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ABSTRACT 

Daily and nocturnal hemodialysis practices require a portable dialysis machine. 

To foster the development of portable dialysis machine, an innovative technology to 

regenerate dialysate is needed. Hence, the objective of this study is to develop a highly 

selective polysulfone/poly(methyl methacrylate) (PSf/PMMA) dual layer hollow fiber 

(DLHF) membrane incorporated with activated carbon (AC) for collective removal of 

uremic toxins. In the first phase of the study, the urea adsorption capacity of PMMA 

was enhanced by a surface modification process using 5 %v/v aqueous (3-

aminopropyl)triethoxysilane solution. The silane coating on the surface of PMMA 

particle was observed using transmission electron microscopy and the identification of 

silicon and nitrogen elements by the energy-dispersive X-ray spectroscopy has 

confirmed the successful modification of PMMA. A comprehensive adsorption study 

of urea was then conducted on the PMMA, whereby the isotherm, kinetic and 

thermodynamic of the adsorption process were determined. Modified PMMA showed 

urea adsorption capacity of 57 mg/g, which was higher than the unmodified PMMA 

(23 mg/g) due to the increased number of active adsorption sites. The urea adsorption 

onto PMMA surface was found as a non-spontaneous physical process that follows 

Freundlich isotherm model and Lagergren’s pseudo-second-order kinetic model. In the 

second phase of the study, DLHF membranes consisting of PSf inner layer and 

PSf/PMMA outer layer were fabricated via a single-step co-extrusion technique using 

a triple orifice spinneret. The effect of PSf/PMMA composition (PSf:PMMA; 18:2, 

15:5, 12:8, 10:10 and 8:12) on physical compatibility, molecular sieving properties 

and urea removal performance of the DLHF membranes were investigated. In 

conditions where the composition of PMMA is lesser than PSf, there was no sign of 

delamination between the two membrane layers. Results showed that the DLHF 

membrane exhibited urea adsorption capacity from 5.5 to 27.6 mg/g. In ultrafiltration 

adsorption experiment, the membrane with PSf/PMMA composition of 12:8 

demonstrated significant urea removal of 39.2% and showed desired sieving properties 

towards large solute (lysozyme). In the third phase of the study, AC particles were 

incorporated in the inner layer of the DLHF membrane, where the effect of AC loading 

(0, 3, 5, 7 and 9 wt%) on the co-adsorptive urea and creatinine removal performance 

was investigated. The DLHF membrane with the highest AC loading (9 wt%) 

displayed the highest maximum adsorption capacity of creatinine of 86.2 mg/g. 

Besides, the membrane demonstrated the highest flux of 16.4 Lm-2h-1 and rejection of 

35.3% and 73.3% for urea and creatinine, respectively. In the final phase of the study, 

the long-term stability of the optimized PSf/PMMA/AC DLHF membrane in 

continuous operation was evaluated. The membrane was tested for 3 cycles of 6-hour 

operation, whereby in each cycle, the membrane experienced different extents of 

reduction in flux and solute rejection. The membrane showed promising reusability 

with a high overall solute rejection recovery rate of 86% and 73% in the second and 

third cycles, respectively. The PSf/PMMA/AC DLHF membrane was successfully 

fabricated and showed collective removal of uremic toxins via the combined process 

of adsorption and filtration, hence becoming a potential candidate for dialysate 

regeneration. 
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ABSTRAK 

Amalan hemodialisis harian dan malam memerlukan sebuah mesin dialisis 

mudah alih. Bagi mendorong pembangunan mesin dialisis mudah alih, suatu teknologi 

inovatif untuk menjana semula dialisat diperlukan. Oleh itu, objektif kajian ini adalah 

untuk membangunkan suatu membran gentian berongga dwilapisan (DLHF) 

polisulfon/poli(metil metakrilat) (PSf/PMMA) yang dicampurkan dengan karbon aktif 

(AC) yang sangat selektif untuk penyingkiran toksin uremik secara kolektif. Pada fasa 

pertama kajian, kapasiti penjerapan urea PMMA ditingkatkan dengan proses 

pengubahsuaian permukaan menggunakan larutan akueus 5 %v/v (3-aminopropil) 

trietoksilana. Lapisan silana pada permukaan partikel PMMA diperhati menggunakan 

mikroskop elektron transmisi dan pengenalpastian unsur silikon dan nitrogen oleh 

spektroskopi sinar-X penyebaran tenaga telah mengesahkan pengubahsuaian PMMA 

yang berjaya. Kajian penjerapan urea komprehensif kemudian telah dilakukan pada 

PMMA, di mana isoterm, kinetik dan termodinamik proses penjerapan ditentukan. 

