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ABSTRACT 

Multichannel Wireless Sensor Networks (MWSNs) paradigm provides an 

opportunity for the Power Grid (PG) to be upgraded into an intelligent power grid 

known as the Smart Grid (SG) for efficiently managing the continuously growing 

energy demand of the 21st century. However, the nature of the intelligent grid 

environments is affected by the equipment noise, electromagnetic interference, and 

multipath effects, which pose significant challenges in existing schemes to find 

optimal vacant channels for MWSNs-based SG applications. This research proposed 

three schemes to address these issues. The first scheme was an Energy Efficient 

Routing (ERM) scheme to select the best-optimized route to increase the network 

performance between the source and the sink in the MWSNs. Secondly, an Efficient 

Channel Detection (ECD) scheme to detect vacant channels for the Primary Users 

(PUs) with improved channel detection probability and low probability of missed 

detection and false alarms in the MWSNs. Finally, a Dynamic Channel Assignment 

(DCA) scheme that dealt with channel scarcities by dynamically switching between 

different channels that provided higher data rate channels with longer idle probability 

to Secondary Users (SUs) at extremely low interference in the MWSNs. These three 

schemes were integrated as the Energy Efficient Multichannel Packet Forwarding 

Mechanism (CARP) for Wireless Sensor Networks in Smart Grid Applications. The 

extensive simulation studies were carried through an EstiNet software version 9.0. The 

obtained experimental simulation facts exhibited that the proposed schemes in the 

CARP mechanism achieved improved network performance in terms of packets 

delivery ratio (26%), congestion management (15%), throughput (23%), probability 

of channel detection (21%), reduces packet error rate (22%), end-to-end delay (25%), 

probability of channel missed-detection (25%), probability of false alarms (23.3%), 

and energy consumption (17%); as compared to the relevant schemes in both EQSHC 

and G-RPL mechanisms. To conclude, the proposed mechanism significantly 

improves the Quality of Service (QoS) data delivery performance for MWSNs in SG.  
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ABSTRAK 

Paradigma Rangkaian Sensor Tanpa Wayar Pelbagai Saluran (MWSN) 

memberi peluang kepada Grid Kuasa (PG) untuk dinaik taraf menjadi grid kuasa pintar 

yang dikenali sebagai Grid Pintar (SG) untuk pengurusan yang lebih efektif terhadap 

permintaan penggunaan tenaga yang terus meningkat pada abad ke-21. Walau 

bagaimanapun, sifat persekitaran grid pintar dipengaruhi oleh kebisingan peralatan, 

gangguan elektromagnetik dan kesan pelbagai laluan, yang menimbulkan cabaran 

besar dalam skema sedia ada untuk mencari saluran tidak terpakai yang optimum untuk 

aplikasi SG berasaskan MWSN. Penyelidikan ini mencadangkan tiga skema untuk 

menangani isu-isu ini. Skema pertama ialah skema Penghalaan Cekap Tenaga (ERM) 

untuk memilih laluan yang paling optimum untuk meningkatkan prestasi rangkaian 

antara sumber dan sink di MWSN. Kedua, skema Pengesanan Cekap Saluran (ECD) 

untuk mencari saluran tidak terpakai untuk Pengguna Utama (PU) dengan 

kebarangkalian pengesanan saluran yang cekap dan kebarangkalian rendah 

pengesanan yang tidak terjawab dan penggera palsu dalam MWSN. Terakhir, skema 

Penetapan Saluran Dinamik (DCA) yang menangani kekurangan saluran dengan cara 

penukaran dinamik antara saluran yang berbeza yang menawarkan saluran kadar data 

yang lebih tinggi dengan kebarangkalian melahu yang lebih lama kepada Pengguna 

Sekunder (SU) pada gangguan yang sangat rendah dalam MWSN. Ketiga-tiga skema 

ini disatukan sebagai Mekanisme Penghantaran Paket Cekap Tenaga Pelbagai Saluran 

(CARP) untuk Rangkaian Sensor Tanpa Wayar dalam Aplikasi Grid Pintar. Kajian 

simulasi yang meluas telah dilakukan menggunakan perisian EstiNet versi 9.0. Fakta 

