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ABSTRACT 

 Heart auscultation is still the most commonly used method for diagnosing heart 

diseases caused by heart valve abnormalities, but it is highly subjective and heavily relies on 

the interpretation of physicians. Pattern recognition techniques have been applied to 

biomedical data (heart sound) provide high performances in terms of its accuracy, time 

complexity, and allowing clinicians to make a better decision for early diagnosis. Thus, it 

would be very desirable to develop a Efficient Denoising Alignment And Segmentation 

Algorithm For Multivariate Heart Diagnostic (DAS-HD) that could provide objective 

diagnostic results. Heart sound processing algorithms are not completely robust in the 

presence of noise, requiring clean segments of heart sounds to extract reliable features. 

Hence, this thesis presented a new approach to detect noises interference from heart sound. 

The majority of the filters did not only remove the noisy samples, but also the clean training 

samples that were incorrectly classified using different types of filtering, thus, lowering the 

system's accuracy. The purpose of this study was to investigate different filtering techniques 

which exploited non-stationary heart sound signals. This study examined the classification 

performance of an Mel Frequency Cepstral Coefficient (MFCC) based on Hidden Markov 

Model (HMM)  heart sound signals by varying the model's number of states, the number of 

mixtures, and analysis of a few filtering techniques to obtain clean heart sound. DAS-HD of 

Framework 1 performance at Location 3 (tricuspid), displayed a total performance of 90.1%, 

while the worst result was noted for Location 4 (mitral), having an overall performance of 

91%. In Framework 2, the DAS-HD framework with a focus on heart sound denoising, 

segmentation, and information retrieval for pathology detection and classification was 

enhanced. The proposed Kalman, Wavelet, and Kalman-Wavelet filtering as a pre-processed 

signal to evaluate system performance based on MFCC, and Gaussian mixture model 

classifier showed improvement of performance for the DAS-HD. Comparing the three types 

of filtering, the Wavelet-Kalman filter showed the highest percentage accuracy of 95.4% at 

location 3 Tricuspid with state 5 of 16 GMM. Different locations with different types of 

filters will give different accuracy performance. The previously suggested approach had 

superior performance in estimating single-trial signals. The limitation of the univariate 

models of Framework 1 and Framework 2 was that the process included only correlation in 

time precedence of the signal, while the correlation between multi auscultation points was 

ignored. The inter-regional could not be assessed directly from the univariate model. The 

work proposed a new approach of DAS-HD (Framework 3) which used State-Space Model 

(SSM) with Time-Varying Vector Autoregressive (TV-VAR). The inter-regionals correlation 

was suspected to discriminate between the 4 auscultation points in which the models could 

measure the synchronization and coherency between the auscultation regions. Based on the 

comparison between these two different feature extraction performances, TV-VAR produced 

a better overalls performance compared to MFCC. The best percentage accuracy, sensitivity, 

and specificity for TV-VAR were 99.5%, 100%, and 99.48% respectively which was more 

significant than MFCC performance. However, even though the computation and complexity 

of the TV-VAR model of Framework 3 were higher than MFCC-model Framework 2, the 

performance improvement on its accuracy, sensitivity, and specificity was significantly 

better.  
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     ABSTRAK 

 Auskultasi jantung merupakan kaedah konvensional yang digunakan untuk 

mendiagnosis penyakit jantung yang disebabkan oleh keabnormalan injap jantung, tetapi ia 

sangat subjektif dan bergantung pada tafsiran doktor. Teknik pengecaman corak telah  

diaplikasikan pada data bioperubatan (bunyi jantung) yang mampu menghasilkan keputusan 

yang lebih baik dari segi ketepatan, kerumitan masa dan seterusnya membantu doktor dalam 

mengdiagnosis pesakit pada peringkat awal.Oleh itu adalah suatu kewajaran untuk 

membangunkan Pelbagai Diagnostik Jantung Berdasarkan Algoritma Kecekapan Penjajaran 

Hingar dan Segmentasi (PAKJD) yang dapat memberikan hasil diagnostik objektif. 