PMMA yang diubahsuai  menunjukkan kapasiti penjerapan urea sebanyak 57 mg/g, 

yang mana lebih tinggi daripada PMMA yang tidak diubah suai (23 mg/g) disebabkan 

oleh peningkatan bilangan kawasan jerapan aktif. Penjerapan urea ke atas permukaan 

PMMA didapati sebagai proses fizikal tidak spontan yang mematuhi model isoterm 

Freundlich dan model kinetik pseudo-urutan kedua Lagergren. Pada fasa kedua kajian, 

membran DLHF yang terdiri daripada lapisan dalam PSf dan lapisan luar PSf/PMMA 

dihasilkan melalui teknik penyemperitan bersama satu langkah menggunakan 

pemintal tiga orifis. Kesan komposisi PSf/PMMA (PSf:PMMA; 18:2, 15:5, 12:8, 

10:10 dan 8:12) terhadap keserasian fizikal, sifat penyaringan molekul dan prestasi 

penyingkiran urea membran DLHF telah dikaji. Dalam keadaan di mana komposisi 

PMMA lebih rendah daripada PSf, tidak terdapat tanda-tanda penempaan di antara dua 

lapisan membran. Hasil kajian menunjukkan bahawa membran DLHF tersebut 

menunjukkan kapasiti penjerapan urea dari 5.5 hingga 27.6 mg/g. Dalam eksperimen 

penjerapan ultraturasan, membran dengan komposisi PSf/PMMA 12:8 menunjukkan 

penyingkiran urea yang signifikan sebanyak 39.2% dan menunjukkan sifat 

penyaringan yang diinginkan terhadap zat terlarut besar (lisozim). Pada fasa ketiga 

kajian, partikel AC dimasukkan ke dalam lapisan dalam membran DLHF, di mana 

kesan kandungan AC (0, 3, 5, 7 dan 9 wt%) terhadap prestasi penyingkiran urea dan 

kretinin secara penjerapan bersama dikaji. Membran DLHF dengan kandungan AC 

tertinggi (9 wt%) menunjukkan kapasiti penjerapan maksimum kreatinin tertinggi 

sebanyak 86.2 mg/g. Selain itu, membran tersebut menunjukkan fluks tertinggi 

sebanyak 16.4 Lm-2h-1 dan penyingkiran sebanyak 35.3% dan 73.3%, iaitu masing-

masing untuk urea dan kreatinin. Pada fasa akhir kajian, kestabilan jangka panjang 

membran PSf/PMMA/AC DLHF yang dioptimumkan dalam operasi berterusan telah 

dinilai. Membran ini diuji selama 3 kitaran operasi 6 jam, di mana dalam setiap kitaran, 

membran tersebut mengalami pengurangan yang berbeza terhadap fluks dan 

penyingkiran zat terlarut. Membran tersebut menunjukkan kebolehgunaan semula 

yang memberangsangkan dengan kadar pemulihan penyingkiran zat terlarut 

keseluruhan yang tinggi sebanyak 86% dan 73%, masing-masing pada kitaran kedua 

dan ketiga. Membran PSf/PMMA/AC DLHF berjaya dihasilkan dan menunjukkan 

penyingkiran toksin uremik secara kolektif melalui gabungan proses penjerapan dan 

penapisan, justeru menjadi calon yang berpotensi untuk penjanaan semula dialisat. 
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1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

In the 21st century, the number of chronic kidney disease patients has increased 

terrifically where these patients suffer from the incapability of filtering and removing 

body waste. According to Malaysia’s National Renal Registry, it has been reported 

that the total amount of people undergoes hemodialysis had risen from 6,689 to 21,159 

people in 2009 (Cheng, 2011). The latter report in May 2013 indicated the increase of 

hemodialysis patients to 26,159 people (Cheng, 2013). The latest statistics issued by 

National Kidney Foundation revealed that 30,000 Malaysians needed hemodialysis in 

2014 (Cruez, 2014), and the number further increased  by 8,157 patients in March 2016 