eksperimen simulasi yang diperoleh menunjukkan bahawa skema yang dicadangkan 

dalam mekanisme CARP mencapai peningkatan prestasi rangkaian dari segi nisbah 

penghantaran paket (26%), pengurusan kesesakan (15%), daya tampung (23%), 

kebarangkalian pengesanan saluran (21%), pengurangan kadar kesalahan paket (22%), 

kelewatan hujung ke hujung (25%), kebarangkalian pengesanan saluran terlewat 

(25%), kebarangkalian penggera palsu (23.3%), dan penggunaan tenaga (17%) 

berbanding dengan skema yang berkaitan dalam kedua-dua mekanisme EQSHC dan 

G-RPL. Sebagai kesimpulan, mekanisme yang dicadangkan dapat meningkatkan 

prestasi Kualiti Perkhidmatan (QoS) penghantaran data untuk MWSN dalam SG.  
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CHAPTER 1  

 

 

 

INTRODUCTION 

1.1 Overview  

The electricity industry is now on the verge of a new era-an era that promises 

to meet the 21st century energy requirements through the evolution of the existing 

electrical grids to smart grids. The smart grid is a next-generation power grid in which 

the electricity distribution and management are upgraded by incorporating advanced 

two-way communications and pervasive computing capabilities for improved control, 

efficiency, reliability, and safety (Liu et al., 2020). The smart grid, by employing two-

way digital technologies, intelligently enhances the efficiency of legacy power 

generation, transmission and distribution systems to provide quality electricity 

between suppliers and consumers. Generally, a smart grid covers from a few hundred 

to thousands of traditional central generators and/or emerging renewal distributed 

generators through transmission network and distribution systems to industrial 

consumers with their intelligent appliances (Wood, 2020). In these systems, the two-

way information flow creates an automated information delivery network to enable the 

near-instantaneous events monitoring to maintain the balance between energy supply 

and consumer demand. Thus, it significantly reduces the cost and increases the 

reliability, efficiency and transparency of power generation, distribution and supply 

between the utilities and the electricity users (Klemenjak et al., 2020). 

In greater detail, the cornerstone of a smart grid is the ability for multiple 

entities such as intelligent devices, dedicated software, processes, and control centre 

to interact via an efficient and reliable communication infrastructure. Therefore, the 

smart grids success heavily relies upon communication technologies. The main aim of 

Communication Technologies (CTs) is to connect different types of Cyber-Physical 
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Systems (CPSs) via the Internet of Services (IoS) for sharing information, thereby 

enabling close cooperation between the utilities and customers (Manavalan and 

Jayakrishna, 2019). It enables the real-time data collection and sharing of smart grid 

systems on the cyber layers to carry out monitoring and control logic intelligently from 

any remote location, worldwide. Currently, there are two types of CTs, namely wired 

and wireless. The main aim of both CTs at the communication layer is to provide 

highly stable networking for the automated exchange of information of different types 

of power grid systems. However, the design and implementation of these CTs in a two-

way manner is extremely challenging due to the diverse QoS requirements of smart 

grid applications. Presently, many devices located in different remote places are 

connected through wired networks working over industrial protocols to streamline 

management operations in the traditional power grids (Krishnan et al., 2020; Ding et 

al., 2018). However, the sheer number of communications links in many smart grid 

applications makes the use of wired solutions economically and/or physically 

prohibitive. Therefore, compared to a wired network, the wireless networking solution 

plays a complementary role to empower control, management competencies of the 

system and subsystem elements in the smart grid (Tightiz and Yang, 2020). 

In this respect, WSNs significantly improve the electricity quality by making 

installation easier, increasing flexibility, speeding up power generation, and 

streamlining operations at a reduced cost in the smart grid. In the smart grid, WSNs 

through advanced CTs connect various industrial components of the power grid to the 

information world, which results in high-quality power generation and distribution and 

innovative services (Alcaraz et al., 2020; Afianti and Suryani, 2019; Dhunna and Al-