Algoritma pemprosesan bunyi jantung tidak teguh sepenuhnya dengan kehadiran hingar 

memerlukan segmen bunyi jantung yang bersih untuk mengekstrak ciri yang boleh diandai. 

Oleh itu, kajian ini membincangkan pendekatan baharu untuk mengesan gangguan bunyi 

daripada bunyi jantung. Majoriti penyaring bukan sahaja mengalih keluar sampel yang 

hingar, tetapi juga sampel yang tepat yang dikelaskan secara salah menggunakan penapisan 

berkelompok, dan dengan itu ia menurunkan ketepatan sistem. Tujuan kajian ini adalah 

untuk mengkaji teknik penapisan berkelompok yang mengeksploitasi isyarat bunyi jantung 

yang tidak pegun. Kajian ini mengkaji prestasi klasifikasi Model Tersembunyi Markov 

(HMM) berasaskan Pekali Cepstral Frekuensi Mel (MFCC) dengan isyarat bunyi jantung 

melalui variasi kepelbagaian situasi dan keberadaan model, dan menganalisis beberapa 

teknik penyaringan untuk mendapatkan data bunyi denyutan jantung yang lebih tepat. 

Prestasi PAKJD Rangka Kerja 1 di Lokasi 3 (tricuspid), menunjukkan prestasi keseluruhan 

90.1%, manakala hasil terendah dicatatkan untuk Lokasi 4 (mitral), dengan prestasi 

keseluruhan sebanyak 91%. Dalam Rangka Kerja 2, kerangka kerja PAKJD memberi 

tumpuan pada pengurangan gangguan bunyi pada denyutan jantung, segmentasi dan 

penjanaan maklumat untuk pengesanan dan pengklasifikasian patologi telah dipertingkatkan. 

Penyaringan Kalman, Wavelet, dan Kalman-Wavelet yang dicadangkan sebagai isyarat pra-

pemprosesan untuk menilai prestasi sistem berdasarkan MFCC, dan penyaringan Model 

Gabungan Gaussian (GMM) menunjukkan peningkatan prestasi untuk PAKJD. 

Membandingkan ketiga-tiga jenis saringan, penyaring Wavelet-Kalman menunjukkan 

ketepatan peratusan tertinggi sebanyak 95.4% di lokasi 3 (Tricuspid) pada tahap 5 dengan 16 

Model Gabungan Gaussian. Lokasi yang berlainan dengan pelbagai jenis saringan akan 

memberikan prestasi ketepatan yang berbeza. Pendekatan yang dicadangkan sebelum ini 

mempunyai prestasi lebih unggul dalam penganggaran isyarat percubaan tunggal. 

Keterbatasan model univariasi Rangka Kerja 1 dan Rangka Kerja 2 adalah proses itu hanya 

melibatkan korelasi dalam masa terdahulu, manakala korelasi antara multi-auskultasi 

diabaikan. Antara lokasi tidak dapat dinilai terus dari model univariasi. Kaedah baharu 

PAKJD (Rangka Kerja 3) yang disarankan menggunakan Model Ruang Keberadaan (SSM) 

dengan Autoregresif Vektor Variasi Masa (TV-VAR). Penyelarasan antara lokasi di dapati 

membezakan antara 4 titik auskultasi yang mana model boleh mengukur pergerakan dan 

koherensi antara lokasi auskultasi. Berdasarkan perbandingan antara kedua-dua persembahan 

pengekstrakan ciri yang berbeza ini, Autoregresif Vektor Variasi Masa menghasilkan 

prestasi keseluruhan yang lebih baik berbanding MFCC. Peratusan ketepatan, kepekaan dan 

kekhususan terbaik untuk Autoregresif Vektor Variasi Masa masing-masing ialah 99.5%, 

100% dan 99.48% yang lebih penting daripada prestasi MFCC. Walau bagaimanapun, 

walaupun komputasi dan kerumitan model Autoregresif Vektor Variasi Masa bagi Rangka 