(Mustapha and Bavanandan, 2018). This shows the growth of about 4,000 newly 

registered patients each year and that number was expected to continue to rise in years 

to come (Hammim, 2017). The patients undergoing hemodialysis are usually termed 

as the end-stage renal failure (ESRF) patients. ESRF is the last stage of chronic kidney 

disease, whereby the long-termed kidney failure has caused drastic reduction of 

glomerular filtration rate to below 15 mL/min (Kalra et al., 2006). Besides, the kidney 

function of these patients is said to fall to 15% of its normal capacity. As the result, 

the wastes such as the end-products of metabolism reactions occurred in body, together 

with the electrolytes may accumulate in the blood to cause complications (Liu et al., 

2020). 

Hemodialysis is the most widely applied extracorporeal treatment to filter and 

purify blood. It is considered as a highly successful treatment that provides the second 

chance to live. The treatment includes the removal of waste products, mostly referred 

as uremic toxins (e.g. urea and creatinine) from blood and the control of water and 

electrolyte content (e.g. sodium chloride, NaCl) in blood. These processes occur within 

the heart of hemodialysis, namely dialyzer. Inside a dialyzer, the blood flows into 
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thousands of semipermeable membrane fibers surrounded by an electrolyte solution 

called dialysate. The continuous flow of dialysate outside the membrane fibers creates 

concentration difference for the separation processes to happen. A conventional 

hemodialysis treatment requires patients to have thrice sessions a week, with an 

average of four hours for each session. However, the ‘unphysiology’ of the intermittent 

hemodialysis treatment has become a concern, as it leads to major complications such 

as cardiovascular events, impaired cognitive function, anemia, and bone disease (Kim 

and Ronco, 2011; Kjellstrand et al., 1978; Neumann et al., 2017). This has resulted in 

the increase of mortality rate among ESRF patients (Kim and Ronco, 2011). Besides, 

the hours of conventional hemodialysis may limit patients’ freedom and restrict them 

from dietary choices. In the past decade, there has been a growing interest among 

researchers and nephrologists regarding slow and frequent form of hemodialysis. 

Researchers and nephrologists agree that this extended-hours hemodialysis is 

associated with outstanding clinical outcomes, for example better control of blood 

pressure and quicker recovery rate after the treatment (Rivara et al., 2016). 

With the new piece of information on the alternative form of hemodialysis, the 

research to improve hemodialysis treatment has revolutionized as it is now coming 

from many aspects of the system, from developing a better dialyzer using high 

performance dialysis membrane to adjusting the entire system for different modes of 

hemodialysis. To implement slow and more frequent hemodialysis away from hospital 

or dialysis center, a portable dialysis machine is practically needed where the patients 

may have a direct access towards the machine. The idea to develop portable 

hemodialysis system was brought up in early 1970s to improve the treatment and 

patients’ circumstances (Davenport, 2015). It is the best way to mimic the natural 

kidney functions by constantly cleansing the blood from harmful toxins. Though 

several portable dialysis models have been developed (Fissell et al., 2013; Gura et al., 

2009), there is no implementation in clinical practice due to some technical issues 

particularly the limitation in dialysate regeneration (Kim and Ronco, 2011). 

One of the main components of a portable dialysis model is dialysate 

regeneration system which functions to ensure continuous influx of dialysate in the 

dialyzer (Cheah, Sim and Yeoh, 2016; Kim and Ronco, 2011). Dialysate is very 
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important to ensure the smooth operation of the treatment as it controls the movement 

of solutes across the hemodialysis membrane via concentration gradient. The 

complexity of dialysate production and the large consumption of water are among the 

reasons why dialysate regeneration system is needed. Hemodialysis demands a large 

volume of water to operate in which  it consumes in average 120 L of water per session 

(Gura et al., 2016). Water is used to dilute the dialysate which is normally stored as a 

concentrated solution. The dilution is typically performed at water:dialysate ratio of 

30:1 (Kameda et al., 2019). During the treatment, the uremic toxins contained in blood 

constantly diffuse into the dialysate. The dialysate becomes saturated and this situation 

would affect the diffusion rate of the solutes. In order to reduce water consumption 

and at the same time controlling the concentration of diffused solutes in the dialysate, 

the produced dialysate should be condensed and regenerated within a small and closed 

system (Cheah, Sim and Yeoh, 2016).  