Anbagi, 2019). This makes them to be a part of the strategic decision-makers and 

flexible problem-solvers in the technical complexity that even creates entirely new 

power generation concepts. Therefore, the WSNs are widely recognized as a promising 

technology for enhancing various aspects of the electric power grid and realizing the 

vision of the next-generation electric power system in a cost-effective and efficient 

manner (Das et al., 2020). The current and envisioned applications of WSNs in the 

smart grid span a wide range, including substation automation, overhead transmission 

line monitoring, energy management, advanced metering infrastructure, outage 

management, distribution automation, demand response, dynamic pricing, and load 
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control (Das et al., 2020; Tightiz and Yang, 2020; Kalalas et al., 2016). Importantly, 

all these applications lead to new products, processes and services for improving 

industrial efficiency while providing a competitive edge for the fourth-generation 

global marketplace. At the same time, it ensures the reliability of the electric power 

infrastructure, helping to improve the daily lives of ordinary citizens. However, the 

realization of all these currently designed and envisioned smart grid applications 

directly depends on the reliable and efficient communication capabilities of the 

deployed network (Hemalatha et al., 2019).  

1.2 Problem Background and Motivation 

The traditional electricity infrastructure is a complex and aging system 

characterized by centralized power generation and distribution. Lack of user–utility 

interaction due to one-way power flow in the existing power grid leads to poor peak 

load management, power quality issues, energy loss, overload conditions, fraud 

detection, distribution automation, system failures, faulty diagnostics, lack of 

renewable energy usage, and time wastage manual operational processes (Ferrag et al., 

2020). On the other hand, the traditional electricity infrastructure fails to integrate the 

widely diffused renewable energy resources incorporating thousands of generators 

around the world, which produce a few kilowatts in the case of residential photovoltaic 

systems, up to some megawatts in the case of large photovoltaic and wind generators, 

characterized by different technologies, voltage, current, and power levels as well as 

topologies (Hu et al., 2020). It causes problem for the utilities and customers, being 

unreliable, with low power quality, hence too high and increasing cost and low 

customer satisfaction. Thus, the aging power grids fail to meet the 21st century energy 

demands in a sophisticated, dynamic and cost-effective manner. The need for 

reliability, scalability, manageability, environmentally friendly energy generation, 

interoperability, and cost-effectiveness, bring forward the necessity for a modernized 

and intelligent grid for tomorrow; a new, reliable, efficient, flexible, and secure energy 

infrastructure, known as the smart grid (León et al., 2020).  
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In recent years, the key idea of the smart grid is introduced to address the 

concerns of the aging power grids in a sophisticated manner by employing bi-

directional communications, pervasive computing and sensing technology. In smart 

grid, the wireless sensor networks due to their identifying, sensing, networking, and 

processing capabilities, are an invaluable technology for realizing the vision of low-

cost remote monitoring and control applications (Sarobin, 2020). Such type of 

networks consists of several tiny, low-power, and low-cost on-chip sensors. The main 

attributes of WSNs-based networks are to increase economic benefits with least 

breakdowns and maintenance costs in a bounded time interval by optimizing 

operations of the interconnected elements of the legacy electricity network. Generally, 

a sensor node consists of four main components, namely, sensing unit, microcontroller, 

communication unit, and small battery (Ma et al., 2019; Alsaba et al., 2018; 

Modieginyane et al., 2018). The key purposes of these components are data 

acquisition, local data processing, allow transmission/reception of information 

between connected devices, and supply power for the operations, respectively. 

Typically, the sensor nodes have short communication ranges with restricted 

bandwidth, which leads to multi-hop communications with low data rates. These tiny 

sensor nodes in the smart grid sense the surrounding environments and send observed 

information via multiple-hops or directly to a central device called the sink and then 

to the electric utilities. The real-time information gathered from these sensors is 

analyzed to diagnose problems early and serves as a basis for taking necessary actions 

in an active or passive manner to achieve high system efficiency. Thus, every node 

plays the role of the data source and/or router node to deliver packets to both utilities 

and customers for sustainable operations (Mahmud et al., 2020). 

However, the field tests and measurements show that WSNs-based 

communications in the smart grid have considerable unique challenges such as 

multipath fading, extremely high attenuation and excessive interference due to 

nonlinear electric power equipment (Das et al., 2020; Yigit et al., 2016). In the smart 

grid, it is observed that the average noise level varies between −89 dBm and −93 dBm 

in outdoor 500 kV substation environment (Fadel et al., 2017). Obviously, the average 

noise level is higher in a 550 kV and varies between −83 dBm and −91 dBm outdoor 

substation environment. It brings time and location-dependent link quality variations, 
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which result in a poor quality of data gathering with high latency and energy 

consumption for the single channel-based WSNs in SG. After deployment, the sensor 

nodes, due to the absence of energy efficient packets forwarding techniques, drain their 

batteries within a couple of days for various time-critical smart grid applications. Also, 

due to the presence of high electromagnetic interference, it is extremely challenging 

or impossible to recharge or replace their batteries in the SG (Gungor et al., 2012). 