Kerja 3 adalah lebih tinggi daripada Rangka Kerja Model 2 MFCC , peningkatan prestasi 

terhadap ketepatan, kepekaan dan kekhususannya adalah jauh lebih baik.   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

When it comes to pattern recognition using deep learning, there are two major 

issues to consider. The first is feature selection.There is no guarantee that the features 

will be prominent in previously unseen data.Second, the selection of training data 

does not guarantee coverage of previously unseen data.Probability models, such as 

the Markov model and deep learning, have demonstrated superiority in computer-

aided classification of heart sound signals, but it also faces some challenges .For 

starters, these models have far too many parameters, requiring a large amount of data 

to be optimised, a long and complex execution time, and a large training data 

set.Second, the modelling necessitates a more powerful computer configuration with 

a powerful CPU and GPU for calculation, which increase the experiment cost and 

renders the model unsuitable for home computers and microcomputers.However, 

portable heart sound devices have significant development potential as well as 

promising application prospects.At present, intelligent auscultation technology is not 

widely used in clinical diagnosis, and manual auscultation is the primary method for 

detecting heart sounds.As a result, the development and application of computer-

aided techniques for heart sound detection based on pattern recognition will 

significantly advance the field of cardiovascular disease diagnosis. 

Statistically, heart disease is regarded as one of the major mortality causes in 

the world and also the leading cause of death in Malaysia based on the National 

Health and Morbidity Survey 2011 which ranked the Coronary Heart Disease as the 

number one killer with 25.4% of the total mortality rate. Based on that, the Yayasan 

Jantung Malaysia stresses on the significant need for cultivating healthier lifestyle 

choice as to reduce the potential of suffering from cardiovascular diseases (Yayasan 
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Jantung Malaysia, 2014) (Kaur, 2020). It is rather alarming to see an escalating 

health care cost and increasing number of hospitalization which result in a mounting 

burden on healthcare system. Generally speaking, patients with heart problems need 

to undergo a cardiac test at the hospital by using the electrocardiographic device or 

instrument. The electrocardiogram (ECG) produced by an electrocardiographic 

device is a time varying signal reflecting the ionic flow which causes the cardiac 

valve to contract and subsequently relax. Moreover, a cardiologist after examination 

conducts a diagnosis that combines the ECG and Heart Sound (HS) with the clinical 

symptoms to take into consideration whether there has been an abnormality in the 

patient‘s heart condition. Auscultation is a vital diagnostic technique for heart 

disease, inexpensive and non-invasive, but greatly reliant on the experience and 

expertise of the listener General Practioner. 

Thanks to the advancement of technology, the world can witness the 

introduction of new complex diagnostic modalities like echocardiography and chest 

x-rays, phonocardiography (PCG), MRI and FMRI and other diagnostic techniques 

which positively improve the field phonocardiography. Besides that, the apparent 

lacking in the teaching of asuculation by medical schools and accuracy of heart 

sounds and murmur identification has also led to the development of such new 

modalities  (Kaphingst, 2010). Generally, it is known that there are some limitations 

found in use the conventional mechanical stethoscopes in studying the 

phonocardiogram (PCG) whereby such stethoscopes cannot store and playback 

sounds and visual display, and is unable to process the acoustic signal. The presence 

of PCG CAD systems in the design of new electronic stethoscopes helps to tackle the 

drawbacks faced as the intelligent Computer Aided Diagnosis (CAD) system is 

proven to improve the physician diagnostic abilities and lessen the time taken for 

performing precise diagnosis (Nabih-Ali, 2017).Even though they improve 

accurateness of diagnosis is usually performed by employing the electrocardiogram, 

computed tomography scan and magnetic resonance imaging, unfortunately these 

tools require considerable investment costs that are only available in big hospitals. 

