this issue in previous 

studies (Eve et al., 2002; Hernández-Olivares et al., 1999; Iucolano et al., 2018b). The 

mechanical properties of the gypsum board were improved by adding fibres. The fibres 

serve as reinforcements in the matrix, preventing crack spread while also enhancing 

tension distribution (Callister and Rethwisch, 2013). Another problem with using 

gypsum products is the amount of waste produced as a result of the gypsum's short 

setting time (Carvalho et al., 2008; Camarini and Milito, 2011) 

However, amid recent efforts, the advancement of composite materials faces 

various obstacles many of which remain unanswered, such as global warming and 
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requires high energy and is thereby harmful to humans (Alhijazi et al., 2020; Behdinan 

et al., 2020; Huzaifah et al., 2017; Mazzanti et al., 2019; Sanjay et al., 2018). As a 

result, green gypsum composites with lower global warming potential associated with 

carbon dioxide emissions from synthetic fibre production must be created, while 

maintaining desirable mechanical properties and taking into account acoustic 

properties. 

Pineapple leaf waste is trashed in massive volumes across the world every year. 

A considerable amount of this material is disposed of in a landfill. Much research has 

been done over the last few decades to identify and assess innovative applications for 

development of sustainable construction materials. Several researchers in Malaysia 

have been reported to use pineapple leaves, including PALF/polyester composites 

(Senthilkumar et al., 2019), hybrid composites (Zin et al., 2018), PALF/polypropylene 

composites (Arib et al., 2006), and extracted PALF for sound absorption (Putra et al., 

2018;Yahya et al., 2019). As a result, PALF has a lot of potential as a reinforcing 

material and can also be used as a fibre source in composites. Today, the use of PALF 

to substitute other types of natural fibres in gypsum composites as an alternative 

reinforcement has not been implemented. More research is therefore required on 

PALF, which is renowned for its strong ability to absorb sound and also provides 

cleaner processing with less environmental impact. The reason for this study stems 

from the drawbacks of the manufacture of gypsum-based composite panels for 

soundproofing materials compared with other forms of natural fibres. As a result, 

reinforcing the gypsum matrix with natural fibre such as PALF is a feasible option 

where sound absorption and strength are the primary consideration. 

1.4 Research Aim and Objectives 

The aim of the research is to investigate the effect of PALF on engineering and 

acoustic properties of gypsum composite material. The objectives of this research are: 

(a) To determine the physical, chemical and microstructure properties of PALF 

and gypsum. 
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(b) To investigate the physical and mechanical properties of PALF-gypsum 

composite materials with different sizes and percentages of PALF. 

(c) To obtain the optimum percentage of PALF that fulfil the requirement of 

physical and mechanical properties of PALF-gypsum composite. 

(d) To evaluate the acoustic properties of PALF-gypsum composite. 

1.5 Scope of the Research  

This study investigates the potential for using PALF to reinforce gypsum 

composite. The scope of work also includes investigating the physical, microstructural 

properties, mechanical properties, and acoustic properties of PALF-gypsum composite 

materials. Hence the mechanical properties of composite materials were tested in the 

laboratory by developing samples of PALF-gypsum with different percentages and 

sizes to include: five percentages and reference samples. The grind PALF was used in 

two sizes (5 mm and 15 mm). Replacement levels of PALF were 2%, 3%, 5%, 10%, 

and 20% from the weight of gypsum content. The characteristics of PALF and gypsum 

were tested. Density, porosity, water absorption, moisture contents are among them. It 

also covers the use of X-ray fluorescence (XRF) for determining the chemical 

compositions of PALF and gypsum, as well as morphological analysis. 

The fresh and hardened states, as well as the microstructure characteristics of 

composite materials, were investigated. The research is carried out using 33 cube 

specimens (50 mm x 50 mm x 50 mm) for compressive strength properties tests and 

33 specimens (40 mm x 40 mm x 160 mm) for flexural strength tests according to 

ASTM C348. The tests conducted to study the engineering properties of PALF-

gypsum composites include compressive strength tests, flexural strength tests, 

moisture content test, water absorption test, porosity, density, workability, and setting 

time. 