Therefore, one of the fundamental design objectives is the entire network must operate 

for a longer time in the sensing regions and make individual decisions for high-quality 

data transmission without excessive human intervention. However, the existing studies 

in smart grid are found to be limited due to late recognition of smart grids (Yigit et al., 

2016). Though some advanced communication frameworks for smart grid exist in the 

literature, their scope is limited to certain applications such as smart metering, asset 

management, and transmission line monitoring (Hariri et al., 2019; Bukhari et al., 

2018; Rehmani et al., 2016). 

The majority of these existing solutions are designed to meet application-

specific design objectives and requirements in a particular scenario. Ain et al.  (2018) 

focus on minimizing latency issues for efficient data collection in the smart grid. 

Baroudi et al.  (2019), Lin et al.  (2017), Ye et al.  (2016), and Kim and Jin (2015) 

improve the packet delivery ratio with low packet error rates in the smart grid. Other 

studies such as Hemalatha et al. (2020), Anees et al.  (2019), de Souza et al.  (2018), 

and Bilgin et al.  (2016) address the issue of load balancing and energy consumption 

for efficient data gathering in the smart grid. Although the existing studies focus on 

routing issues that provide valuable insights and guide design decisions for WSN-

based smart grid applications, these studies generally ignore the impact of fading, 

external interference, and noise on transmission reliability in the smart grid. The 

existing studies do not incorporate dynamic channel adaptation for higher data rate in 

WSNs-based smart grid applications. Therefore, the existing schemes fail to mitigate 

the interference at a certain channel and thus face high packet error rate, latency and 

poor network throughput for WSN-based smart grid applications. In addition, these 

studies are not fully able to optimize routing performance for reliable data transmission 

since these schemes always route packets over shortest hops, which leads to high 

internal interference, data path loops, and average longer path length between the 
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source and the destination in the network. It results in high latency, congestion, invalid 

data packets, and energy consumption with poor load balancing for WSN-based smart 

grid applications. Thus, the current single channel allocation-based schemes fail to 

accommodate the requirements of higher data rates for long-lasting network operations 

in the smart grid.  

In this respect, the concept of Multichannel Wireless Sensor Networks is 

recently proposed for energy efficient and reliable data transmission at a higher rate 

for WSN-based smart grid applications (Fadel et al., 2017). MWSNs supports the high 

data transfer rates with low corrupted data packets by resolving the bandwidth scarcity 

issues in which a sensor node transmits its data in unused vacant channels without 

causing harmful interference to neighbor nodes. In Figure 1.1, the white regions show 

the vacant channels, while the colored boxes indicate the channels occupied by 

secondary users. In MWSNs, primary users are referred to as those users who have 

higher priority or legacy rights for the usage of a part of the channels. In MWSNs, if a 

secondary user encounters the high noise and/or primary user, it changes its channel 

or stays in the same band without creating interference with the licensed-user by 

adapting its radio parameters (Mishra et al., 2019). Consequently, in unlicensed vacant 

channel bands, all secondary users have the same right to access the channels by 

avoiding noisy channels. Hence, multichannel communication is used to improve the 

channel utilization efficiency, parallel transmissions, network capacity, and robustness 

against internal or external perturbations for WSNs-based smart grid applications.  

However, the reliable channel detection, the channel assignment and the data 

packets forwarding between the source and destination is challenging due to the time-

varying nature of the SG environments. Although a few MWSNs-based routing 

schemes to mitigate some of the issues faced by single-channel based WSNs are 

proposed by Yang et al.  (2018), Fadel et al.  (2017), Yigit et al.  (2016), and Shah et 

al.  (2013), these studies are facing the issue of poor channel detection that increases 

the probability of false alarm and missed-detection, which leads to harmful 

interference to the primary users in SG. In addition, most of the time these existing 

studies fail to find an empty channel quickly with desired data capacity in the network. 