Therefore, there is a need to support the development of CAD auscultation technique 

that is inexpensive and capable of improving the reliability and accuracy of diagnosis 

on initial stages as proposed by this author. In order to recognize and classify the 

heart sound signal (HS) advanced methods such as signal processing and filtering 
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technique are used. The heart signal (HS) reveals information regarding cardiac 

function via vibrations instigated by the working heart. The data modalities can be 

found in the form of time series containing the dynamics heart activities which is 

important for diagnosing and monitoring different types of heart murmurs. In normal 

practice, the data is presented as single recording, but the multi-dimensional 

recording such as multichannel HS signal from different location provides an 

advantage to produce a new improved diagnostic aid which forms the motivation 

behind the work in this thesis. 

It is normal for the low and high amplitudes of HS signal to be obscured by 

varied arficats and background noises originating either from physiological or 

technical origin. The causality effects that one region say the first heart sound (S1) 

which is resulted from closure of the atrioventricular (mitral and tricuspid) has on 

another region, the second heart sound (aortic and pulmonary) sound within the four 

valves is imperative to be analysed from the observed signals in order to understand 

the fundamental physiological process of the heart during particular circumstances. 

Therefore, this thesis strives to propose an intelligent computer aided denoising 

alignment and segmentation heart diagnostic (DAS-HD) with efficient multivariate 

modelling that caters dynamics heart sound signals with the presence of noise and 

artefacts.However, in heart sound recordings, the noise is a key problem. The sensor, 

the auscultation area, the sensor contact surface, the position of the patient, the 

background noise and the respiration phase all impact the sound quality. This in 

practice means that the recordings often contain noise, for example, rumbling sounds 

from the stomach, friction rubs, background noise from the clinical environment and 

respiratory sounds from the lungs. Therefore, this study aims to improve the 

operational efficiency with specific focus on the heart sound denoising, segmentation 

information retrieval for pathology detection and classification. However, for the 

techniques mentioned to work effectively and produce great result, they heavily rely 

on the quality of the heart analysis sound. As such, through the adaptation of the 

noise detection algorithm, this study attempts to conduct noise detection for heart 

sound analysis which is found to be greatly contaminated by various sources. This 

adaptation aims to improve the quality of the heart sound analysis through substantial 

noise detection algorithm in order to effectively process the signal and retrieve the 

information. 
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At present, numerous methods and approaches have been proposed for 

examining, retrieving and processing data from the heart sound signal collected at 

Hospital Tun Aminah, Johor Bahru. However, all the data collected at Hospital Tun 

Aminah, Johor Bahru reliy on the quality of the sound of the examined heart signals 

to produce appropriate outcomes. Using the State Space Modelling (SSM), this study 

proposes a new method for modelling the dynamics of multivariate HS signal in time 

series. It is a statistical model which comprises a time series analysis specific to HS. 

It has the ability to track, predict and forecast the underlying dynamic phenominal 

which is imperative for the hidden dynamics of the HS analysis and understanding. 

This study proposes several models based on feature extraction such as MFCC and 

VAR filters such as Kalman Filter with wavelet and the classifier based on HMM. 

The main contribution of this thesis is the introduction of state space model based on 

Time Varying-Vector Autogressive (TV-VAR) process and the use of multi-channel 

HS,non-stationary signal as a multivariate modelling for effective classification of 

HS data. 

1.2 Problem Statement 

There are numerous research in biomedical engineering that described the use 

of machine learning techniques to develop the preprocessing of biomedical signal 

and classifier for detection or diagnosis of the heart disease.However, machine 

learning models for diagnosing heart murmurs to predict patient risk are incapable to 

fit for clinical use due to incorrect assumptions about the data as the trained models 

did not work as claimed.. However, proper consideration in developing clinically 

validated diagnostic techniques which have its limitation and the methods are prone 

to over fitting and other problems which may not be immediately apparent to the 

work carried in this thesis. Thus, this thesis is aware of some potential pitfalls in the 

development of classifiers, and considers steps that help avoid these problems.As 

opposed to removing and separating the non-heart sound constituents of the noise 

contaminated PCG, this study aims to examine the PCG and retrieves the information 

categorized as clean heart sounds and appropriate for more detailed analysis of the 

signal. The discovery of such information is achieved in reference the criteria of 
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sound quality described in Chapter 5. The new forms of features include the 

frequency, pitch, timing, energy, and splitting of heart sounds which become the 

basis for the proposed new approach to clinical implementation and testing. Chapter 