Specimen that fulfils the requirements of gypsum board was used to examine 

the acoustic properties of the composite material based on the physical and mechanical 

properties for the characterization of the sound absorption properties of the PALF-
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gypsum composite materials in varying thicknesses of 9 mm, 12 mm and 15 mm based 

on market thicknesses. The acoustic tests are conducted which include, Investigating 

the effect of thickness on sound absorption coefficient (α), comparing the α of plain 

with composite samples, determining the effect of thickness on sound transmission 

loss (STL), determining the relationship between α and non-acoustic properties 

(thickness) of PALF-gypsum composite and determining the relationship between 

STL and non-acoustic properties (thickness) of PALF-gypsum composites. The 

reaction and filling mechanism inside the PALF-gypsum composites are determined 

by conducting a microstructure study including X-ray diffraction (XRD), X-ray 

fluorescence (XRF), scanning electron microscopy, and an Energy Dispersive X-ray 

Spectroscopy (SEM/EDX). 

1.6 Significance of the Study 

In the highly competitive market of gypsum board systems, it is necessary for 

top producers to consistently develop new products by using new materials and 

innovative systems. Since natural fibres have been advocated for improving gypsum 

board performance, using PALF will reduce the quantity of waste generated from 

agricultural products while also improving the brittleness characteristics of gypsum. 

Furthermore, replacing an appropriate amount of natural fibre in the mix meant the 

mechanical, physical, and acoustic properties of gypsum mortar could be greatly 

improved. However, the outcome of the study provides more information on the 

performance of PALF in gypsum mortar. The effect of PALF on the engineering and 

acoustic properties of gypsum is also investigated. Therefore, the study tends to 

evaluate the engineering and acoustic properties of new products from PALF as an 

alternative to synthetic material in natural gypsum-based fibre composite materials. 

Based on the environmental concerns of synthetic fibres for fibre-based 

gypsum composite panels, biological materials such as natural fibres are becoming the 

best alternative material to use as a reinforced fibre in gypsum composite panels. The 

introduction of the use of ecological materials for acoustic engineering applications is 

the main significance of this study that can help save nature and reduce carbon dioxide 
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emissions. Using natural fibres like PALF as composites in the gypsum board will help 

reduce the negative impact of pineapple debris on the environment.  

It will also help promote environmental awareness by reviving local 

agricultural waste and natural resources with less intensive emission of carbon dioxide. 

These materials have a lower density and a high level of porosity, which is essential 

for the absorption mechanism during the drying of the acoustic energy within the 

structure. In addition, it will help to increase agronomic activities and boost the 

economic sector in Malaysia and above all, the use of renewable materials will also be 

advantageous for engineers and industries. 

This study is motivated by the need to expand knowledge about the use of 

natural fibres in the construction industry. Specifically, this study will focus on the 

physical, mechanical properties, and acoustic properties of PALF-gypsum composite. 

The developed material can contribute to the improvement of the acoustic properties 

of composite materials. The findings of the study are likely to inspire the introduction 

of new inventive approaches to manufacture gypsum boards for use in the building 

industry. The current research is a step toward developing a construction material that 

is inexpensive, long-lasting, and environmentally friendly. 

1.7 Thesis Structure and Organization 

This thesis is divided into seven chapters with the following structure: 

Chapter 1: Briefly explains the study's background and problem statement. It also 

explains the study's purpose, objectives, scope, and significance. 

Chapter 2: Provides an overview of gypsum materials in construction, as well as a 

review of prior laboratory studies, field tests, and analytical and numerical work on 

fibre reinforced gypsum composites. 
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Chapter 3: Describe the details experimental program, mix proportions, specimen 

preparation, and test methodologies used to achieve the objectives, which includes 

material selection, composite manufacturing methods, visual examination of the 

PALF-gypsum composite surface using SEM, as well as the acoustic, physical and 

mechanical properties of the composite.  

Chapter 4: Presents the physical and microstructure results of the raw materials. Such 

as gypsum and PALF. 

Chapter 5: Presenting the physical, mechanical, and microstructural properties of 

PALF-gypsum composite materials, as well as the findings of these properties. 

Chapter 6: Presents the optimization of the composite mixture and acoustic properties 

result, which evaluates the STL and α properties. 

Chapter 7: Presents the conclusions and explains the overview of the research findings, 

presents the contribution, and makes suggestions for the future production of the 

acoustic insulator PALF-gypsum composites in building materials. 
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