There have been a very limited number of works conducted to address this 

matter (Petrella, Orlandini and Bigi, 1975; Talaat, 2009). These works intended  to 

recover the dialysate as much as possible by removing the diffused uremic toxins and 

to recirculate the dialysate back into the dialyzer. Adsorption is the simplest yet the 

most effective and practical method to remove small water-soluble molecules, for a 

lightweight setup of the integrated system. Previously, activated carbon (AC) has been 

employed as the adsorbent to remove uremic toxins from used dialysate along with the 

ion-exchangers such as hydrated zirconium-oxide, hydrated zirconium-phosphate and 

activated aluminum silicate (Agar, 2010; Petrella, Orlandini and Bigi, 1975; Wester et 

al., 2014). AC has been chosen because of its versatility to adsorb a wide range of 

uremic toxins (Tijink et al., 2013). In current practices, selected materials are packed 

into a cylindrical sorbent cartridge to adsorb the uremic toxins and to restore ions in 

the dialysate. Even now, the search for the most viable technology for dialysate 

regeneration never ceases as researchers occasionally look for other alternatives.  

Today, one of the fastest growing and the most advanced technologies in 

separation field is membrane technology. The first ever membrane separation process 

studied for dialysate regeneration was forward osmosis (FO) (Talaat, 2009; Shaffer et 

al., 2015) . The FO process was able to reclaim a good portion of water from the used 
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dialysate. This kind of development has opened the possibility for a combined 

technological solution by adapting adsorption into membrane separation process to 

attain the best version of dialysate regeneration system. In this study, attempts were 

made to fabricate a polysulfone (PSf)-based dual layer hollow fiber (DLHF) 

membrane incorporated with two adsorptive materials, namely poly(methyl 

methacrylate) (PMMA) and AC for uremic toxin removal from aqueous solution. The 

synergism between PMMA and AC in the PSf matrix in demonstrating enhanced 

membrane adsorption properties and separation performance was investigated. 

1.2 Problem Statement 

Current prototype models of portable dialysis machine face technical 

difficulties in developing a reliable dialysate regeneration system. The sorbent 

cartridges used in these models have failed to meet the technical requirements for the 

system due to the poor removal of uremic toxins from dialysate. As the result, 

hemodialysis treatment suffers poor diffusive clearance of uremic toxins because the 

concentration gradient is not restored inside the dialyzer. The popularly used 

adsorbents to capture a wide range of uremic toxins include commercial zeolites and 

AC as they possess unique pore structures and wide pore size distribution (Jaramillo, 

Álvarez and Gómez-Serrano, 2010; Cheah et al., 2017). However, urea which is the 

most abundant uremic toxin in blood is hardly removed using the commercial 

adsorbents especially AC (Cheah, Sim and Yeoh, 2016). The previously proposed 

enzymatic reaction to aid the adsorption process using urease to break down urea into 

ammonia and carbon dioxide may complicate the system as the release of the ammonia 

can favor the precipitation of calcium carbonate in the dialysate (Gura et al., 2009; 

Wester et al., 2014).  

Among the materials reported to have high urea adsorption capacity are 

oxidized starch (Shimizu and Fujishige, 1983) and amine-functionalized mesoporous 

silica (Cheah, Sim and Yeoh, 2016). Each of these materials adopted different 

strategies to enhance urea adsorption capacity. Oxidation of the starch was intended to 

introduce aldehyde group that can form a specific interaction with amine group of urea 
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via nucleophilic substitution reaction (Shimizu and Fujishige, 1983). This approach 

requires higher energy for the adsorption to take place as it involves chemisorption 

that is naturally irreversible. Moreover, oxidized starch was later found to be unstable 

as it dissolves in water and disappears. On the contrary, mesoporous silica was 

functionalized with an amino-functional silane to improve the urea adsorption capacity 

by offering extra adsorption sites for urea molecules. Despite the good attempts to 

produce a promising urea adsorbent, another unmet challenge arises which is the 

limitation of adsorbents to specifically adsorb the targeted solute among the vast 

number of solutes. Competitive adsorption is known to occur between middle 

molecules (>500 g/mol) and small water-soluble molecules (<500 g/mol) or within the 

same class of solutes. The competitive adsorption among solutes especially amino-

compounds (i.e. urea and creatinine) may disrupt the efficiency of the adsorbent as 

they compete for active adsorption sites. 