4 will explain the new framework of DAS-HD (Framework 1) which is believed to 

offer substantial contribution to cardiac auscultation as the GPs will be presented 

with valuable information on heart sounds and its murmurs. Few limitations can be 

found from the use of conventional method in distinguishing murmurs from 

auscultation which include:  

(i) Absence of information on frequency (pitch) of heart sounds. Frequency 

content contains valuable information of the first and second heart sounds as 

well as its murmurs which can be a vital deciding factor for clinically 

interpreting murmur.  

(ii) The inability of capturing the dynamic changes (energy and frequency) of the 

heart sounds. The proposed method employs Mel Frequency Cepstrum 

Coefficient features to retrieve significant information from the raw data of 

heart sound. The dynamics signals can be addressed with SSM and TV-VAR. 

(iii) Exposure towards many undesirable factors such as breathing noise, artifacts, 

voice and external noise. Pre-processing of the raw signals with specific 

filters is essential in order to highlight the mentioned concerns as discussed in 

Chapter 4.  

(iv) The tediousness and impracticality of manual segmentation used in 

conventional clinical practice as it is known that the characteristics of the 

heart sound signals and its features of S1 and S2 location, number of 

components for each sound, the frequency content and time interval must be 

comprehensively measured and quantified. As an alternative, segmentation of 

ECG with R-R peaks is proposed to segment every cycle of the cardiac 

signals. 
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The detection of QRS complex P wave and T wave can be a crucial step to 

automatic analysis of ECG signals. Most of the research in this area uses the QRS 

complex as it is the easiest symbol to detect in the first stage. The QRS complex 

represents the ventricular depolarization and consists of three consequences wave. 

However, the main challenge in any algorithm design is the large variation of QRS, P 

and T waveform leading to some form of failure for each method. The QRS complex 

may only occupy only R waves QR(no R),QR(no S),S(no Q) or RSR depending on 

the ECG lead (Friganovic, 2018) (Xiang, Lin, & Meng, 2018) (Mohamed Elgendi, 

Marianna, & Abbott, 2016) (Bhoi1 & Sherpa, 2014). 

This work in this thesis suggests a new algorithm to extract the relevant 

characteristic of the ECG signal. The new approach handles the delineation of the 

ECG waveforms which can be  a complicated task due to the varying wave duration 

and amplitudes with unknown drift source. To handle these complications, the QRS 

complexes delineation algorithm is based on temporal detection of shape changes, 

where as a non overlapped window is passed along the ECG signal calculating the 

angle of each window.In general, the heart disease into several categories, like 

coronary artery disease, congenital heart disease, valvular cardiomyopathy, 

rheumatic heart disease or any number of heart diseases (Saras Ramiya, 2011). 

However, this knowledge provided by the author is not supported by any database of 

heart sound that has been collected in Malaysia. Moreover, international database can 

be obtained but at a high cost and also the database might not be comprehensive 

enough to cover the different types of murmurs. In order to address such issue, there 

has been great effort to collect heart murmurs in Malaysia hospital. The data 

gathered by the Center for Biomedical Engineering (CBE) can serve as clinical data, 

and utilized for the purpose of teaching and research regarding cardiac auscultation. 