Moreover, the existing schemes due to lack of considering the channel idle probability, 
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effect of external interference and noise on transmission reliability face the issues of 

high latency, corrupted data packets and packet retransmission energy consumption in 

the SG (Kurt et al., 2016). Furthermore, during packet forwarding process, the 

aforesaid studies do not consider the impact of data path loops and co-channel 

interference, which further contributes to high latency and corrupted data packets in 

the network. 

 

 

Figure 1.1 Vacant Channels in MWSNs (adopted from Zhang et al., (2016)) 

Hence, the existing network solutions due to the fixed or inefficient channel 

allocation strategies are not resilient or efficient enough to provide the desired reliable 

data delivery with low energy consumption in the SG (Arjoune and Kaabouch, 2019). 

In this respect, the development of a reliable and energy efficient communication 

mechanism is necessary for the connection between the huge number of distributed 

elements such as generators, substations, energy storage systems, and users, enabling 

a real-time exchange of data and information necessary for the management of the 

system for ensuring improvements in terms of efficiency, reliability, flexibility, and 

investment return for all those involved in a smart grid: producers, operators and 

customers (Yigit et al., 2014a; Gungor et al., 2012). The limitations of the existing 

studies and the above-mentioned advantages of multichannel communication motivate 

to propose an energy efficient multichannel packet forwarding mechanism for WSNs-

based smart grid applications. 
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1.3 Problem Statement 

The power grid infrastructure is very critical and contains a huge number of 

interconnected components such as generators, power transformers and distribution 

feeders that are geographically spread. Control, automation, optimization, reliable, and 

efficient monitoring of these systems is based on the real-time communications 

between sensors installed on these systems. However, the smart grid environment 

factors such as equipment noise, electromagnetic interference, fading, and multipath 

effects adversely affected the energy-efficient packet forwarding for MWSNs. 

Recently, different types of packet forwarding schemes have been proposed. However, 

due to the lack of an appropriate mechanism, these schemes fail to find the best next-

hop relay node based on the highest weight from the source towards the sink. The 

existing schemes cannot provide the optimized routes between source and sink in 

MWSNs in SG. As a result, the existing schemes are facing the issues of high latency, 

energy consumption, buffer overflow, and data path loops in the MWSNs. Therefore, 

it is essential to develop an energy-efficient packet forwarding scheme, which 

improves the aforesaid factors for MWSNs in SG. On the other hand, the existing 

energy-based channel detection schemes, due to lack of considering an appropriate 

energy level threshold value, fail to detect the presence or absence of the primary user 

in the smart grid. Therefore, the existing channel detection schemes are facing the 

issues of high probability of channel false alarms and missed-detection in the MWSNs.  

In addition, the existing schemes due to lack of considering a hybrid local 

channel detection and group-based channel detection technique fail to find the vacant 

channels robustly for SUs in the MWSNs. Therefore, it is desirable to develop an 

efficient channel detection scheme, which significantly improves the probability of 

channel detection and minimizes the probability of false alarms along with the 

probability of missed-detection in the MWSNs. Moreover, the capacity-aware channel 

assignment is another challenging task for MWSNs in the SG. Recently, different 

types of channel assignment schemes have been proposed for MWSNs in the SG. 

However, the existing schemes have failed to explore the high capacity channels with 

a longer idle probability at a low interference in MWSNs in SG due to frequent use of 

non-overlapping channels. Moreover, the existing schemes have failed to compute the 
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numeric impact of interference, capacity, idle probability, and workload of an 

occupied channel in the MWSNs. Therefore, the existing schemes cannot mitigate the 

noisy and congested channels, and thus failed to improve the network capacity and 

throughput with low corrupted data packets in the MWSNs. Thus, it is desirable to 

develop a dynamic channel assignment scheme which mitigates the noisy and 

congested channels, yielding high data capacity channels with longer idle probability 

at low interference to improve the network capacity, and throughput with low 

corrupted data packets in the MWSNs. 

1.4 Research Questions 

Based on the discussion provided in Section 1.2, research questions are 

formulated as follows:  

 

i. How to select the optimized routes between the source and the sink so that it 

will reduce the latency, congestion and energy consumption in MWSNs? 

ii. How to identify the signal energy threshold value to find vacant channels for 

the secondary users so that it will improve the channel detection probability 

with low probability of missed-detection and false alarms in the MWSNs? 

iii. How to allocate low interference-aware channels to secondary users with 

longer idle probability so that it will improve the network capacity with low 

corrupted data packets in the MWSNs?  