To address the problems, a one-step adsorption-filtration process using 

membrane technology is an attractive alternative to selectively remove the targeted 

molecules. This can be done using adsorptive membrane that allows two mechanisms 

of separation namely molecular sieving and adsorption to take place simultaneously 

during the process to cater different target groups. The selection of materials to form 

the adsorptive membrane is based on the sieving and adsorption properties required. 

Typical ceramic and polymeric membranes both have disadvantages in their current 

state to be used as adsorptive membrane. Ceramic membranes, although can be 

prepared using adsorptive materials such as zeolites (Adam et al., 2019), tend to have 

large pore size and require a number of post-fabrication treatments. On the other hand, 

almost all polymeric membranes have poor adsorption capacity which is the only 

downside of using these membranes. Nevertheless, PSf and polyethersulfone (PES) 

membranes have been reliably utilized as low pressure-driven membranes to reject a 

wide range of solutes (Said et al., 2019a, b; Kumari, Modi and Bellare, 2020). In this 

situation, polymeric membrane is the better pick due to its easily tailored pore size to 

reject middle molecules and its proven capability as a host for adsorbents to adsorb 

small water-soluble molecules. 
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Adsorptive polymers serve as a good alternative for adsorptive membrane 

fabrication. PMMA membranes are known for their pronounced adsorption property 

for middle molecules like cytokines and β2-microglobulin (Moachon et al., 2002; 

Masakane et al., 2017; Uchiumi et al., 2018). It was evident that PMMA membrane 

adsorbed 28.6 μg β2-microglobulin and 0.72 μg lysozyme (Moachon et al., 2002). The 

results also revealed that neat PMMA membrane was not well suited for ultrafiltration 

(UF) process as it rejected only 2.6% β2-microglobulin and 14% lysozyme via size 

exclusion. Similar outcome was reported when PMMA was added as a secondary 

polymer to polyvinylidenefluoride (PVDF) single layer membrane (Ai et al., 2012; 

Tan et al., 2014). This trade-off effect is the common limitation encountered to develop 

membranes for adsorption-filtration process. To compensate the effect, methods such 

as surface coating and interfacial polymerization were used to uphold the intrinsic 

properties of the polymers (Choi et al., 2019). For hollow fiber configuration, a more 

practical way to pair up the polymers without losing their unique properties is by 

preparing a DLHF membrane.  This membrane setup allows the denser layer to filter 

middle molecules within UF range and the more porous layer containing adsorptive 

polymer to adsorb the small water-soluble molecules. 

Understanding the limitation of each adsorbent, combination of two or more 

adsorptive components in a system is an interesting approach to be explored in order 

to achieve efficient removal of a wide range of uremic toxins. Therefore, in this study, 

DLHF membranes which composed of PSf/AC inner layer and PSf/ PMMA outer layer 

were prepared via co-extrusion technique for co-adsorptive removal of small water-

soluble molecules (urea and creatinine) from aqueous solution. Prior to membrane 

fabrication, a surface modification was performed on PMMA to improve the 

adsorption capacity of PMMA. PSf with polyvinylpyrrolidone (PVP) as a pore former 

was used as a base material in both membrane layers to ensure good compatibility 

between the layers. In the outer layer, PMMA was added to induce adsorption 

capabilities to the membrane, particularly to adsorb urea. Meanwhile. the inner layer 

of the membrane served as the first barrier to reject middle molecules (lysozyme) by 

size exclusion. AC as the universal adsorbent was then incorporated in the inner layer 

of the membrane to adsorb creatinine, hence minimizing competitive adsorption. This 

was the first attempt of producing membrane that can effectively reject uremic toxins 
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via the combined effects of molecular sieving and adsorption using two adsorptive 

components. 

1.3 Objectives of the Study 

The main objective of this study is to fabricate a highly selective PSf/PMMA 

DLHF membrane embedded with AC via a single-step co-extrusion technique for 

collective removal of uremic toxins. Based on the research background and problem 

statement, the specific objectives of this study are listed below:  

1. To perform surface modification and characterization on PMMA and evaluate the 

urea adsorption properties of PMMA. 

2. To study the effects of PSf/PMMA composition on the physical compatibility, 

molecular sieving properties and adsorption performance of the DLHF 

membranes. 