This can negatively impact the mastering of physical examination skill 

among healthcare personnel which is a vital basic skill in the medical examination 

and an essential step before referring a person for examination by specialist. The 

auscultation has distinct advantage over these technologies. Auscultation is a simple 

non-invasive clinical skill used by general practitioner (GP) for patient evaluation 

and management.  
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Auscultation is practiced for evaluating the functional status of a complex 

human system such as the heart, lungs, abdomen etc (Mangrulkar & Judge, 2017) 

.Looking at the defined advantages of auscultation over other technologies, the 

researcher is keen to further investigate the possibility of using advanced signal 

processing algorithm to improve the auscultation diagnostic procedures.It is 

important to note that apart from S1 and S2 heart sounds, the abnormal heart sounds 

with murmurs is associated with other pathological conditions of the cardiovascular 

system. The skills of auscultation are usually obtained after years of training and 

practice with patients‘ heart sound. It is evidential that newly graduated medical 

students are less proficient in performing diagnosis for detecting abnormal heart 

sound. (Montinari & Minelli, 2019) argued that if two issues are not addressed 

properly the consequences can be that: 

(i) Patients who are incorrectly diagnosed as false negative will endure health 

complications or the possibility of death in later stage. 

(ii) Despite the benefits and advantages of Echocardiogram, Computerized 

Tomography (CT) and Magnetic Resonance Imaging (MRI) in cardiac 

diagnosis, these technologies are extremely costly and require expert 

operators which limit the possibility of equiping all district hospitals 

nationwide with such technologies.  

(iii) Cardiac patients face the risk of fatality due to the long hour queue for 

echocardiogram screening.  

The major limitation of the auscultation process occurs in human auditory 

system where collected heart sounds are detected. The human auditory system is 

particularly inefficient with low frequency and low intensity sound when analysed. 

The motivation behind the work in this thesis is the fact that by addressing the non-

stationary signal of HS with advance signal processing algorithm, it is possible to 

take advantage on the improved electronic data of the HS while maintaining a clear 

relationship to auscultation methods. By maintaining this connection, it is envisaged 

that the advantages of electronic data capture and the advanced signal processing 

diagnosis can be combined to develop an intelligent phonocardiograph (PCG) 

Computer Aided Diagnostic (CAD) system (Li, Li, & Tang, 2020). 
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1.3 Research Question 

This study aims to overcome the above mentioned problems. The key 

question is whether auscultation by normal stethoscopes can be implemented as a 

primary screening for heart abnormality. This has led this research to answer the 

following research questions. 

(i) How to address the efficiency of multichannel heart sound as a 

multivariate signal when compared to traditional technique? 

(ii) How to segment the heart sound signal as well as enhance the signal 

quality of the multivariate signal? 

(iii) How to detect noise using different filtering technique to enhance heart 

sound data quality and classification performance? 

(iv) How to estimate the clean heart sound signal x(t) from the observe signal 

y(t) and used different features to improve the performance of the DAS-

HD? 

1.4 Objective 

The aim of this thesis is to investigate the suitability of linear and nonlinear 

as well as stationary and non-stationary of heart sound (HS). The specific objective 

to achieve are as follows: 

(i) To evaluate and compare at different auscultation point between univariate 

and multivariate model. 

(ii) To compare different filtering technique to exploit noisy signal of the heart 

sound in order to enhance accuracy of the technique. 

(iii) To design and develop the non-stationary var technique  into state space 

model to understand the correlation between the multivariate HS signal and 

also to reduce noise effect of the signal. 



 

9 

1.5 Scope of the Research 

A proper measure to explore the issue of noise contamination in heart sound 

signal will be studied in detail. The algorithm for heart sound denoising will be 

considered in designing solution for the noise problem and variability due to the 

acquisition of heart sound in real clinical environment. As each point of auscultation 

normally correlates with a cardiac valve, this allows the detection of murmurs to only 

be associated with valvular abnormalities. There are a number of techniques when it 

comes to denoising and measuring the biomedical signals. The performance of the 

filters is largely affected by the statistical properties of biomedical signals and 

background noise whereby the background noise overlaps the spectral of the 

biomedical signals. This thesis highlights the use of Kalman Filter (KF) and wavelet 

transform to measure the underlying non-stationary process and given observation in 

minimum square error sense. As this technique enables the use of simultaneous time 

frequency information, it is widely utilized in analysing the heart sound. Filtering 

heart sound will be proposed based on Kalman Filtering and wavelet which is the 

time and frequency domain respectively. 