1.5 Research Aim 

The aim of this research study is to design an enhanced packet forwarding 

scheme, channel detection scheme and channel assignment scheme to improve the 

network capacity, packet delivery ratio, congestion management, throughput, and 

channel detection performance with the low probability of missed-detection, false 
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alarms, packet error rate, latency, and energy consumption for MWSNs-based 

applications in the SG. 

1.6 Research Objectives 

The following research objectives are to be achieved during the research work. 

These objectives are in the perspective of the research questions mentioned in Section 

1.4 as follows: 

 

i. To enhance the packet forwarding scheme by selecting the optimized routes 

between the source and the sink to minimize the latency, congestion and energy 

consumption in the MWSNs. 

ii. To enhance the channel detection scheme by finding the vacant channels for 

the secondary users with improved channel detection probability, low 

probability of missed-detection and false alarms in the MWSNs. 

iii. To enhance the channel assignment scheme by providing the higher data rate 

channels to secondary users with longer idle probability at low interference, 

which improves the network capacity and data packet delivery with low 

corrupted data packets in the MWSNs. 

1.7 Research Scope 

The scope of this research study is given below: 

 

i. This research study focuses on a 550kV outdoor power grid station. 

ii. The sensor nodes deployed for smart grid events monitoring have limited 

resources. 

iii. This research study does not consider security issues and hidden terminal 

problems. 
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iv. This research study does not consider the mobility issues of the sensors and 

sink. 

v. This research study does not consider the interference of the cellular networks 

operated in the vicinity of the smart grid. 

1.8 Research Significance  

This research focuses on developing an energy efficient multichannel packet 

forwarding scheme for WSNs in smart grid applications. The proposed scheme is 

capable of connecting distributed power generation sources into the power 

transmission and distribution systems as integral components. In addition, it enables 

efficient monitoring and control of the power generation and distribution processes in 

the smart grid. It supports reliable and dynamic data capacity requirements of different 

types of an advanced cyber-physical systems equipped with sensors and devices to 

operate them in an optimal manner, either manual or automatic controls and provide 

information about their operations to the utilities. In case of faults, the designed 

scheme intelligently detects and identifies the faulty systems located in a remote 

position and notifies the user in real-time, so that appropriate actions are taken in order 

to supply steady electricity to the customers. This reduces the overall electricity 

generation and distribution expenses that will be of immediate benefit to the 

customers. Hence, it allows electric utilities to real-time monitor, analyse and control 

the existing electrical power systems for maximizing the throughput of the systems as 

efficiently and economically as possible. In addition, it plays an important role in the 

extension of the smart grid towards residential premises, enables various demand and 

energy management applications. 
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1.9 Thesis Organization 

This thesis comprises six chapters. The rest of the chapters are organized as 

follows: Chapter 2 provides an extensive review of the literature of research area, 

problem background and highlights the shortcoming of most existing single and 

multichannel WSNs-based routing schemes designed for smart grid applications. 

Chapter 3 describes the research methodology and various simulation experiments 

used to develop the objectives of this research. It highlights the design, implementation 

and verification of the proposed Energy Efficient Packets Forwarding (ERM) scheme, 

Efficient Channel Detection (ECD) scheme and Dynamic Channel Assignment (DCA) 

scheme that are applied in this study. Chapter 4 presents the design and development 

of an Energy Efficient Packets Forwarding (ERM) scheme. The simulation 

experiments are performed in order to measure the relative performance of the 

proposed scheme against other relevant schemes by considering different performance 

evaluation metrics in the SG. Chapter 5 presents the design and development of an 

Efficient Channel Detection (ECD) scheme. The simulation experiments are 

performed in order to measure the relative performance of the proposed scheme against 

other relevant schemes by considering different performance evaluation metrics in the 

SG. Chapter 6 presents the design and development of a Dynamic Channel Assignment 

(DCA) scheme. The simulation experiments are performed in order to measure the 

relative performance of the proposed scheme against other relevant schemes by 

considering different performance evaluation metrics in the SG.  Chapter 7 concludes 

the contributions that are made in this study and suggests possible future directions.
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