3. To investigate the effects of AC addition on the co-adsorptive urea and creatinine 

removal performance of the resultant membrane in terms of flux and rejection.  

4. To evaluate the long-term stability of the optimized membrane in continuous 

operation and the reusability of the membrane. 

1.4 Scopes of the Study 

To fulfil the objectives, the following scopes of work are outlined: 

1. Modifying the surface of PMMA through amino-silanization using 5 %v/v 

aqueous (3-Aminopropyl)triethoxysilane (APTES) solution at fixed reaction 

conditions. 
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2. Characterizing the PMMA before and after modification by transmission electron 

microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), pore and 

surface analysis and Fourier transform infrared spectroscopy (FTIR). 

3. Conducting the adsorption isotherm, kinetic and thermodynamic studies of urea on 

the PMMA by varying the initial urea concentration (0, 500, 1000, 1500, 2000, and 

2500 mg/L), contact time (0-24 hours) and absolute temperature (281.15, 298.15, 

310.15 and 323.15 K). 

4. Preparing an inner dope solution containing 18 wt% PSf and 3 wt% PVP and 

several outer dope solutions by varying the PSf/PMMA composition (PSf:PMMA; 

18:2, 15:5, 12:8, 10:10 and 8:12) using N-methyl-2-pyrrolidone (NMP) as solvent. 

5. Fabricating a PSf single layer hollow fiber (SLHF) membrane and the PSf/PMMA 

DLHF membranes of different PSf/PMMA compositions in the outer layer via one-

step co-extrusion technique using a triple orifice spinneret at fixed spinning 

parameters. 

6. Examining the morphology of PSf SLHF membrane and PSf/PMMA DLHF 

membranes by scanning electron microscopy (SEM) and atomic force microscopy 

(AFM), surface hydrophilicity using contact angle goniometer, overall porosity, 

water uptake, average pore size, and confirming the chemical functionality by 

FTIR. 

7. Evaluating the separation features of the PSf SLHF membrane and PSf/PMMA 

DLHF membranes in terms of flux and sieving coefficient for various solutes 

(NaCl, urea, vitamin B12, and lysozyme) at the transmembrane pressure of 1.0 bar. 

8. Evaluating the adsorption capacity and the UF adsorption performance of 

PSf/PMMA DLHF membranes for urea removal. 

9. Preparing several inner dope solutions by varying the AC loading (0, 3, 5, 7 and 9 

wt%) and an outer dope solution using the optimized PSf/PMMA composition. 
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10. Fabricating a PSf/AC SLHF membrane and the PSf/PMMA/AC DLHF 

membranes of different AC loadings in the inner layer via one-step co-extrusion 

technique using a triple orifice spinneret at fixed spinning parameters. 

11. Characterizing the PSf/AC SLHF membrane and the PSf/PMMA/AC DLHF 

membranes in terms of morphology, chemical functionality, surface 

hydrophilicity, porosity, water uptake and pure water flux (PWF). 

12. Investigating the creatinine adsorption properties of PSf/AC SLHF membrane, 

PSf/PMMA DLHF membrane and PSf/PMMA/AC DLHF membranes by studying 

the effect of initial concentration (500, 1000, 1500 and 2000 mg/L) and contact 

time (0-24 hours) on the adsorption capacity of the membranes and determining 

the adsorption isotherm and kinetic involved in the process. 

13. Studying the competitive adsorption between urea and creatinine for PSf/AC 

SLHF membrane, PSf/PMMA DLHF membrane and PSf/PMMA/AC DLHF 

membrane in a binary batch adsorption system at various solute concentrations 

(500, 1000, 1500 and 2000 mg/L).  

14. Performing a UF adsorption experiment on PSf/AC SLHF membrane, PSf/PMMA 

DLHF membrane and PSf/PMMA/AC DLHF membrane to evaluate the co-

adsorptive removal performance of the membranes in terms of flux and rejection 

of urea and creatinine. 

15. Conducting a long-term UF adsorption experiment consisting 3 cycles with a total 

duration of 18 hours on the PSf/PMMA/AC DLHF membrane with optimized 

PSf/PMMA composition and AC loading to study the stability and reusability of 

the membrane based on flux, solute rejection and the solute rejection recovery. 

16. Studying the leaching phenomenon of adsorbed urea and creatinine from 

membrane during the UF adsorption experiment through water permeation.
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