New features are developed based on TV-VAR coefficient which is different 

from the available studies on stationary signal. Time varying features will become 

the basis for the new features. The time series features based on state-space methods 

and its estimates will adhere to certain procedures. The hidden state parameter 

estimation is resolved analytically through the use of closed form Kalman Filter 

(KF), and the model parameter is measured using maximum likelihood (ML) 

approach, the EM algorithm. The DAS-HD non gaussian state space model 

(Framework 3) will be compared with the traditional DAS-HD based on MFCC-

HMM (Framework 1) and the filtered version with (Framework 2).In this study, the 

different heart sounds and the ECG data was gathered from the patients at Hospital 

Sultanah Aminah, Johor Bahru with the help of Physician who is a paediatric 

cardiologist. The consent of the patients was taken before collecting the data. In 

addition, additional data was recorded at CBE, Universiti Teknologi Malaysia, 

Skudai for the patients with normal heart sounds.  Information plays an important 

role in this modern technology. People discover amazing invention at rapid pace; 
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with data sizes are becoming larger day by day. So, it is challenging to deal with 

large amounts of data stored in database. Medical diagnosis is a complicated task 

which requires accuracy and efficiency. In tackling this issue, the 2016 Physio 

Net/Cinc Challenge invented a large database by gathering data from various 

research groups worldwide; recorded in various actual clinical and non-clinical 

settings. The PhysioNet/Computing in Cardiology Challenge 2016 tried to highlight 

several of these issues by gathering the research community to accumulate plentiful 

promising databases (Clifford et al 2016). The PhysioNet/Computing contains 3 

heart sound databases which are used in Chapter 4 for the DAS-HD. The summary of 

these three databases (Liu, et al., 2016) is as follows:  

(i) The Michigan heart sound and murmur database (UMHS) 

The Michigan heart sound and murmur database (MHSDB) was contributed 

by the University of Michigan Health System. It encompasses 23 heart sound 

recordings with a total of time length of 1496.8 s and was retrieved from 

www.med.umich.edu/lrc/psb/ heartsounds/index.htm 

(ii) The PASCAL database (Bentley et al 2011) 

The PASCAL database contains 176 recordings for heart sound segmentation 

and 656 recordings for heart sound classification. Despite having massive 

numbers of the recordings, there is limited time-length for each recording 

ranging from 1s to 30 s. The frequency is also limited to below 195 Hz 

because of the applied low-pass filter, which discards majority of the valuable 

heart sound components for clinical diagnosis. It was retrieved from 

www.peterjbentley.com/heartchallenge. 

(iii) The Cardiac Auscultation of Heart Murmurs database (eGeneralMedical) 

The Cardiac Auscultation of Heart Murmurs database was provided by 

eGeneral Medical Inc., which includes 64 recordings. It is not open and 

requires payment for access from www.egeneralmedical.com.The 
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PhysioNet/Computing Challenges database was also used in this study to 

evaluate the proposed methods in this thesis. 

1.6 Contribution of study 

The study investigates the mechanical (phonocardiogram) activity where the 

heart sound amplitude and frequency contexts are possibly the essential elements in a 

non-invasive assessment of heart activity. The PCG categorises four main 

components of the heart sound cycle period namely the first heart sound (S1) 

corresponding to the closure of mitral and tricuspid valves, the systolic period, the 

second heart sound (S2) corresponding to the closure of the aortic and pulmonary 

valves and the diastolic period. There four segments represent the full cycle of 

cardiac heart sound that is used by DAS-HD to predict the abnormality or the normal 

behaviour of the heart sound.However, determing the cardiac cycle for the long 

duration can be problematic.In this theis,the reserarch gap was address by designing 

and developing a new segmentation algorithm that is capable to automatically detect 

the cycles of HS. 

The first part of the work also used univariate method for example MFCC -

HMM modelling to interface the dynamics of the heart activity. This approach has 

shown to provide significant performance in estimating single-trial signal (example: 

mitral valve). The setback of univariate model is the process only correlates in time 

precedence of signal whereby the correlations between other signal regions is unable 

to be assessed directly from univariate model.Most current studies in this area are 

mainly focus on univariate modelling and in order to tackle the research gap, further 

work in this thesis enhance the generalization of univariate model to multivariate 

modelling. .Significant review has been carried out related to this multivariate study 

and it is found that this study is one of the few studies that employ the state space 

methods to model and measure the heart sound signal dynamics. The work proposes 

a new method to analyse the dynamics changes in a multivariate heart sound signal 

in reference to state-space modelling which consists the following contributions: 
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(i) Multi channel heart sounds (HS) with its introduction of linear dynamics 

model and proposed the EM algorithm in order to solve the estimation 

problem. The multivariate TVAR and its classification provide significantly 

better performance than the conventional MFCC-HMM model. The model 

estimation used the Kalman Filter. 

(ii) The thesis proposed a new framework as dynamic time varying VAR model. 

formulated in a state-space form with EM estimation to identify the varying 

changes within the four valves. The method was applied to 40 normal patients 

and 6 abnormal patients. 

1.7 Content of thesis 

This study focuses on the filtering technique for ECG analysis and heart 

modelling. In order to acquire the intended results, an ECG and heart sound 

processing method utilizing an iterative filtering and parameter estimation technique 

is proposed in this study. This study also proposes new framework based on state 

space modelling (SSM) to measure changes in multivariate signals of the HS. This 

proposed algorithm can appropriately fine-tune itself according to the patient‘s 

specific demands. On the bright side, this feature-specific heart sound estimation 

method can manage nearly all perturbed waveforms compared to the direct or 

transformation-based processing methods which cannot process the uncommon 

waveforms even though large sample databases are utilized. Moreover, a priori 

determined medical parameter greatly correlates with the signal estimation and 

efficient of the suggested algorithm. Adaptive modification of noisy signals can be 

done through the advanced distortion analysis which can provide the analysis with a 

high quality and clean signal. The structure of this study is in the following ways: 

 Chapter 1 Introduces briefly the history of heart diseases, the objective of 

study scope of research and methods used in the thesis which is the main 

focus of research. 
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 Chapter 2 highlights the brief summary on the physiology of the heart, heart 

diseases, types of heart diseases, and feature extractions and classification 

model. This chapter explores numbers of theories and applications which 

involves averaging, extraction of heart cycle, alignment of the extracted heart 

cycle, segmentation and filtering technique. This chapter also provides 

comprehensive review of past work performed in the field automated and 

computer based heart sound analysis. 

 

 Chapter 3 explore overall methodology on framework 1,2 and 3.Framework 

1 discussed the traditional method of features extraction and classifier in 

designing the DAS-HD(Framework 2) provides the methodology used for 

filtering the heart sound and finally Framework 3, shows  the methodology of 

converting to univariate signal at each auscultation point to multivariate 

signal.These section emphasize the overall. 

 

 Chapter 4 explores the theory of a well-known heart sound segmentation 

algorithm and its application, and proposes practical improvement for actual 

clinical settings. This chapter also explains the required mathematical 

approaches in order to comprehensively comprehend this study. In order to 

realise the aims of this study, the methods proposed are thoroughly and 

comprehensively discussed which include statistical analysis and 

measurement on the performance of the methods. 

 

 Chapter 5 discusses in detail methods for denoising of HS signals. The 

Chapter describes the proposed methodology namely the Kalman, Wavelet 

and Wavelet-Kalman filtering. There approaches are investigated and 

validated with the standard database. 

 

 Chapter 6 describes the detail use of State Space Model (SSM) applied to 

non-stationary and multivariate HS signal the classification which is validated 

with different evaluation paradigms including kfold-splitting, accuracy, 

specitivity and sensitivity of the performance. 
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 Chapter 7 provides the conclusion for the results presented in the previous 

chapter. From the findings of the results, special attention is given on the 

objective presented in Chapter 1. Finally, suggestions are made for possible 

areas of further research and summarised the findings and contribution 

discussed in this thesis. 
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